A Glass‐Ceramic with Accelerated Surface Reconstruction toward the Efficient Oxygen Evolution Reaction

The effective non‐precious metal catalysts toward the oxygen evolution reaction (OER) are highly desirable for electrochemical water splitting. Herein, we prepare a novel glass‐ceramic (Ni1.5Sn@triMPO4) by embedding crystalline Ni1.5Sn nanoparticles into amorphous trimetallic phosphate (triMPO4) mat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2021-02, Vol.60 (7), p.3773-3780
Hauptverfasser: Li, Shanlin, Li, Zichuang, Ma, Ruguang, Gao, Chunlang, Liu, Linlin, Hu, Lanping, Zhu, Jinlin, Sun, Tongming, Tang, Yanfeng, Liu, Danmin, Wang, Jiacheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3780
container_issue 7
container_start_page 3773
container_title Angewandte Chemie International Edition
container_volume 60
creator Li, Shanlin
Li, Zichuang
Ma, Ruguang
Gao, Chunlang
Liu, Linlin
Hu, Lanping
Zhu, Jinlin
Sun, Tongming
Tang, Yanfeng
Liu, Danmin
Wang, Jiacheng
description The effective non‐precious metal catalysts toward the oxygen evolution reaction (OER) are highly desirable for electrochemical water splitting. Herein, we prepare a novel glass‐ceramic (Ni1.5Sn@triMPO4) by embedding crystalline Ni1.5Sn nanoparticles into amorphous trimetallic phosphate (triMPO4) matrix. This unique crystalline‐amorphous nanostructure synergistically accelerates the surface reconstruction to active Ni(Fe)OOH, due to the low vacancy formation energy of Sn in glass‐ceramic and high adsorption energy of PO43− at the VO sites. Compared to the control samples, this dual‐phase glass‐ceramic exhibits a remarkably lowered overpotential and boosted OER kinetics after surface reconstruction, rivaling most of state‐of‐the‐art electrocatalysts. The residual PO43− and intrinsic VO sites induce redistribution of electron states, thus optimizing the adsorption of OH* and OOH* intermediates on metal oxyhydroxides and promoting the OER activity. A novel glass‐ceramic (Ni1.5Sn@triMPO4) with unique crystalline‐amorphous nanostructure accelerates the surface reconstruction to form superior OER electrocatalysts, which can be explained by the low vacancy formation energy of Sn atom and high adsorption energy of phosphate anions at O‐vacancy sites. This work showcases the importance of unique glass‐ceramic structure in boosting the surface reconstruction and improving electrocatalytic activity.
doi_str_mv 10.1002/anie.202014210
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2459628620</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2459628620</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4100-5f74f03ee9bd3a90868c6c3e8f9a4439c2254479bc21e7c2f341432333f6a9113</originalsourceid><addsrcrecordid>eNqF0ctKAzEUBuAgivetSwm4cTM1t5kky1LqBcSCl_WQpic2Mp3RZMbanY_gM_okRlsV3LhKCF9-8ucgdEBJjxLCTkztoccII1QwStbQNs0ZzbiUfD3tBeeZVDndQjsxPiSvFCk20RbnVApe6G007eOzysT4_vo2gGBm3uK5b6e4by1U6aCFCb7pgjMW8DXYpo5t6Gzrmxq3zdyECW6ngIfOeeuhbvHoZXEPNR4-N1X3pa7BfPE9tOFMFWF_te6iu9Ph7eA8uxydXQz6l5kVqVCWOykc4QB6POFGE1UoW1gOymkjBNeWsVwIqceWUZCWOS5SS8Y5d4XRlPJddLzMfQzNUwexLWc-pi6VqaHpYslErgumCkYSPfpDH5ou1Ol1SSlJJVF5nlRvqWxoYgzgysfgZyYsSkrKzxmUnzMof2aQLhyuYrvxDCY__PvTE9BLMPcVLP6JK_tXF8Pf8A8qNpMQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2487170855</pqid></control><display><type>article</type><title>A Glass‐Ceramic with Accelerated Surface Reconstruction toward the Efficient Oxygen Evolution Reaction</title><source>Access via Wiley Online Library</source><creator>Li, Shanlin ; Li, Zichuang ; Ma, Ruguang ; Gao, Chunlang ; Liu, Linlin ; Hu, Lanping ; Zhu, Jinlin ; Sun, Tongming ; Tang, Yanfeng ; Liu, Danmin ; Wang, Jiacheng</creator><creatorcontrib>Li, Shanlin ; Li, Zichuang ; Ma, Ruguang ; Gao, Chunlang ; Liu, Linlin ; Hu, Lanping ; Zhu, Jinlin ; Sun, Tongming ; Tang, Yanfeng ; Liu, Danmin ; Wang, Jiacheng</creatorcontrib><description>The effective non‐precious metal catalysts toward the oxygen evolution reaction (OER) are highly desirable for electrochemical water splitting. Herein, we prepare a novel glass‐ceramic (Ni1.5Sn@triMPO4) by embedding crystalline Ni1.5Sn nanoparticles into amorphous trimetallic phosphate (triMPO4) matrix. This unique crystalline‐amorphous nanostructure synergistically accelerates the surface reconstruction to active Ni(Fe)OOH, due to the low vacancy formation energy of Sn in glass‐ceramic and high adsorption energy of PO43− at the VO sites. Compared to the control samples, this dual‐phase glass‐ceramic exhibits a remarkably lowered overpotential and boosted OER kinetics after surface reconstruction, rivaling most of state‐of‐the‐art electrocatalysts. The residual PO43− and intrinsic VO sites induce redistribution of electron states, thus optimizing the adsorption of OH* and OOH* intermediates on metal oxyhydroxides and promoting the OER activity. A novel glass‐ceramic (Ni1.5Sn@triMPO4) with unique crystalline‐amorphous nanostructure accelerates the surface reconstruction to form superior OER electrocatalysts, which can be explained by the low vacancy formation energy of Sn atom and high adsorption energy of phosphate anions at O‐vacancy sites. This work showcases the importance of unique glass‐ceramic structure in boosting the surface reconstruction and improving electrocatalytic activity.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202014210</identifier><identifier>PMID: 33174369</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Adsorption ; Catalysts ; Ceramics ; Crystal structure ; Crystallinity ; DFT calculations ; electrocatalysis ; Electrocatalysts ; Electrochemistry ; Electron states ; Embedding ; Free energy ; glass-ceramic ; Heat of formation ; Intermediates ; Nanoparticles ; Nickel ; Oxygen ; oxygen evolution reaction ; Oxygen evolution reactions ; Reconstruction ; Surface chemistry ; surface reconstruction ; Water splitting</subject><ispartof>Angewandte Chemie International Edition, 2021-02, Vol.60 (7), p.3773-3780</ispartof><rights>2020 Wiley‐VCH GmbH</rights><rights>2020 Wiley-VCH GmbH.</rights><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4100-5f74f03ee9bd3a90868c6c3e8f9a4439c2254479bc21e7c2f341432333f6a9113</citedby><cites>FETCH-LOGICAL-c4100-5f74f03ee9bd3a90868c6c3e8f9a4439c2254479bc21e7c2f341432333f6a9113</cites><orcidid>0000-0003-4327-1508 ; 0000-0001-7587-0818 ; 0000-0002-4031-1351 ; 0000-0002-6555-689X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202014210$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202014210$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33174369$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Shanlin</creatorcontrib><creatorcontrib>Li, Zichuang</creatorcontrib><creatorcontrib>Ma, Ruguang</creatorcontrib><creatorcontrib>Gao, Chunlang</creatorcontrib><creatorcontrib>Liu, Linlin</creatorcontrib><creatorcontrib>Hu, Lanping</creatorcontrib><creatorcontrib>Zhu, Jinlin</creatorcontrib><creatorcontrib>Sun, Tongming</creatorcontrib><creatorcontrib>Tang, Yanfeng</creatorcontrib><creatorcontrib>Liu, Danmin</creatorcontrib><creatorcontrib>Wang, Jiacheng</creatorcontrib><title>A Glass‐Ceramic with Accelerated Surface Reconstruction toward the Efficient Oxygen Evolution Reaction</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>The effective non‐precious metal catalysts toward the oxygen evolution reaction (OER) are highly desirable for electrochemical water splitting. Herein, we prepare a novel glass‐ceramic (Ni1.5Sn@triMPO4) by embedding crystalline Ni1.5Sn nanoparticles into amorphous trimetallic phosphate (triMPO4) matrix. This unique crystalline‐amorphous nanostructure synergistically accelerates the surface reconstruction to active Ni(Fe)OOH, due to the low vacancy formation energy of Sn in glass‐ceramic and high adsorption energy of PO43− at the VO sites. Compared to the control samples, this dual‐phase glass‐ceramic exhibits a remarkably lowered overpotential and boosted OER kinetics after surface reconstruction, rivaling most of state‐of‐the‐art electrocatalysts. The residual PO43− and intrinsic VO sites induce redistribution of electron states, thus optimizing the adsorption of OH* and OOH* intermediates on metal oxyhydroxides and promoting the OER activity. A novel glass‐ceramic (Ni1.5Sn@triMPO4) with unique crystalline‐amorphous nanostructure accelerates the surface reconstruction to form superior OER electrocatalysts, which can be explained by the low vacancy formation energy of Sn atom and high adsorption energy of phosphate anions at O‐vacancy sites. This work showcases the importance of unique glass‐ceramic structure in boosting the surface reconstruction and improving electrocatalytic activity.</description><subject>Adsorption</subject><subject>Catalysts</subject><subject>Ceramics</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>DFT calculations</subject><subject>electrocatalysis</subject><subject>Electrocatalysts</subject><subject>Electrochemistry</subject><subject>Electron states</subject><subject>Embedding</subject><subject>Free energy</subject><subject>glass-ceramic</subject><subject>Heat of formation</subject><subject>Intermediates</subject><subject>Nanoparticles</subject><subject>Nickel</subject><subject>Oxygen</subject><subject>oxygen evolution reaction</subject><subject>Oxygen evolution reactions</subject><subject>Reconstruction</subject><subject>Surface chemistry</subject><subject>surface reconstruction</subject><subject>Water splitting</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqF0ctKAzEUBuAgivetSwm4cTM1t5kky1LqBcSCl_WQpic2Mp3RZMbanY_gM_okRlsV3LhKCF9-8ucgdEBJjxLCTkztoccII1QwStbQNs0ZzbiUfD3tBeeZVDndQjsxPiSvFCk20RbnVApe6G007eOzysT4_vo2gGBm3uK5b6e4by1U6aCFCb7pgjMW8DXYpo5t6Gzrmxq3zdyECW6ngIfOeeuhbvHoZXEPNR4-N1X3pa7BfPE9tOFMFWF_te6iu9Ph7eA8uxydXQz6l5kVqVCWOykc4QB6POFGE1UoW1gOymkjBNeWsVwIqceWUZCWOS5SS8Y5d4XRlPJddLzMfQzNUwexLWc-pi6VqaHpYslErgumCkYSPfpDH5ou1Ol1SSlJJVF5nlRvqWxoYgzgysfgZyYsSkrKzxmUnzMof2aQLhyuYrvxDCY__PvTE9BLMPcVLP6JK_tXF8Pf8A8qNpMQ</recordid><startdate>20210215</startdate><enddate>20210215</enddate><creator>Li, Shanlin</creator><creator>Li, Zichuang</creator><creator>Ma, Ruguang</creator><creator>Gao, Chunlang</creator><creator>Liu, Linlin</creator><creator>Hu, Lanping</creator><creator>Zhu, Jinlin</creator><creator>Sun, Tongming</creator><creator>Tang, Yanfeng</creator><creator>Liu, Danmin</creator><creator>Wang, Jiacheng</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4327-1508</orcidid><orcidid>https://orcid.org/0000-0001-7587-0818</orcidid><orcidid>https://orcid.org/0000-0002-4031-1351</orcidid><orcidid>https://orcid.org/0000-0002-6555-689X</orcidid></search><sort><creationdate>20210215</creationdate><title>A Glass‐Ceramic with Accelerated Surface Reconstruction toward the Efficient Oxygen Evolution Reaction</title><author>Li, Shanlin ; Li, Zichuang ; Ma, Ruguang ; Gao, Chunlang ; Liu, Linlin ; Hu, Lanping ; Zhu, Jinlin ; Sun, Tongming ; Tang, Yanfeng ; Liu, Danmin ; Wang, Jiacheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4100-5f74f03ee9bd3a90868c6c3e8f9a4439c2254479bc21e7c2f341432333f6a9113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adsorption</topic><topic>Catalysts</topic><topic>Ceramics</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>DFT calculations</topic><topic>electrocatalysis</topic><topic>Electrocatalysts</topic><topic>Electrochemistry</topic><topic>Electron states</topic><topic>Embedding</topic><topic>Free energy</topic><topic>glass-ceramic</topic><topic>Heat of formation</topic><topic>Intermediates</topic><topic>Nanoparticles</topic><topic>Nickel</topic><topic>Oxygen</topic><topic>oxygen evolution reaction</topic><topic>Oxygen evolution reactions</topic><topic>Reconstruction</topic><topic>Surface chemistry</topic><topic>surface reconstruction</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Shanlin</creatorcontrib><creatorcontrib>Li, Zichuang</creatorcontrib><creatorcontrib>Ma, Ruguang</creatorcontrib><creatorcontrib>Gao, Chunlang</creatorcontrib><creatorcontrib>Liu, Linlin</creatorcontrib><creatorcontrib>Hu, Lanping</creatorcontrib><creatorcontrib>Zhu, Jinlin</creatorcontrib><creatorcontrib>Sun, Tongming</creatorcontrib><creatorcontrib>Tang, Yanfeng</creatorcontrib><creatorcontrib>Liu, Danmin</creatorcontrib><creatorcontrib>Wang, Jiacheng</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Shanlin</au><au>Li, Zichuang</au><au>Ma, Ruguang</au><au>Gao, Chunlang</au><au>Liu, Linlin</au><au>Hu, Lanping</au><au>Zhu, Jinlin</au><au>Sun, Tongming</au><au>Tang, Yanfeng</au><au>Liu, Danmin</au><au>Wang, Jiacheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Glass‐Ceramic with Accelerated Surface Reconstruction toward the Efficient Oxygen Evolution Reaction</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2021-02-15</date><risdate>2021</risdate><volume>60</volume><issue>7</issue><spage>3773</spage><epage>3780</epage><pages>3773-3780</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>The effective non‐precious metal catalysts toward the oxygen evolution reaction (OER) are highly desirable for electrochemical water splitting. Herein, we prepare a novel glass‐ceramic (Ni1.5Sn@triMPO4) by embedding crystalline Ni1.5Sn nanoparticles into amorphous trimetallic phosphate (triMPO4) matrix. This unique crystalline‐amorphous nanostructure synergistically accelerates the surface reconstruction to active Ni(Fe)OOH, due to the low vacancy formation energy of Sn in glass‐ceramic and high adsorption energy of PO43− at the VO sites. Compared to the control samples, this dual‐phase glass‐ceramic exhibits a remarkably lowered overpotential and boosted OER kinetics after surface reconstruction, rivaling most of state‐of‐the‐art electrocatalysts. The residual PO43− and intrinsic VO sites induce redistribution of electron states, thus optimizing the adsorption of OH* and OOH* intermediates on metal oxyhydroxides and promoting the OER activity. A novel glass‐ceramic (Ni1.5Sn@triMPO4) with unique crystalline‐amorphous nanostructure accelerates the surface reconstruction to form superior OER electrocatalysts, which can be explained by the low vacancy formation energy of Sn atom and high adsorption energy of phosphate anions at O‐vacancy sites. This work showcases the importance of unique glass‐ceramic structure in boosting the surface reconstruction and improving electrocatalytic activity.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>33174369</pmid><doi>10.1002/anie.202014210</doi><tpages>8</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0003-4327-1508</orcidid><orcidid>https://orcid.org/0000-0001-7587-0818</orcidid><orcidid>https://orcid.org/0000-0002-4031-1351</orcidid><orcidid>https://orcid.org/0000-0002-6555-689X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2021-02, Vol.60 (7), p.3773-3780
issn 1433-7851
1521-3773
language eng
recordid cdi_proquest_miscellaneous_2459628620
source Access via Wiley Online Library
subjects Adsorption
Catalysts
Ceramics
Crystal structure
Crystallinity
DFT calculations
electrocatalysis
Electrocatalysts
Electrochemistry
Electron states
Embedding
Free energy
glass-ceramic
Heat of formation
Intermediates
Nanoparticles
Nickel
Oxygen
oxygen evolution reaction
Oxygen evolution reactions
Reconstruction
Surface chemistry
surface reconstruction
Water splitting
title A Glass‐Ceramic with Accelerated Surface Reconstruction toward the Efficient Oxygen Evolution Reaction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T13%3A24%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Glass%E2%80%90Ceramic%20with%20Accelerated%20Surface%20Reconstruction%20toward%20the%20Efficient%20Oxygen%20Evolution%20Reaction&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Li,%20Shanlin&rft.date=2021-02-15&rft.volume=60&rft.issue=7&rft.spage=3773&rft.epage=3780&rft.pages=3773-3780&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202014210&rft_dat=%3Cproquest_cross%3E2459628620%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2487170855&rft_id=info:pmid/33174369&rfr_iscdi=true