Dopamine-Modified AuCu Bimetallic Nanoclusters as Charge Transfer-Based Biosensors for Highly Sensitive Glycine Detection

Glycine is the simplest amino acid in living organisms and plays important roles in biology and medicine. However, few biosensors for glycine sensing have been reported. Herein, we present a facile strategy to construct dopamine-modified AuCu bimetallic nanoclusters (denoted as AuCu NC–DA) as charge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2020-11, Vol.36 (46), p.13928-13936
Hauptverfasser: Chen, Zhichuan, Ding, Weihua, Gu, Yayun, Gao, Sheng, Yun, Damin, Wang, Chengniu, Li, Wenqing, Sun, Fei
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13936
container_issue 46
container_start_page 13928
container_title Langmuir
container_volume 36
creator Chen, Zhichuan
Ding, Weihua
Gu, Yayun
Gao, Sheng
Yun, Damin
Wang, Chengniu
Li, Wenqing
Sun, Fei
description Glycine is the simplest amino acid in living organisms and plays important roles in biology and medicine. However, few biosensors for glycine sensing have been reported. Herein, we present a facile strategy to construct dopamine-modified AuCu bimetallic nanoclusters (denoted as AuCu NC–DA) as charge transfer-based biosensors for highly sensitive glycine sensing. The AuCu NCs stabilized by bovine serum albumin (BSA) exhibited a fluorescence maximum at 400 nm. Because of the high affinity of BSA for dopamine (DA), the surface of the AuCu NCs was modified with DA without any complicated chemical reactions, resulting in fluorescence quenching through a charge transfer process. Among 20 amino acids, AuCu NC–DA exhibited an off/on fluorescence switching response specifically toward glycine through the formation of hydrogen bonds with oxidized DA, which inhibited the charge transfer process, leading to the emergence of a new emission peak at 475 nm. Spectroscopic and thermodynamic results combined with molecular docking analyses provided comprehensive understanding of the sensing mechanism. Furthermore, we showed that AuCu NC–DA was able to sense glycine in cells by imaging. Finally, the practicability of AuCu NC–DA for glycine detection was validated in milk drink samples. This study presents a promising type of a charge transfer-based sensor.
doi_str_mv 10.1021/acs.langmuir.0c02396
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2459628737</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2459628737</sourcerecordid><originalsourceid>FETCH-LOGICAL-a325t-ccf715ec368dc141e6b5642b860183dd68b66e8c291c71290d2b876306544faa3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwDxg8sqT4K04ytgVapAIDZbZc59K6SuJiJ0j597hqWZlOunufO92D0D0lE0oYfdQmTGrdbpve-gkxhPFCXqARTRlJ0pxll2hEMsGTTEh-jW5C2BNCCi6KERqe3EE3toXkzZW2slDiaT_v8cw20Om6tga_69aZug8d-IB1wPOd9lvAa6_bUIFPZjpEamZdgDa4mKmcx0u73dUD_owt29kfwIt6MPEMfoIOTGdde4uuKl0HuDvXMfp6eV7Pl8nqY_E6n64SzVnaJcZUGU3BcJmXhgoKcpNKwTa5JDTnZSnzjZSQG1ZQk1FWkDLOMsmJTIWotOZj9HDae_Duu4fQqcYGA3UUBq4Piom0kCzPeBaj4hQ13oXgoVIHbxvtB0WJOppW0bT6M63OpiNGTthxune9b-M__yO_nUWHCw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2459628737</pqid></control><display><type>article</type><title>Dopamine-Modified AuCu Bimetallic Nanoclusters as Charge Transfer-Based Biosensors for Highly Sensitive Glycine Detection</title><source>American Chemical Society Journals</source><creator>Chen, Zhichuan ; Ding, Weihua ; Gu, Yayun ; Gao, Sheng ; Yun, Damin ; Wang, Chengniu ; Li, Wenqing ; Sun, Fei</creator><creatorcontrib>Chen, Zhichuan ; Ding, Weihua ; Gu, Yayun ; Gao, Sheng ; Yun, Damin ; Wang, Chengniu ; Li, Wenqing ; Sun, Fei</creatorcontrib><description>Glycine is the simplest amino acid in living organisms and plays important roles in biology and medicine. However, few biosensors for glycine sensing have been reported. Herein, we present a facile strategy to construct dopamine-modified AuCu bimetallic nanoclusters (denoted as AuCu NC–DA) as charge transfer-based biosensors for highly sensitive glycine sensing. The AuCu NCs stabilized by bovine serum albumin (BSA) exhibited a fluorescence maximum at 400 nm. Because of the high affinity of BSA for dopamine (DA), the surface of the AuCu NCs was modified with DA without any complicated chemical reactions, resulting in fluorescence quenching through a charge transfer process. Among 20 amino acids, AuCu NC–DA exhibited an off/on fluorescence switching response specifically toward glycine through the formation of hydrogen bonds with oxidized DA, which inhibited the charge transfer process, leading to the emergence of a new emission peak at 475 nm. Spectroscopic and thermodynamic results combined with molecular docking analyses provided comprehensive understanding of the sensing mechanism. Furthermore, we showed that AuCu NC–DA was able to sense glycine in cells by imaging. Finally, the practicability of AuCu NC–DA for glycine detection was validated in milk drink samples. This study presents a promising type of a charge transfer-based sensor.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/acs.langmuir.0c02396</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Langmuir, 2020-11, Vol.36 (46), p.13928-13936</ispartof><rights>2020 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a325t-ccf715ec368dc141e6b5642b860183dd68b66e8c291c71290d2b876306544faa3</citedby><cites>FETCH-LOGICAL-a325t-ccf715ec368dc141e6b5642b860183dd68b66e8c291c71290d2b876306544faa3</cites><orcidid>0000-0001-8360-9310 ; 0000-0002-2460-7945</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.langmuir.0c02396$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.langmuir.0c02396$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Chen, Zhichuan</creatorcontrib><creatorcontrib>Ding, Weihua</creatorcontrib><creatorcontrib>Gu, Yayun</creatorcontrib><creatorcontrib>Gao, Sheng</creatorcontrib><creatorcontrib>Yun, Damin</creatorcontrib><creatorcontrib>Wang, Chengniu</creatorcontrib><creatorcontrib>Li, Wenqing</creatorcontrib><creatorcontrib>Sun, Fei</creatorcontrib><title>Dopamine-Modified AuCu Bimetallic Nanoclusters as Charge Transfer-Based Biosensors for Highly Sensitive Glycine Detection</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>Glycine is the simplest amino acid in living organisms and plays important roles in biology and medicine. However, few biosensors for glycine sensing have been reported. Herein, we present a facile strategy to construct dopamine-modified AuCu bimetallic nanoclusters (denoted as AuCu NC–DA) as charge transfer-based biosensors for highly sensitive glycine sensing. The AuCu NCs stabilized by bovine serum albumin (BSA) exhibited a fluorescence maximum at 400 nm. Because of the high affinity of BSA for dopamine (DA), the surface of the AuCu NCs was modified with DA without any complicated chemical reactions, resulting in fluorescence quenching through a charge transfer process. Among 20 amino acids, AuCu NC–DA exhibited an off/on fluorescence switching response specifically toward glycine through the formation of hydrogen bonds with oxidized DA, which inhibited the charge transfer process, leading to the emergence of a new emission peak at 475 nm. Spectroscopic and thermodynamic results combined with molecular docking analyses provided comprehensive understanding of the sensing mechanism. Furthermore, we showed that AuCu NC–DA was able to sense glycine in cells by imaging. Finally, the practicability of AuCu NC–DA for glycine detection was validated in milk drink samples. This study presents a promising type of a charge transfer-based sensor.</description><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwDxg8sqT4K04ytgVapAIDZbZc59K6SuJiJ0j597hqWZlOunufO92D0D0lE0oYfdQmTGrdbpve-gkxhPFCXqARTRlJ0pxll2hEMsGTTEh-jW5C2BNCCi6KERqe3EE3toXkzZW2slDiaT_v8cw20Om6tga_69aZug8d-IB1wPOd9lvAa6_bUIFPZjpEamZdgDa4mKmcx0u73dUD_owt29kfwIt6MPEMfoIOTGdde4uuKl0HuDvXMfp6eV7Pl8nqY_E6n64SzVnaJcZUGU3BcJmXhgoKcpNKwTa5JDTnZSnzjZSQG1ZQk1FWkDLOMsmJTIWotOZj9HDae_Duu4fQqcYGA3UUBq4Piom0kCzPeBaj4hQ13oXgoVIHbxvtB0WJOppW0bT6M63OpiNGTthxune9b-M__yO_nUWHCw</recordid><startdate>20201124</startdate><enddate>20201124</enddate><creator>Chen, Zhichuan</creator><creator>Ding, Weihua</creator><creator>Gu, Yayun</creator><creator>Gao, Sheng</creator><creator>Yun, Damin</creator><creator>Wang, Chengniu</creator><creator>Li, Wenqing</creator><creator>Sun, Fei</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8360-9310</orcidid><orcidid>https://orcid.org/0000-0002-2460-7945</orcidid></search><sort><creationdate>20201124</creationdate><title>Dopamine-Modified AuCu Bimetallic Nanoclusters as Charge Transfer-Based Biosensors for Highly Sensitive Glycine Detection</title><author>Chen, Zhichuan ; Ding, Weihua ; Gu, Yayun ; Gao, Sheng ; Yun, Damin ; Wang, Chengniu ; Li, Wenqing ; Sun, Fei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a325t-ccf715ec368dc141e6b5642b860183dd68b66e8c291c71290d2b876306544faa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Zhichuan</creatorcontrib><creatorcontrib>Ding, Weihua</creatorcontrib><creatorcontrib>Gu, Yayun</creatorcontrib><creatorcontrib>Gao, Sheng</creatorcontrib><creatorcontrib>Yun, Damin</creatorcontrib><creatorcontrib>Wang, Chengniu</creatorcontrib><creatorcontrib>Li, Wenqing</creatorcontrib><creatorcontrib>Sun, Fei</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Zhichuan</au><au>Ding, Weihua</au><au>Gu, Yayun</au><au>Gao, Sheng</au><au>Yun, Damin</au><au>Wang, Chengniu</au><au>Li, Wenqing</au><au>Sun, Fei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dopamine-Modified AuCu Bimetallic Nanoclusters as Charge Transfer-Based Biosensors for Highly Sensitive Glycine Detection</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2020-11-24</date><risdate>2020</risdate><volume>36</volume><issue>46</issue><spage>13928</spage><epage>13936</epage><pages>13928-13936</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><abstract>Glycine is the simplest amino acid in living organisms and plays important roles in biology and medicine. However, few biosensors for glycine sensing have been reported. Herein, we present a facile strategy to construct dopamine-modified AuCu bimetallic nanoclusters (denoted as AuCu NC–DA) as charge transfer-based biosensors for highly sensitive glycine sensing. The AuCu NCs stabilized by bovine serum albumin (BSA) exhibited a fluorescence maximum at 400 nm. Because of the high affinity of BSA for dopamine (DA), the surface of the AuCu NCs was modified with DA without any complicated chemical reactions, resulting in fluorescence quenching through a charge transfer process. Among 20 amino acids, AuCu NC–DA exhibited an off/on fluorescence switching response specifically toward glycine through the formation of hydrogen bonds with oxidized DA, which inhibited the charge transfer process, leading to the emergence of a new emission peak at 475 nm. Spectroscopic and thermodynamic results combined with molecular docking analyses provided comprehensive understanding of the sensing mechanism. Furthermore, we showed that AuCu NC–DA was able to sense glycine in cells by imaging. Finally, the practicability of AuCu NC–DA for glycine detection was validated in milk drink samples. This study presents a promising type of a charge transfer-based sensor.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.langmuir.0c02396</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-8360-9310</orcidid><orcidid>https://orcid.org/0000-0002-2460-7945</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0743-7463
ispartof Langmuir, 2020-11, Vol.36 (46), p.13928-13936
issn 0743-7463
1520-5827
language eng
recordid cdi_proquest_miscellaneous_2459628737
source American Chemical Society Journals
title Dopamine-Modified AuCu Bimetallic Nanoclusters as Charge Transfer-Based Biosensors for Highly Sensitive Glycine Detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T11%3A43%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dopamine-Modified%20AuCu%20Bimetallic%20Nanoclusters%20as%20Charge%20Transfer-Based%20Biosensors%20for%20Highly%20Sensitive%20Glycine%20Detection&rft.jtitle=Langmuir&rft.au=Chen,%20Zhichuan&rft.date=2020-11-24&rft.volume=36&rft.issue=46&rft.spage=13928&rft.epage=13936&rft.pages=13928-13936&rft.issn=0743-7463&rft.eissn=1520-5827&rft_id=info:doi/10.1021/acs.langmuir.0c02396&rft_dat=%3Cproquest_cross%3E2459628737%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2459628737&rft_id=info:pmid/&rfr_iscdi=true