Arc self‐association and formation of virus‐like capsids are mediated by an N‐terminal helical coil motif
Arc is a protein involved in neuronal plasticity, with the remarkable ability to assemble into virus‐like capsid structures. We have identified a coil interaction motif in the Arc N‐terminal domain, critical for protein self‐association and assembly into higher‐order oligomers. Exogenous RNA promote...
Gespeichert in:
Veröffentlicht in: | The FEBS journal 2021-05, Vol.288 (9), p.2930-2955 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2955 |
---|---|
container_issue | 9 |
container_start_page | 2930 |
container_title | The FEBS journal |
container_volume | 288 |
creator | Eriksen, Maria S. Nikolaienko, Oleksii Hallin, Erik I. Grødem, Sverre Bustad, Helene J. Flydal, Marte I. Merski, Ian Hosokawa, Tomohisa Lascu, Daniela Akerkar, Shreeram Cuéllar, Jorge Chambers, James J. O’Connell, Rory Muruganandam, Gopinath Loris, Remy Touma, Christine Kanhema, Tambudzai Hayashi, Yasunori Stratton, Margaret M. Valpuesta, José M. Kursula, Petri Martinez, Aurora Bramham, Clive R. |
description | Arc is a protein involved in neuronal plasticity, with the remarkable ability to assemble into virus‐like capsid structures. We have identified a coil interaction motif in the Arc N‐terminal domain, critical for protein self‐association and assembly into higher‐order oligomers. Exogenous RNA promotes higher‐order oligomerization, but this effect is abolished in the coil motif mutant.
Activity‐regulated cytoskeleton‐associated protein (Arc) is a protein interaction hub with diverse roles in intracellular neuronal signaling, and important functions in neuronal synaptic plasticity, memory, and postnatal cortical development. Arc has homology to retroviral Gag protein and is capable of self‐assembly into virus‐like capsids implicated in the intercellular transfer of RNA. However, the molecular basis of Arc self‐association and capsid formation is largely unknown. Here, we identified a 28‐amino‐acid stretch in the mammalian Arc N‐terminal (NT) domain that is necessary and sufficient for self‐association. Within this region, we identified a 7‐residue oligomerization motif, critical for the formation of virus‐like capsids. Purified wild‐type Arc formed capsids as shown by transmission and cryo‐electron microscopy, whereas mutant Arc with disruption of the oligomerization motif formed homogenous dimers. An atomic‐resolution crystal structure of the oligomerization region peptide demonstrated an antiparallel coiled‐coil interface, strongly supporting NT‐NT domain interactions in Arc oligomerization. The NT coil–coil interaction was also validated in live neurons using fluorescence lifetime FRET imaging, and mutation of the oligomerization motif disrupted Arc‐facilitated endocytosis. Furthermore, using single‐molecule photobleaching, we show that Arc mRNA greatly enhances higher‐order oligomerization in a manner dependent on the oligomerization motif. In conclusion, a helical coil in the Arc NT domain supports self‐association above the dimer stage, mRNA‐induced oligomerization, and formation of virus‐like capsids.
Database
The coordinates and structure factors for crystallographic analysis of the oligomerization region were deposited at the Protein Data Bank with the entry code 6YTU. |
doi_str_mv | 10.1111/febs.15618 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2459623613</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2459623613</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4598-9905a2124b3e39b231e828d91e68192546c538948852c0b3724b23731965fa333</originalsourceid><addsrcrecordid>eNp90ctKxDAUBuAgiuNt4wNIwI0Io82tTZYq3mDQhQruSpqeYsZ0MiZTZXY-gs_ok5ixOgsXZnMS-PInnIPQLsmOSFrHDVTxiIicyBW0QQpOhzwXcnW5548DtBnjOMuY4EqtowFjpBCciw3kT4LBEVzz-f6hY_TG6pn1E6wnNW58aPuTb_CrDV1MyNlnwEZPo60j1gFwC3W6AzWu5ukWvklmBqG1E-3wEzhrUjXeOtz6mW220VqjXYSdn7qFHi7O78-uhqPby-uzk9HQcKHkUKlMaEoorxgwVVFGQFJZKwK5JIoKnhvBpOJSCmqyihVJUlYwonLRaMbYFjroc6fBv3QQZ2VrowHn9AR8F0uanskpy8mC7v-hY9-F9P2kBM0KQaQSSR32ygQfY4CmnAbb6jAvSVYuxlAuxlB-jyHhvZ_Irkr9WdLfvidAevBmHcz_iSovzk_v-tAvQHGTTA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2520751895</pqid></control><display><type>article</type><title>Arc self‐association and formation of virus‐like capsids are mediated by an N‐terminal helical coil motif</title><source>Access via Wiley Online Library</source><source>Wiley Online Library (Open Access Collection)</source><source>Free Full-Text Journals in Chemistry</source><creator>Eriksen, Maria S. ; Nikolaienko, Oleksii ; Hallin, Erik I. ; Grødem, Sverre ; Bustad, Helene J. ; Flydal, Marte I. ; Merski, Ian ; Hosokawa, Tomohisa ; Lascu, Daniela ; Akerkar, Shreeram ; Cuéllar, Jorge ; Chambers, James J. ; O’Connell, Rory ; Muruganandam, Gopinath ; Loris, Remy ; Touma, Christine ; Kanhema, Tambudzai ; Hayashi, Yasunori ; Stratton, Margaret M. ; Valpuesta, José M. ; Kursula, Petri ; Martinez, Aurora ; Bramham, Clive R.</creator><creatorcontrib>Eriksen, Maria S. ; Nikolaienko, Oleksii ; Hallin, Erik I. ; Grødem, Sverre ; Bustad, Helene J. ; Flydal, Marte I. ; Merski, Ian ; Hosokawa, Tomohisa ; Lascu, Daniela ; Akerkar, Shreeram ; Cuéllar, Jorge ; Chambers, James J. ; O’Connell, Rory ; Muruganandam, Gopinath ; Loris, Remy ; Touma, Christine ; Kanhema, Tambudzai ; Hayashi, Yasunori ; Stratton, Margaret M. ; Valpuesta, José M. ; Kursula, Petri ; Martinez, Aurora ; Bramham, Clive R.</creatorcontrib><description>Arc is a protein involved in neuronal plasticity, with the remarkable ability to assemble into virus‐like capsid structures. We have identified a coil interaction motif in the Arc N‐terminal domain, critical for protein self‐association and assembly into higher‐order oligomers. Exogenous RNA promotes higher‐order oligomerization, but this effect is abolished in the coil motif mutant.
Activity‐regulated cytoskeleton‐associated protein (Arc) is a protein interaction hub with diverse roles in intracellular neuronal signaling, and important functions in neuronal synaptic plasticity, memory, and postnatal cortical development. Arc has homology to retroviral Gag protein and is capable of self‐assembly into virus‐like capsids implicated in the intercellular transfer of RNA. However, the molecular basis of Arc self‐association and capsid formation is largely unknown. Here, we identified a 28‐amino‐acid stretch in the mammalian Arc N‐terminal (NT) domain that is necessary and sufficient for self‐association. Within this region, we identified a 7‐residue oligomerization motif, critical for the formation of virus‐like capsids. Purified wild‐type Arc formed capsids as shown by transmission and cryo‐electron microscopy, whereas mutant Arc with disruption of the oligomerization motif formed homogenous dimers. An atomic‐resolution crystal structure of the oligomerization region peptide demonstrated an antiparallel coiled‐coil interface, strongly supporting NT‐NT domain interactions in Arc oligomerization. The NT coil–coil interaction was also validated in live neurons using fluorescence lifetime FRET imaging, and mutation of the oligomerization motif disrupted Arc‐facilitated endocytosis. Furthermore, using single‐molecule photobleaching, we show that Arc mRNA greatly enhances higher‐order oligomerization in a manner dependent on the oligomerization motif. In conclusion, a helical coil in the Arc NT domain supports self‐association above the dimer stage, mRNA‐induced oligomerization, and formation of virus‐like capsids.
Database
The coordinates and structure factors for crystallographic analysis of the oligomerization region were deposited at the Protein Data Bank with the entry code 6YTU.</description><identifier>ISSN: 1742-464X</identifier><identifier>EISSN: 1742-4658</identifier><identifier>DOI: 10.1111/febs.15618</identifier><identifier>PMID: 33175445</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>activity‐regulated cytoskeleton‐associated protein (Arc)/coiled‐coil interactions/protein oligomerization ; Atomic structure ; Capsids ; Crystal structure ; Crystallography ; Cytoskeleton ; Dimers ; Domains ; Electron microscopy ; Endocytosis ; Fluorescence ; Fluorescence resonance energy transfer ; Gag protein ; Homology ; Intracellular signalling ; Molecular structure ; mRNA ; Mutation ; Neuroplasticity ; Oligomerization ; Photobleaching ; Proteins ; retrovirus‐like capsid/synaptic plasticity ; Synaptic plasticity ; Viruses</subject><ispartof>The FEBS journal, 2021-05, Vol.288 (9), p.2930-2955</ispartof><rights>2020 Federation of European Biochemical Societies</rights><rights>2020 Federation of European Biochemical Societies.</rights><rights>Copyright © 2021 Federation of European Biochemical Societies</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4598-9905a2124b3e39b231e828d91e68192546c538948852c0b3724b23731965fa333</citedby><cites>FETCH-LOGICAL-c4598-9905a2124b3e39b231e828d91e68192546c538948852c0b3724b23731965fa333</cites><orcidid>0000-0003-0616-4201 ; 0000-0001-5958-7115 ; 0000-0002-4070-8367 ; 0000-0002-8862-3338 ; 0000-0001-8529-3751 ; 0000-0002-6642-3909 ; 0000-0002-7560-3004 ; 0000-0003-1643-6506 ; 0000-0002-5910-4934 ; 0000-0002-4746-1563 ; 0000-0001-7522-6141</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Ffebs.15618$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Ffebs.15618$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33175445$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Eriksen, Maria S.</creatorcontrib><creatorcontrib>Nikolaienko, Oleksii</creatorcontrib><creatorcontrib>Hallin, Erik I.</creatorcontrib><creatorcontrib>Grødem, Sverre</creatorcontrib><creatorcontrib>Bustad, Helene J.</creatorcontrib><creatorcontrib>Flydal, Marte I.</creatorcontrib><creatorcontrib>Merski, Ian</creatorcontrib><creatorcontrib>Hosokawa, Tomohisa</creatorcontrib><creatorcontrib>Lascu, Daniela</creatorcontrib><creatorcontrib>Akerkar, Shreeram</creatorcontrib><creatorcontrib>Cuéllar, Jorge</creatorcontrib><creatorcontrib>Chambers, James J.</creatorcontrib><creatorcontrib>O’Connell, Rory</creatorcontrib><creatorcontrib>Muruganandam, Gopinath</creatorcontrib><creatorcontrib>Loris, Remy</creatorcontrib><creatorcontrib>Touma, Christine</creatorcontrib><creatorcontrib>Kanhema, Tambudzai</creatorcontrib><creatorcontrib>Hayashi, Yasunori</creatorcontrib><creatorcontrib>Stratton, Margaret M.</creatorcontrib><creatorcontrib>Valpuesta, José M.</creatorcontrib><creatorcontrib>Kursula, Petri</creatorcontrib><creatorcontrib>Martinez, Aurora</creatorcontrib><creatorcontrib>Bramham, Clive R.</creatorcontrib><title>Arc self‐association and formation of virus‐like capsids are mediated by an N‐terminal helical coil motif</title><title>The FEBS journal</title><addtitle>FEBS J</addtitle><description>Arc is a protein involved in neuronal plasticity, with the remarkable ability to assemble into virus‐like capsid structures. We have identified a coil interaction motif in the Arc N‐terminal domain, critical for protein self‐association and assembly into higher‐order oligomers. Exogenous RNA promotes higher‐order oligomerization, but this effect is abolished in the coil motif mutant.
Activity‐regulated cytoskeleton‐associated protein (Arc) is a protein interaction hub with diverse roles in intracellular neuronal signaling, and important functions in neuronal synaptic plasticity, memory, and postnatal cortical development. Arc has homology to retroviral Gag protein and is capable of self‐assembly into virus‐like capsids implicated in the intercellular transfer of RNA. However, the molecular basis of Arc self‐association and capsid formation is largely unknown. Here, we identified a 28‐amino‐acid stretch in the mammalian Arc N‐terminal (NT) domain that is necessary and sufficient for self‐association. Within this region, we identified a 7‐residue oligomerization motif, critical for the formation of virus‐like capsids. Purified wild‐type Arc formed capsids as shown by transmission and cryo‐electron microscopy, whereas mutant Arc with disruption of the oligomerization motif formed homogenous dimers. An atomic‐resolution crystal structure of the oligomerization region peptide demonstrated an antiparallel coiled‐coil interface, strongly supporting NT‐NT domain interactions in Arc oligomerization. The NT coil–coil interaction was also validated in live neurons using fluorescence lifetime FRET imaging, and mutation of the oligomerization motif disrupted Arc‐facilitated endocytosis. Furthermore, using single‐molecule photobleaching, we show that Arc mRNA greatly enhances higher‐order oligomerization in a manner dependent on the oligomerization motif. In conclusion, a helical coil in the Arc NT domain supports self‐association above the dimer stage, mRNA‐induced oligomerization, and formation of virus‐like capsids.
Database
The coordinates and structure factors for crystallographic analysis of the oligomerization region were deposited at the Protein Data Bank with the entry code 6YTU.</description><subject>activity‐regulated cytoskeleton‐associated protein (Arc)/coiled‐coil interactions/protein oligomerization</subject><subject>Atomic structure</subject><subject>Capsids</subject><subject>Crystal structure</subject><subject>Crystallography</subject><subject>Cytoskeleton</subject><subject>Dimers</subject><subject>Domains</subject><subject>Electron microscopy</subject><subject>Endocytosis</subject><subject>Fluorescence</subject><subject>Fluorescence resonance energy transfer</subject><subject>Gag protein</subject><subject>Homology</subject><subject>Intracellular signalling</subject><subject>Molecular structure</subject><subject>mRNA</subject><subject>Mutation</subject><subject>Neuroplasticity</subject><subject>Oligomerization</subject><subject>Photobleaching</subject><subject>Proteins</subject><subject>retrovirus‐like capsid/synaptic plasticity</subject><subject>Synaptic plasticity</subject><subject>Viruses</subject><issn>1742-464X</issn><issn>1742-4658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp90ctKxDAUBuAgiuNt4wNIwI0Io82tTZYq3mDQhQruSpqeYsZ0MiZTZXY-gs_ok5ixOgsXZnMS-PInnIPQLsmOSFrHDVTxiIicyBW0QQpOhzwXcnW5548DtBnjOMuY4EqtowFjpBCciw3kT4LBEVzz-f6hY_TG6pn1E6wnNW58aPuTb_CrDV1MyNlnwEZPo60j1gFwC3W6AzWu5ukWvklmBqG1E-3wEzhrUjXeOtz6mW220VqjXYSdn7qFHi7O78-uhqPby-uzk9HQcKHkUKlMaEoorxgwVVFGQFJZKwK5JIoKnhvBpOJSCmqyihVJUlYwonLRaMbYFjroc6fBv3QQZ2VrowHn9AR8F0uanskpy8mC7v-hY9-F9P2kBM0KQaQSSR32ygQfY4CmnAbb6jAvSVYuxlAuxlB-jyHhvZ_Irkr9WdLfvidAevBmHcz_iSovzk_v-tAvQHGTTA</recordid><startdate>202105</startdate><enddate>202105</enddate><creator>Eriksen, Maria S.</creator><creator>Nikolaienko, Oleksii</creator><creator>Hallin, Erik I.</creator><creator>Grødem, Sverre</creator><creator>Bustad, Helene J.</creator><creator>Flydal, Marte I.</creator><creator>Merski, Ian</creator><creator>Hosokawa, Tomohisa</creator><creator>Lascu, Daniela</creator><creator>Akerkar, Shreeram</creator><creator>Cuéllar, Jorge</creator><creator>Chambers, James J.</creator><creator>O’Connell, Rory</creator><creator>Muruganandam, Gopinath</creator><creator>Loris, Remy</creator><creator>Touma, Christine</creator><creator>Kanhema, Tambudzai</creator><creator>Hayashi, Yasunori</creator><creator>Stratton, Margaret M.</creator><creator>Valpuesta, José M.</creator><creator>Kursula, Petri</creator><creator>Martinez, Aurora</creator><creator>Bramham, Clive R.</creator><general>Blackwell Publishing Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0616-4201</orcidid><orcidid>https://orcid.org/0000-0001-5958-7115</orcidid><orcidid>https://orcid.org/0000-0002-4070-8367</orcidid><orcidid>https://orcid.org/0000-0002-8862-3338</orcidid><orcidid>https://orcid.org/0000-0001-8529-3751</orcidid><orcidid>https://orcid.org/0000-0002-6642-3909</orcidid><orcidid>https://orcid.org/0000-0002-7560-3004</orcidid><orcidid>https://orcid.org/0000-0003-1643-6506</orcidid><orcidid>https://orcid.org/0000-0002-5910-4934</orcidid><orcidid>https://orcid.org/0000-0002-4746-1563</orcidid><orcidid>https://orcid.org/0000-0001-7522-6141</orcidid></search><sort><creationdate>202105</creationdate><title>Arc self‐association and formation of virus‐like capsids are mediated by an N‐terminal helical coil motif</title><author>Eriksen, Maria S. ; Nikolaienko, Oleksii ; Hallin, Erik I. ; Grødem, Sverre ; Bustad, Helene J. ; Flydal, Marte I. ; Merski, Ian ; Hosokawa, Tomohisa ; Lascu, Daniela ; Akerkar, Shreeram ; Cuéllar, Jorge ; Chambers, James J. ; O’Connell, Rory ; Muruganandam, Gopinath ; Loris, Remy ; Touma, Christine ; Kanhema, Tambudzai ; Hayashi, Yasunori ; Stratton, Margaret M. ; Valpuesta, José M. ; Kursula, Petri ; Martinez, Aurora ; Bramham, Clive R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4598-9905a2124b3e39b231e828d91e68192546c538948852c0b3724b23731965fa333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>activity‐regulated cytoskeleton‐associated protein (Arc)/coiled‐coil interactions/protein oligomerization</topic><topic>Atomic structure</topic><topic>Capsids</topic><topic>Crystal structure</topic><topic>Crystallography</topic><topic>Cytoskeleton</topic><topic>Dimers</topic><topic>Domains</topic><topic>Electron microscopy</topic><topic>Endocytosis</topic><topic>Fluorescence</topic><topic>Fluorescence resonance energy transfer</topic><topic>Gag protein</topic><topic>Homology</topic><topic>Intracellular signalling</topic><topic>Molecular structure</topic><topic>mRNA</topic><topic>Mutation</topic><topic>Neuroplasticity</topic><topic>Oligomerization</topic><topic>Photobleaching</topic><topic>Proteins</topic><topic>retrovirus‐like capsid/synaptic plasticity</topic><topic>Synaptic plasticity</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eriksen, Maria S.</creatorcontrib><creatorcontrib>Nikolaienko, Oleksii</creatorcontrib><creatorcontrib>Hallin, Erik I.</creatorcontrib><creatorcontrib>Grødem, Sverre</creatorcontrib><creatorcontrib>Bustad, Helene J.</creatorcontrib><creatorcontrib>Flydal, Marte I.</creatorcontrib><creatorcontrib>Merski, Ian</creatorcontrib><creatorcontrib>Hosokawa, Tomohisa</creatorcontrib><creatorcontrib>Lascu, Daniela</creatorcontrib><creatorcontrib>Akerkar, Shreeram</creatorcontrib><creatorcontrib>Cuéllar, Jorge</creatorcontrib><creatorcontrib>Chambers, James J.</creatorcontrib><creatorcontrib>O’Connell, Rory</creatorcontrib><creatorcontrib>Muruganandam, Gopinath</creatorcontrib><creatorcontrib>Loris, Remy</creatorcontrib><creatorcontrib>Touma, Christine</creatorcontrib><creatorcontrib>Kanhema, Tambudzai</creatorcontrib><creatorcontrib>Hayashi, Yasunori</creatorcontrib><creatorcontrib>Stratton, Margaret M.</creatorcontrib><creatorcontrib>Valpuesta, José M.</creatorcontrib><creatorcontrib>Kursula, Petri</creatorcontrib><creatorcontrib>Martinez, Aurora</creatorcontrib><creatorcontrib>Bramham, Clive R.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The FEBS journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eriksen, Maria S.</au><au>Nikolaienko, Oleksii</au><au>Hallin, Erik I.</au><au>Grødem, Sverre</au><au>Bustad, Helene J.</au><au>Flydal, Marte I.</au><au>Merski, Ian</au><au>Hosokawa, Tomohisa</au><au>Lascu, Daniela</au><au>Akerkar, Shreeram</au><au>Cuéllar, Jorge</au><au>Chambers, James J.</au><au>O’Connell, Rory</au><au>Muruganandam, Gopinath</au><au>Loris, Remy</au><au>Touma, Christine</au><au>Kanhema, Tambudzai</au><au>Hayashi, Yasunori</au><au>Stratton, Margaret M.</au><au>Valpuesta, José M.</au><au>Kursula, Petri</au><au>Martinez, Aurora</au><au>Bramham, Clive R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Arc self‐association and formation of virus‐like capsids are mediated by an N‐terminal helical coil motif</atitle><jtitle>The FEBS journal</jtitle><addtitle>FEBS J</addtitle><date>2021-05</date><risdate>2021</risdate><volume>288</volume><issue>9</issue><spage>2930</spage><epage>2955</epage><pages>2930-2955</pages><issn>1742-464X</issn><eissn>1742-4658</eissn><abstract>Arc is a protein involved in neuronal plasticity, with the remarkable ability to assemble into virus‐like capsid structures. We have identified a coil interaction motif in the Arc N‐terminal domain, critical for protein self‐association and assembly into higher‐order oligomers. Exogenous RNA promotes higher‐order oligomerization, but this effect is abolished in the coil motif mutant.
Activity‐regulated cytoskeleton‐associated protein (Arc) is a protein interaction hub with diverse roles in intracellular neuronal signaling, and important functions in neuronal synaptic plasticity, memory, and postnatal cortical development. Arc has homology to retroviral Gag protein and is capable of self‐assembly into virus‐like capsids implicated in the intercellular transfer of RNA. However, the molecular basis of Arc self‐association and capsid formation is largely unknown. Here, we identified a 28‐amino‐acid stretch in the mammalian Arc N‐terminal (NT) domain that is necessary and sufficient for self‐association. Within this region, we identified a 7‐residue oligomerization motif, critical for the formation of virus‐like capsids. Purified wild‐type Arc formed capsids as shown by transmission and cryo‐electron microscopy, whereas mutant Arc with disruption of the oligomerization motif formed homogenous dimers. An atomic‐resolution crystal structure of the oligomerization region peptide demonstrated an antiparallel coiled‐coil interface, strongly supporting NT‐NT domain interactions in Arc oligomerization. The NT coil–coil interaction was also validated in live neurons using fluorescence lifetime FRET imaging, and mutation of the oligomerization motif disrupted Arc‐facilitated endocytosis. Furthermore, using single‐molecule photobleaching, we show that Arc mRNA greatly enhances higher‐order oligomerization in a manner dependent on the oligomerization motif. In conclusion, a helical coil in the Arc NT domain supports self‐association above the dimer stage, mRNA‐induced oligomerization, and formation of virus‐like capsids.
Database
The coordinates and structure factors for crystallographic analysis of the oligomerization region were deposited at the Protein Data Bank with the entry code 6YTU.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>33175445</pmid><doi>10.1111/febs.15618</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0003-0616-4201</orcidid><orcidid>https://orcid.org/0000-0001-5958-7115</orcidid><orcidid>https://orcid.org/0000-0002-4070-8367</orcidid><orcidid>https://orcid.org/0000-0002-8862-3338</orcidid><orcidid>https://orcid.org/0000-0001-8529-3751</orcidid><orcidid>https://orcid.org/0000-0002-6642-3909</orcidid><orcidid>https://orcid.org/0000-0002-7560-3004</orcidid><orcidid>https://orcid.org/0000-0003-1643-6506</orcidid><orcidid>https://orcid.org/0000-0002-5910-4934</orcidid><orcidid>https://orcid.org/0000-0002-4746-1563</orcidid><orcidid>https://orcid.org/0000-0001-7522-6141</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-464X |
ispartof | The FEBS journal, 2021-05, Vol.288 (9), p.2930-2955 |
issn | 1742-464X 1742-4658 |
language | eng |
recordid | cdi_proquest_miscellaneous_2459623613 |
source | Access via Wiley Online Library; Wiley Online Library (Open Access Collection); Free Full-Text Journals in Chemistry |
subjects | activity‐regulated cytoskeleton‐associated protein (Arc)/coiled‐coil interactions/protein oligomerization Atomic structure Capsids Crystal structure Crystallography Cytoskeleton Dimers Domains Electron microscopy Endocytosis Fluorescence Fluorescence resonance energy transfer Gag protein Homology Intracellular signalling Molecular structure mRNA Mutation Neuroplasticity Oligomerization Photobleaching Proteins retrovirus‐like capsid/synaptic plasticity Synaptic plasticity Viruses |
title | Arc self‐association and formation of virus‐like capsids are mediated by an N‐terminal helical coil motif |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T01%3A35%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Arc%20self%E2%80%90association%20and%20formation%20of%20virus%E2%80%90like%20capsids%20are%20mediated%20by%20an%20N%E2%80%90terminal%20helical%20coil%20motif&rft.jtitle=The%20FEBS%20journal&rft.au=Eriksen,%20Maria%20S.&rft.date=2021-05&rft.volume=288&rft.issue=9&rft.spage=2930&rft.epage=2955&rft.pages=2930-2955&rft.issn=1742-464X&rft.eissn=1742-4658&rft_id=info:doi/10.1111/febs.15618&rft_dat=%3Cproquest_cross%3E2459623613%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2520751895&rft_id=info:pmid/33175445&rfr_iscdi=true |