A framework for understanding the functions of biomolecular condensates across scales

Biomolecular condensates are found throughout eukaryotic cells, including in the nucleus, in the cytoplasm and on membranes. They are also implicated in a wide range of cellular functions, organizing molecules that act in processes ranging from RNA metabolism to signalling to gene regulation. Early...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature reviews. Molecular cell biology 2021-03, Vol.22 (3), p.215-235
Hauptverfasser: Lyon, Andrew S., Peeples, William B., Rosen, Michael K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 235
container_issue 3
container_start_page 215
container_title Nature reviews. Molecular cell biology
container_volume 22
creator Lyon, Andrew S.
Peeples, William B.
Rosen, Michael K.
description Biomolecular condensates are found throughout eukaryotic cells, including in the nucleus, in the cytoplasm and on membranes. They are also implicated in a wide range of cellular functions, organizing molecules that act in processes ranging from RNA metabolism to signalling to gene regulation. Early work in the field focused on identifying condensates and understanding how their physical properties and regulation arise from molecular constituents. Recent years have brought a focus on understanding condensate functions. Studies have revealed functions that span different length scales: from molecular (modulating the rates of chemical reactions) to mesoscale (organizing large structures within cells) to cellular (facilitating localization of cellular materials and homeostatic responses). In this Roadmap, we discuss representative examples of biochemical and cellular functions of biomolecular condensates from the recent literature and organize these functions into a series of non-exclusive classes across the different length scales. We conclude with a discussion of areas of current interest and challenges in the field, and thoughts about how progress may be made to further our understanding of the widespread roles of condensates in cell biology. Biomolecular condensates are membraneless molecular assemblies formed via liquid–liquid phase separation. They have a plethora of roles, ranging from controlling biochemical reactions to regulating cell organization and cell function. This article provides a framework for the study of condensate functions across these cellular length scales, offering to bring new understanding of biological processes.
doi_str_mv 10.1038/s41580-020-00303-z
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2459353609</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A655715990</galeid><sourcerecordid>A655715990</sourcerecordid><originalsourceid>FETCH-LOGICAL-c586t-4c9a721bdcee15c9dca46d6845a30d029ee28b3ff0801214c10f2f3f2925a8793</originalsourceid><addsrcrecordid>eNp9kV1rFDEUhoMo9kP_QC8k4I29mDYfk5nJ5VJsLRQEba9DNnOynTqT1JwM2v76Zru1ZUUkhOQkz3vIm5eQA86OOJPdMdZcdaxiokwmmazuX5FdXre8lB17_bxvxQ7ZQ7xhjDe8VW_JjpS80aXcJVcL6pOd4FdMP6iPic6hh4TZhn4IK5qvgfo5uDzEgDR6uhziFEdw82gTdbHAAW0GpNaliEjR2RHwHXnj7Yjw_mndJ1enny9PvlQXX8_OTxYXlVNdk6vaadsKvuwdAFdO987WTd90tbKS9UxoANEtpffFDhe8dpx54aUXWijbtVruk0-bvrcp_pwBs5kGdDCONkCc0Yhaaalkw9box7_QmzinUF5XKC1Fw7gWL9Sq2DBD8DEn69ZNzaJRquVKa1aoo39QZfQwDeVTwA_lfEtwuCUoTIbfeWVnRHP-_ds2Kzbs44cm8OY2DZNNd4Yzs87dbHI3JXfzmLu5L6IPT-7m5QT9s-RP0AWQGwDLVVhBerH_n7YPsZq2Wg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2493260192</pqid></control><display><type>article</type><title>A framework for understanding the functions of biomolecular condensates across scales</title><source>MEDLINE</source><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Lyon, Andrew S. ; Peeples, William B. ; Rosen, Michael K.</creator><creatorcontrib>Lyon, Andrew S. ; Peeples, William B. ; Rosen, Michael K.</creatorcontrib><description>Biomolecular condensates are found throughout eukaryotic cells, including in the nucleus, in the cytoplasm and on membranes. They are also implicated in a wide range of cellular functions, organizing molecules that act in processes ranging from RNA metabolism to signalling to gene regulation. Early work in the field focused on identifying condensates and understanding how their physical properties and regulation arise from molecular constituents. Recent years have brought a focus on understanding condensate functions. Studies have revealed functions that span different length scales: from molecular (modulating the rates of chemical reactions) to mesoscale (organizing large structures within cells) to cellular (facilitating localization of cellular materials and homeostatic responses). In this Roadmap, we discuss representative examples of biochemical and cellular functions of biomolecular condensates from the recent literature and organize these functions into a series of non-exclusive classes across the different length scales. We conclude with a discussion of areas of current interest and challenges in the field, and thoughts about how progress may be made to further our understanding of the widespread roles of condensates in cell biology. Biomolecular condensates are membraneless molecular assemblies formed via liquid–liquid phase separation. They have a plethora of roles, ranging from controlling biochemical reactions to regulating cell organization and cell function. This article provides a framework for the study of condensate functions across these cellular length scales, offering to bring new understanding of biological processes.</description><identifier>ISSN: 1471-0072</identifier><identifier>EISSN: 1471-0080</identifier><identifier>DOI: 10.1038/s41580-020-00303-z</identifier><identifier>PMID: 33169001</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/57 ; 631/80 ; Animals ; Binding sites ; Biochemical Phenomena ; Biochemistry ; Biological activity ; Biology ; Biomedical and Life Sciences ; Biomolecules ; Cancer Research ; Cell Biology ; Cell Physiological Phenomena ; Cell research ; Cellular control mechanisms ; Cellular structure ; Chemical reactions ; Condensates ; Cytoplasm ; Cytoplasm - chemistry ; Cytoplasm - genetics ; Cytoplasm - metabolism ; Developmental Biology ; Enzymes ; Eukaryotic Cells - chemistry ; Eukaryotic Cells - metabolism ; Eukaryotic Cells - physiology ; Gene regulation ; Humans ; Life Sciences ; Liquid phases ; Localization ; Macromolecular Substances - chemistry ; Macromolecular Substances - metabolism ; Multiprotein Complexes - chemistry ; Multiprotein Complexes - physiology ; Number systems ; Observations ; Organelles - chemistry ; Organelles - genetics ; Organelles - metabolism ; Phase separation ; Physical properties ; Properties ; Protein Aggregates - physiology ; Proteins ; Ribonucleic acid ; RNA ; Roadmap ; Stem Cells ; Viscosity</subject><ispartof>Nature reviews. Molecular cell biology, 2021-03, Vol.22 (3), p.215-235</ispartof><rights>Springer Nature Limited 2020</rights><rights>COPYRIGHT 2021 Nature Publishing Group</rights><rights>Springer Nature Limited 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c586t-4c9a721bdcee15c9dca46d6845a30d029ee28b3ff0801214c10f2f3f2925a8793</citedby><cites>FETCH-LOGICAL-c586t-4c9a721bdcee15c9dca46d6845a30d029ee28b3ff0801214c10f2f3f2925a8793</cites><orcidid>0000-0002-0775-7917</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41580-020-00303-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41580-020-00303-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33169001$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lyon, Andrew S.</creatorcontrib><creatorcontrib>Peeples, William B.</creatorcontrib><creatorcontrib>Rosen, Michael K.</creatorcontrib><title>A framework for understanding the functions of biomolecular condensates across scales</title><title>Nature reviews. Molecular cell biology</title><addtitle>Nat Rev Mol Cell Biol</addtitle><addtitle>Nat Rev Mol Cell Biol</addtitle><description>Biomolecular condensates are found throughout eukaryotic cells, including in the nucleus, in the cytoplasm and on membranes. They are also implicated in a wide range of cellular functions, organizing molecules that act in processes ranging from RNA metabolism to signalling to gene regulation. Early work in the field focused on identifying condensates and understanding how their physical properties and regulation arise from molecular constituents. Recent years have brought a focus on understanding condensate functions. Studies have revealed functions that span different length scales: from molecular (modulating the rates of chemical reactions) to mesoscale (organizing large structures within cells) to cellular (facilitating localization of cellular materials and homeostatic responses). In this Roadmap, we discuss representative examples of biochemical and cellular functions of biomolecular condensates from the recent literature and organize these functions into a series of non-exclusive classes across the different length scales. We conclude with a discussion of areas of current interest and challenges in the field, and thoughts about how progress may be made to further our understanding of the widespread roles of condensates in cell biology. Biomolecular condensates are membraneless molecular assemblies formed via liquid–liquid phase separation. They have a plethora of roles, ranging from controlling biochemical reactions to regulating cell organization and cell function. This article provides a framework for the study of condensate functions across these cellular length scales, offering to bring new understanding of biological processes.</description><subject>631/57</subject><subject>631/80</subject><subject>Animals</subject><subject>Binding sites</subject><subject>Biochemical Phenomena</subject><subject>Biochemistry</subject><subject>Biological activity</subject><subject>Biology</subject><subject>Biomedical and Life Sciences</subject><subject>Biomolecules</subject><subject>Cancer Research</subject><subject>Cell Biology</subject><subject>Cell Physiological Phenomena</subject><subject>Cell research</subject><subject>Cellular control mechanisms</subject><subject>Cellular structure</subject><subject>Chemical reactions</subject><subject>Condensates</subject><subject>Cytoplasm</subject><subject>Cytoplasm - chemistry</subject><subject>Cytoplasm - genetics</subject><subject>Cytoplasm - metabolism</subject><subject>Developmental Biology</subject><subject>Enzymes</subject><subject>Eukaryotic Cells - chemistry</subject><subject>Eukaryotic Cells - metabolism</subject><subject>Eukaryotic Cells - physiology</subject><subject>Gene regulation</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Liquid phases</subject><subject>Localization</subject><subject>Macromolecular Substances - chemistry</subject><subject>Macromolecular Substances - metabolism</subject><subject>Multiprotein Complexes - chemistry</subject><subject>Multiprotein Complexes - physiology</subject><subject>Number systems</subject><subject>Observations</subject><subject>Organelles - chemistry</subject><subject>Organelles - genetics</subject><subject>Organelles - metabolism</subject><subject>Phase separation</subject><subject>Physical properties</subject><subject>Properties</subject><subject>Protein Aggregates - physiology</subject><subject>Proteins</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Roadmap</subject><subject>Stem Cells</subject><subject>Viscosity</subject><issn>1471-0072</issn><issn>1471-0080</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kV1rFDEUhoMo9kP_QC8k4I29mDYfk5nJ5VJsLRQEba9DNnOynTqT1JwM2v76Zru1ZUUkhOQkz3vIm5eQA86OOJPdMdZcdaxiokwmmazuX5FdXre8lB17_bxvxQ7ZQ7xhjDe8VW_JjpS80aXcJVcL6pOd4FdMP6iPic6hh4TZhn4IK5qvgfo5uDzEgDR6uhziFEdw82gTdbHAAW0GpNaliEjR2RHwHXnj7Yjw_mndJ1enny9PvlQXX8_OTxYXlVNdk6vaadsKvuwdAFdO987WTd90tbKS9UxoANEtpffFDhe8dpx54aUXWijbtVruk0-bvrcp_pwBs5kGdDCONkCc0Yhaaalkw9box7_QmzinUF5XKC1Fw7gWL9Sq2DBD8DEn69ZNzaJRquVKa1aoo39QZfQwDeVTwA_lfEtwuCUoTIbfeWVnRHP-_ds2Kzbs44cm8OY2DZNNd4Yzs87dbHI3JXfzmLu5L6IPT-7m5QT9s-RP0AWQGwDLVVhBerH_n7YPsZq2Wg</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Lyon, Andrew S.</creator><creator>Peeples, William B.</creator><creator>Rosen, Michael K.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P64</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0775-7917</orcidid></search><sort><creationdate>20210301</creationdate><title>A framework for understanding the functions of biomolecular condensates across scales</title><author>Lyon, Andrew S. ; Peeples, William B. ; Rosen, Michael K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c586t-4c9a721bdcee15c9dca46d6845a30d029ee28b3ff0801214c10f2f3f2925a8793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>631/57</topic><topic>631/80</topic><topic>Animals</topic><topic>Binding sites</topic><topic>Biochemical Phenomena</topic><topic>Biochemistry</topic><topic>Biological activity</topic><topic>Biology</topic><topic>Biomedical and Life Sciences</topic><topic>Biomolecules</topic><topic>Cancer Research</topic><topic>Cell Biology</topic><topic>Cell Physiological Phenomena</topic><topic>Cell research</topic><topic>Cellular control mechanisms</topic><topic>Cellular structure</topic><topic>Chemical reactions</topic><topic>Condensates</topic><topic>Cytoplasm</topic><topic>Cytoplasm - chemistry</topic><topic>Cytoplasm - genetics</topic><topic>Cytoplasm - metabolism</topic><topic>Developmental Biology</topic><topic>Enzymes</topic><topic>Eukaryotic Cells - chemistry</topic><topic>Eukaryotic Cells - metabolism</topic><topic>Eukaryotic Cells - physiology</topic><topic>Gene regulation</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Liquid phases</topic><topic>Localization</topic><topic>Macromolecular Substances - chemistry</topic><topic>Macromolecular Substances - metabolism</topic><topic>Multiprotein Complexes - chemistry</topic><topic>Multiprotein Complexes - physiology</topic><topic>Number systems</topic><topic>Observations</topic><topic>Organelles - chemistry</topic><topic>Organelles - genetics</topic><topic>Organelles - metabolism</topic><topic>Phase separation</topic><topic>Physical properties</topic><topic>Properties</topic><topic>Protein Aggregates - physiology</topic><topic>Proteins</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Roadmap</topic><topic>Stem Cells</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lyon, Andrew S.</creatorcontrib><creatorcontrib>Peeples, William B.</creatorcontrib><creatorcontrib>Rosen, Michael K.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature reviews. Molecular cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lyon, Andrew S.</au><au>Peeples, William B.</au><au>Rosen, Michael K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A framework for understanding the functions of biomolecular condensates across scales</atitle><jtitle>Nature reviews. Molecular cell biology</jtitle><stitle>Nat Rev Mol Cell Biol</stitle><addtitle>Nat Rev Mol Cell Biol</addtitle><date>2021-03-01</date><risdate>2021</risdate><volume>22</volume><issue>3</issue><spage>215</spage><epage>235</epage><pages>215-235</pages><issn>1471-0072</issn><eissn>1471-0080</eissn><abstract>Biomolecular condensates are found throughout eukaryotic cells, including in the nucleus, in the cytoplasm and on membranes. They are also implicated in a wide range of cellular functions, organizing molecules that act in processes ranging from RNA metabolism to signalling to gene regulation. Early work in the field focused on identifying condensates and understanding how their physical properties and regulation arise from molecular constituents. Recent years have brought a focus on understanding condensate functions. Studies have revealed functions that span different length scales: from molecular (modulating the rates of chemical reactions) to mesoscale (organizing large structures within cells) to cellular (facilitating localization of cellular materials and homeostatic responses). In this Roadmap, we discuss representative examples of biochemical and cellular functions of biomolecular condensates from the recent literature and organize these functions into a series of non-exclusive classes across the different length scales. We conclude with a discussion of areas of current interest and challenges in the field, and thoughts about how progress may be made to further our understanding of the widespread roles of condensates in cell biology. Biomolecular condensates are membraneless molecular assemblies formed via liquid–liquid phase separation. They have a plethora of roles, ranging from controlling biochemical reactions to regulating cell organization and cell function. This article provides a framework for the study of condensate functions across these cellular length scales, offering to bring new understanding of biological processes.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33169001</pmid><doi>10.1038/s41580-020-00303-z</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-0775-7917</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1471-0072
ispartof Nature reviews. Molecular cell biology, 2021-03, Vol.22 (3), p.215-235
issn 1471-0072
1471-0080
language eng
recordid cdi_proquest_miscellaneous_2459353609
source MEDLINE; Nature Journals Online; SpringerLink Journals - AutoHoldings
subjects 631/57
631/80
Animals
Binding sites
Biochemical Phenomena
Biochemistry
Biological activity
Biology
Biomedical and Life Sciences
Biomolecules
Cancer Research
Cell Biology
Cell Physiological Phenomena
Cell research
Cellular control mechanisms
Cellular structure
Chemical reactions
Condensates
Cytoplasm
Cytoplasm - chemistry
Cytoplasm - genetics
Cytoplasm - metabolism
Developmental Biology
Enzymes
Eukaryotic Cells - chemistry
Eukaryotic Cells - metabolism
Eukaryotic Cells - physiology
Gene regulation
Humans
Life Sciences
Liquid phases
Localization
Macromolecular Substances - chemistry
Macromolecular Substances - metabolism
Multiprotein Complexes - chemistry
Multiprotein Complexes - physiology
Number systems
Observations
Organelles - chemistry
Organelles - genetics
Organelles - metabolism
Phase separation
Physical properties
Properties
Protein Aggregates - physiology
Proteins
Ribonucleic acid
RNA
Roadmap
Stem Cells
Viscosity
title A framework for understanding the functions of biomolecular condensates across scales
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T03%3A45%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20framework%20for%20understanding%20the%20functions%20of%20biomolecular%20condensates%20across%20scales&rft.jtitle=Nature%20reviews.%20Molecular%20cell%20biology&rft.au=Lyon,%20Andrew%20S.&rft.date=2021-03-01&rft.volume=22&rft.issue=3&rft.spage=215&rft.epage=235&rft.pages=215-235&rft.issn=1471-0072&rft.eissn=1471-0080&rft_id=info:doi/10.1038/s41580-020-00303-z&rft_dat=%3Cgale_proqu%3EA655715990%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2493260192&rft_id=info:pmid/33169001&rft_galeid=A655715990&rfr_iscdi=true