A Glass‐Ceramic with Accelerated Surface Reconstruction toward the Efficient Oxygen Evolution Reaction
The effective non‐precious metal catalysts toward the oxygen evolution reaction (OER) are highly desirable for electrochemical water splitting. Herein, we prepare a novel glass‐ceramic (Ni1.5Sn@triMPO4) by embedding crystalline Ni1.5Sn nanoparticles into amorphous trimetallic phosphate (triMPO4) mat...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2021-02, Vol.60 (7), p.3773-3780 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3780 |
---|---|
container_issue | 7 |
container_start_page | 3773 |
container_title | Angewandte Chemie International Edition |
container_volume | 60 |
creator | Li, Shanlin Li, Zichuang Ma, Ruguang Gao, Chunlang Liu, Linlin Hu, Lanping Zhu, Jinlin Sun, Tongming Tang, Yanfeng Liu, Danmin Wang, Jiacheng |
description | The effective non‐precious metal catalysts toward the oxygen evolution reaction (OER) are highly desirable for electrochemical water splitting. Herein, we prepare a novel glass‐ceramic (Ni1.5Sn@triMPO4) by embedding crystalline Ni1.5Sn nanoparticles into amorphous trimetallic phosphate (triMPO4) matrix. This unique crystalline‐amorphous nanostructure synergistically accelerates the surface reconstruction to active Ni(Fe)OOH, due to the low vacancy formation energy of Sn in glass‐ceramic and high adsorption energy of PO43− at the VO sites. Compared to the control samples, this dual‐phase glass‐ceramic exhibits a remarkably lowered overpotential and boosted OER kinetics after surface reconstruction, rivaling most of state‐of‐the‐art electrocatalysts. The residual PO43− and intrinsic VO sites induce redistribution of electron states, thus optimizing the adsorption of OH* and OOH* intermediates on metal oxyhydroxides and promoting the OER activity.
A novel glass‐ceramic (Ni1.5Sn@triMPO4) with unique crystalline‐amorphous nanostructure accelerates the surface reconstruction to form superior OER electrocatalysts, which can be explained by the low vacancy formation energy of Sn atom and high adsorption energy of phosphate anions at O‐vacancy sites. This work showcases the importance of unique glass‐ceramic structure in boosting the surface reconstruction and improving electrocatalytic activity. |
doi_str_mv | 10.1002/anie.202014210 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2459628620</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2459628620</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4100-5f74f03ee9bd3a90868c6c3e8f9a4439c2254479bc21e7c2f341432333f6a9113</originalsourceid><addsrcrecordid>eNqF0ctKAzEUBuAgivetSwm4cTM1t5kky1LqBcSCl_WQpic2Mp3RZMbanY_gM_okRlsV3LhKCF9-8ucgdEBJjxLCTkztoccII1QwStbQNs0ZzbiUfD3tBeeZVDndQjsxPiSvFCk20RbnVApe6G007eOzysT4_vo2gGBm3uK5b6e4by1U6aCFCb7pgjMW8DXYpo5t6Gzrmxq3zdyECW6ngIfOeeuhbvHoZXEPNR4-N1X3pa7BfPE9tOFMFWF_te6iu9Ph7eA8uxydXQz6l5kVqVCWOykc4QB6POFGE1UoW1gOymkjBNeWsVwIqceWUZCWOS5SS8Y5d4XRlPJddLzMfQzNUwexLWc-pi6VqaHpYslErgumCkYSPfpDH5ou1Ol1SSlJJVF5nlRvqWxoYgzgysfgZyYsSkrKzxmUnzMof2aQLhyuYrvxDCY__PvTE9BLMPcVLP6JK_tXF8Pf8A8qNpMQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2487170855</pqid></control><display><type>article</type><title>A Glass‐Ceramic with Accelerated Surface Reconstruction toward the Efficient Oxygen Evolution Reaction</title><source>Access via Wiley Online Library</source><creator>Li, Shanlin ; Li, Zichuang ; Ma, Ruguang ; Gao, Chunlang ; Liu, Linlin ; Hu, Lanping ; Zhu, Jinlin ; Sun, Tongming ; Tang, Yanfeng ; Liu, Danmin ; Wang, Jiacheng</creator><creatorcontrib>Li, Shanlin ; Li, Zichuang ; Ma, Ruguang ; Gao, Chunlang ; Liu, Linlin ; Hu, Lanping ; Zhu, Jinlin ; Sun, Tongming ; Tang, Yanfeng ; Liu, Danmin ; Wang, Jiacheng</creatorcontrib><description>The effective non‐precious metal catalysts toward the oxygen evolution reaction (OER) are highly desirable for electrochemical water splitting. Herein, we prepare a novel glass‐ceramic (Ni1.5Sn@triMPO4) by embedding crystalline Ni1.5Sn nanoparticles into amorphous trimetallic phosphate (triMPO4) matrix. This unique crystalline‐amorphous nanostructure synergistically accelerates the surface reconstruction to active Ni(Fe)OOH, due to the low vacancy formation energy of Sn in glass‐ceramic and high adsorption energy of PO43− at the VO sites. Compared to the control samples, this dual‐phase glass‐ceramic exhibits a remarkably lowered overpotential and boosted OER kinetics after surface reconstruction, rivaling most of state‐of‐the‐art electrocatalysts. The residual PO43− and intrinsic VO sites induce redistribution of electron states, thus optimizing the adsorption of OH* and OOH* intermediates on metal oxyhydroxides and promoting the OER activity.
A novel glass‐ceramic (Ni1.5Sn@triMPO4) with unique crystalline‐amorphous nanostructure accelerates the surface reconstruction to form superior OER electrocatalysts, which can be explained by the low vacancy formation energy of Sn atom and high adsorption energy of phosphate anions at O‐vacancy sites. This work showcases the importance of unique glass‐ceramic structure in boosting the surface reconstruction and improving electrocatalytic activity.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202014210</identifier><identifier>PMID: 33174369</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Adsorption ; Catalysts ; Ceramics ; Crystal structure ; Crystallinity ; DFT calculations ; electrocatalysis ; Electrocatalysts ; Electrochemistry ; Electron states ; Embedding ; Free energy ; glass-ceramic ; Heat of formation ; Intermediates ; Nanoparticles ; Nickel ; Oxygen ; oxygen evolution reaction ; Oxygen evolution reactions ; Reconstruction ; Surface chemistry ; surface reconstruction ; Water splitting</subject><ispartof>Angewandte Chemie International Edition, 2021-02, Vol.60 (7), p.3773-3780</ispartof><rights>2020 Wiley‐VCH GmbH</rights><rights>2020 Wiley-VCH GmbH.</rights><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4100-5f74f03ee9bd3a90868c6c3e8f9a4439c2254479bc21e7c2f341432333f6a9113</citedby><cites>FETCH-LOGICAL-c4100-5f74f03ee9bd3a90868c6c3e8f9a4439c2254479bc21e7c2f341432333f6a9113</cites><orcidid>0000-0003-4327-1508 ; 0000-0001-7587-0818 ; 0000-0002-4031-1351 ; 0000-0002-6555-689X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202014210$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202014210$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33174369$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Shanlin</creatorcontrib><creatorcontrib>Li, Zichuang</creatorcontrib><creatorcontrib>Ma, Ruguang</creatorcontrib><creatorcontrib>Gao, Chunlang</creatorcontrib><creatorcontrib>Liu, Linlin</creatorcontrib><creatorcontrib>Hu, Lanping</creatorcontrib><creatorcontrib>Zhu, Jinlin</creatorcontrib><creatorcontrib>Sun, Tongming</creatorcontrib><creatorcontrib>Tang, Yanfeng</creatorcontrib><creatorcontrib>Liu, Danmin</creatorcontrib><creatorcontrib>Wang, Jiacheng</creatorcontrib><title>A Glass‐Ceramic with Accelerated Surface Reconstruction toward the Efficient Oxygen Evolution Reaction</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>The effective non‐precious metal catalysts toward the oxygen evolution reaction (OER) are highly desirable for electrochemical water splitting. Herein, we prepare a novel glass‐ceramic (Ni1.5Sn@triMPO4) by embedding crystalline Ni1.5Sn nanoparticles into amorphous trimetallic phosphate (triMPO4) matrix. This unique crystalline‐amorphous nanostructure synergistically accelerates the surface reconstruction to active Ni(Fe)OOH, due to the low vacancy formation energy of Sn in glass‐ceramic and high adsorption energy of PO43− at the VO sites. Compared to the control samples, this dual‐phase glass‐ceramic exhibits a remarkably lowered overpotential and boosted OER kinetics after surface reconstruction, rivaling most of state‐of‐the‐art electrocatalysts. The residual PO43− and intrinsic VO sites induce redistribution of electron states, thus optimizing the adsorption of OH* and OOH* intermediates on metal oxyhydroxides and promoting the OER activity.
A novel glass‐ceramic (Ni1.5Sn@triMPO4) with unique crystalline‐amorphous nanostructure accelerates the surface reconstruction to form superior OER electrocatalysts, which can be explained by the low vacancy formation energy of Sn atom and high adsorption energy of phosphate anions at O‐vacancy sites. This work showcases the importance of unique glass‐ceramic structure in boosting the surface reconstruction and improving electrocatalytic activity.</description><subject>Adsorption</subject><subject>Catalysts</subject><subject>Ceramics</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>DFT calculations</subject><subject>electrocatalysis</subject><subject>Electrocatalysts</subject><subject>Electrochemistry</subject><subject>Electron states</subject><subject>Embedding</subject><subject>Free energy</subject><subject>glass-ceramic</subject><subject>Heat of formation</subject><subject>Intermediates</subject><subject>Nanoparticles</subject><subject>Nickel</subject><subject>Oxygen</subject><subject>oxygen evolution reaction</subject><subject>Oxygen evolution reactions</subject><subject>Reconstruction</subject><subject>Surface chemistry</subject><subject>surface reconstruction</subject><subject>Water splitting</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqF0ctKAzEUBuAgivetSwm4cTM1t5kky1LqBcSCl_WQpic2Mp3RZMbanY_gM_okRlsV3LhKCF9-8ucgdEBJjxLCTkztoccII1QwStbQNs0ZzbiUfD3tBeeZVDndQjsxPiSvFCk20RbnVApe6G007eOzysT4_vo2gGBm3uK5b6e4by1U6aCFCb7pgjMW8DXYpo5t6Gzrmxq3zdyECW6ngIfOeeuhbvHoZXEPNR4-N1X3pa7BfPE9tOFMFWF_te6iu9Ph7eA8uxydXQz6l5kVqVCWOykc4QB6POFGE1UoW1gOymkjBNeWsVwIqceWUZCWOS5SS8Y5d4XRlPJddLzMfQzNUwexLWc-pi6VqaHpYslErgumCkYSPfpDH5ou1Ol1SSlJJVF5nlRvqWxoYgzgysfgZyYsSkrKzxmUnzMof2aQLhyuYrvxDCY__PvTE9BLMPcVLP6JK_tXF8Pf8A8qNpMQ</recordid><startdate>20210215</startdate><enddate>20210215</enddate><creator>Li, Shanlin</creator><creator>Li, Zichuang</creator><creator>Ma, Ruguang</creator><creator>Gao, Chunlang</creator><creator>Liu, Linlin</creator><creator>Hu, Lanping</creator><creator>Zhu, Jinlin</creator><creator>Sun, Tongming</creator><creator>Tang, Yanfeng</creator><creator>Liu, Danmin</creator><creator>Wang, Jiacheng</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4327-1508</orcidid><orcidid>https://orcid.org/0000-0001-7587-0818</orcidid><orcidid>https://orcid.org/0000-0002-4031-1351</orcidid><orcidid>https://orcid.org/0000-0002-6555-689X</orcidid></search><sort><creationdate>20210215</creationdate><title>A Glass‐Ceramic with Accelerated Surface Reconstruction toward the Efficient Oxygen Evolution Reaction</title><author>Li, Shanlin ; Li, Zichuang ; Ma, Ruguang ; Gao, Chunlang ; Liu, Linlin ; Hu, Lanping ; Zhu, Jinlin ; Sun, Tongming ; Tang, Yanfeng ; Liu, Danmin ; Wang, Jiacheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4100-5f74f03ee9bd3a90868c6c3e8f9a4439c2254479bc21e7c2f341432333f6a9113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adsorption</topic><topic>Catalysts</topic><topic>Ceramics</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>DFT calculations</topic><topic>electrocatalysis</topic><topic>Electrocatalysts</topic><topic>Electrochemistry</topic><topic>Electron states</topic><topic>Embedding</topic><topic>Free energy</topic><topic>glass-ceramic</topic><topic>Heat of formation</topic><topic>Intermediates</topic><topic>Nanoparticles</topic><topic>Nickel</topic><topic>Oxygen</topic><topic>oxygen evolution reaction</topic><topic>Oxygen evolution reactions</topic><topic>Reconstruction</topic><topic>Surface chemistry</topic><topic>surface reconstruction</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Shanlin</creatorcontrib><creatorcontrib>Li, Zichuang</creatorcontrib><creatorcontrib>Ma, Ruguang</creatorcontrib><creatorcontrib>Gao, Chunlang</creatorcontrib><creatorcontrib>Liu, Linlin</creatorcontrib><creatorcontrib>Hu, Lanping</creatorcontrib><creatorcontrib>Zhu, Jinlin</creatorcontrib><creatorcontrib>Sun, Tongming</creatorcontrib><creatorcontrib>Tang, Yanfeng</creatorcontrib><creatorcontrib>Liu, Danmin</creatorcontrib><creatorcontrib>Wang, Jiacheng</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Shanlin</au><au>Li, Zichuang</au><au>Ma, Ruguang</au><au>Gao, Chunlang</au><au>Liu, Linlin</au><au>Hu, Lanping</au><au>Zhu, Jinlin</au><au>Sun, Tongming</au><au>Tang, Yanfeng</au><au>Liu, Danmin</au><au>Wang, Jiacheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Glass‐Ceramic with Accelerated Surface Reconstruction toward the Efficient Oxygen Evolution Reaction</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2021-02-15</date><risdate>2021</risdate><volume>60</volume><issue>7</issue><spage>3773</spage><epage>3780</epage><pages>3773-3780</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>The effective non‐precious metal catalysts toward the oxygen evolution reaction (OER) are highly desirable for electrochemical water splitting. Herein, we prepare a novel glass‐ceramic (Ni1.5Sn@triMPO4) by embedding crystalline Ni1.5Sn nanoparticles into amorphous trimetallic phosphate (triMPO4) matrix. This unique crystalline‐amorphous nanostructure synergistically accelerates the surface reconstruction to active Ni(Fe)OOH, due to the low vacancy formation energy of Sn in glass‐ceramic and high adsorption energy of PO43− at the VO sites. Compared to the control samples, this dual‐phase glass‐ceramic exhibits a remarkably lowered overpotential and boosted OER kinetics after surface reconstruction, rivaling most of state‐of‐the‐art electrocatalysts. The residual PO43− and intrinsic VO sites induce redistribution of electron states, thus optimizing the adsorption of OH* and OOH* intermediates on metal oxyhydroxides and promoting the OER activity.
A novel glass‐ceramic (Ni1.5Sn@triMPO4) with unique crystalline‐amorphous nanostructure accelerates the surface reconstruction to form superior OER electrocatalysts, which can be explained by the low vacancy formation energy of Sn atom and high adsorption energy of phosphate anions at O‐vacancy sites. This work showcases the importance of unique glass‐ceramic structure in boosting the surface reconstruction and improving electrocatalytic activity.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>33174369</pmid><doi>10.1002/anie.202014210</doi><tpages>8</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0003-4327-1508</orcidid><orcidid>https://orcid.org/0000-0001-7587-0818</orcidid><orcidid>https://orcid.org/0000-0002-4031-1351</orcidid><orcidid>https://orcid.org/0000-0002-6555-689X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie International Edition, 2021-02, Vol.60 (7), p.3773-3780 |
issn | 1433-7851 1521-3773 |
language | eng |
recordid | cdi_proquest_miscellaneous_2459628620 |
source | Access via Wiley Online Library |
subjects | Adsorption Catalysts Ceramics Crystal structure Crystallinity DFT calculations electrocatalysis Electrocatalysts Electrochemistry Electron states Embedding Free energy glass-ceramic Heat of formation Intermediates Nanoparticles Nickel Oxygen oxygen evolution reaction Oxygen evolution reactions Reconstruction Surface chemistry surface reconstruction Water splitting |
title | A Glass‐Ceramic with Accelerated Surface Reconstruction toward the Efficient Oxygen Evolution Reaction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T13%3A24%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Glass%E2%80%90Ceramic%20with%20Accelerated%20Surface%20Reconstruction%20toward%20the%20Efficient%20Oxygen%20Evolution%20Reaction&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Li,%20Shanlin&rft.date=2021-02-15&rft.volume=60&rft.issue=7&rft.spage=3773&rft.epage=3780&rft.pages=3773-3780&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202014210&rft_dat=%3Cproquest_cross%3E2459628620%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2487170855&rft_id=info:pmid/33174369&rfr_iscdi=true |