Van der Waals Epitaxial Growth of Mosaic‐Like 2D Platinum Ditelluride Layers for Room‐Temperature Mid‐Infrared Photodetection up to 10.6 µm
Mid‐infrared (MIR) photodetection, covering diverse molecular vibrational regions and atmospheric transmission windows, is vital to civil and military purposes. Versatile use of MIR photodetectors is commonly dominated by HgCdTe alloys, InSb, and quantum superlattices, which are limited by strict op...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2020-12, Vol.32 (52), p.e2004412-n/a |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 52 |
container_start_page | e2004412 |
container_title | Advanced materials (Weinheim) |
container_volume | 32 |
creator | Zeng, Longhui Wu, Di Jie, Jiansheng Ren, Xiaoyan Hu, Xin Lau, Shu Ping Chai, Yang Tsang, Yuen Hong |
description | Mid‐infrared (MIR) photodetection, covering diverse molecular vibrational regions and atmospheric transmission windows, is vital to civil and military purposes. Versatile use of MIR photodetectors is commonly dominated by HgCdTe alloys, InSb, and quantum superlattices, which are limited by strict operation demands, high‐cost, and environmental toxicity. Despite the rapid advances of black phosphorus (BP)‐based MIR photodetectors, these are subject to poor stability and large‐area integration difficulty. Here, the van der Waals (vdW) epitaxial growth of a wafer‐scale 2D platinum ditelluride (PtTe2) layer is reported via a simple tellurium‐vapor transformation approach. The 2D PtTe2 layer possesses a unique mosaic‐like crystal structure consisting of single‐crystal domains with highly preferential [001] orientation along the normal direction, reducing the influence of interface defects and ensuring efficient out‐of‐plane carrier transportation. This characteristic, combined with the wide absorption of PtTe2 and well‐designed vertical device architecture, makes the PtTe2/Si Schottky junction photodetector capable of sensing ultra‐broadband light of up to 10.6 µm with a high specific detectivity. Also, the photodetector exhibits an excellent room‐temperature infrared‐imaging capability. This approach provides a new design concept for high‐performance, room‐temperature MIR photodetection based on 2D layered materials.
Van der Waals epitaxial growth of wafer‐scale mosaic‐like 2D PtTe2 layers is achieved for highly sensitive MIR photodetection. A photodetector based on a PtTe2/Si Schottky junction is capable of sensing ultrabroadband light of up to 10.6 µm with a high specific detectivity. The photodetector arrays also display an excellent room‐temperature MIR imaging capability. |
doi_str_mv | 10.1002/adma.202004412 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2459352018</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2473010954</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3542-e05a79d9535f79db1484e02db84a85b0ab2491872b6d39737cc39522f67831c33</originalsourceid><addsrcrecordid>eNqFkc1O3DAUhS3UCqbAliWy1A2bDP5N4uWIoRRpRkUVLcvIiW-EaRKntiM6uz5C1XfpC_RR-iQYDaVSN6yudPXdo3PuQeiIkjklhJ1q0-s5I4wQISjbQTMqGc0EUfIVmhHFZaZyUe6hNyHcEUJUTvJdtMc5zZXI5Qz9_KwHbMDjG627gM9HG_U3qzt84d19vMWuxWsXtG3-fP-xsl8AsyW-6nS0w9TjpY3QdZO3BvBKb8AH3DqPPzrXJ_wa-hG8jpMHvLYmbS6H1msPBl_duugMRGiidQOeRhwdTpFy_PtXf4Bet8kLHD7NffTp3fn12fts9eHi8myxyhouBcuASF0ooySXbZo1FaUAwkxdCl3KmuiaCUXLgtW54argRdNwJRlr86LktOF8H51sdUfvvk4QYtXb0KRAegA3hYoJmf7HCC0T-vY_9M5NfkjuElVwQtO_RaLmW6rxLgQPbTV622u_qSipHtuqHtuqnttKB8dPslPdg3nG_9aTALUF7m0HmxfkqsVyvfgn_gCw8aMH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473010954</pqid></control><display><type>article</type><title>Van der Waals Epitaxial Growth of Mosaic‐Like 2D Platinum Ditelluride Layers for Room‐Temperature Mid‐Infrared Photodetection up to 10.6 µm</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zeng, Longhui ; Wu, Di ; Jie, Jiansheng ; Ren, Xiaoyan ; Hu, Xin ; Lau, Shu Ping ; Chai, Yang ; Tsang, Yuen Hong</creator><creatorcontrib>Zeng, Longhui ; Wu, Di ; Jie, Jiansheng ; Ren, Xiaoyan ; Hu, Xin ; Lau, Shu Ping ; Chai, Yang ; Tsang, Yuen Hong</creatorcontrib><description>Mid‐infrared (MIR) photodetection, covering diverse molecular vibrational regions and atmospheric transmission windows, is vital to civil and military purposes. Versatile use of MIR photodetectors is commonly dominated by HgCdTe alloys, InSb, and quantum superlattices, which are limited by strict operation demands, high‐cost, and environmental toxicity. Despite the rapid advances of black phosphorus (BP)‐based MIR photodetectors, these are subject to poor stability and large‐area integration difficulty. Here, the van der Waals (vdW) epitaxial growth of a wafer‐scale 2D platinum ditelluride (PtTe2) layer is reported via a simple tellurium‐vapor transformation approach. The 2D PtTe2 layer possesses a unique mosaic‐like crystal structure consisting of single‐crystal domains with highly preferential [001] orientation along the normal direction, reducing the influence of interface defects and ensuring efficient out‐of‐plane carrier transportation. This characteristic, combined with the wide absorption of PtTe2 and well‐designed vertical device architecture, makes the PtTe2/Si Schottky junction photodetector capable of sensing ultra‐broadband light of up to 10.6 µm with a high specific detectivity. Also, the photodetector exhibits an excellent room‐temperature infrared‐imaging capability. This approach provides a new design concept for high‐performance, room‐temperature MIR photodetection based on 2D layered materials.
Van der Waals epitaxial growth of wafer‐scale mosaic‐like 2D PtTe2 layers is achieved for highly sensitive MIR photodetection. A photodetector based on a PtTe2/Si Schottky junction is capable of sensing ultrabroadband light of up to 10.6 µm with a high specific detectivity. The photodetector arrays also display an excellent room‐temperature MIR imaging capability.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202004412</identifier><identifier>PMID: 33169465</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>2D platinum ditelluride ; Broadband ; Computer architecture ; Crystal defects ; Crystal structure ; Epitaxial growth ; Infrared imaging ; Layered materials ; Materials science ; mid‐infrared photodetection ; mosaic‐like structures ; photodetectors ; Photometers ; Platinum ; Superlattices ; Tellurium ; Toxicity</subject><ispartof>Advanced materials (Weinheim), 2020-12, Vol.32 (52), p.e2004412-n/a</ispartof><rights>2020 Wiley‐VCH GmbH</rights><rights>2020 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3542-e05a79d9535f79db1484e02db84a85b0ab2491872b6d39737cc39522f67831c33</citedby><cites>FETCH-LOGICAL-c3542-e05a79d9535f79db1484e02db84a85b0ab2491872b6d39737cc39522f67831c33</cites><orcidid>0000-0001-5632-5224</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202004412$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202004412$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33169465$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zeng, Longhui</creatorcontrib><creatorcontrib>Wu, Di</creatorcontrib><creatorcontrib>Jie, Jiansheng</creatorcontrib><creatorcontrib>Ren, Xiaoyan</creatorcontrib><creatorcontrib>Hu, Xin</creatorcontrib><creatorcontrib>Lau, Shu Ping</creatorcontrib><creatorcontrib>Chai, Yang</creatorcontrib><creatorcontrib>Tsang, Yuen Hong</creatorcontrib><title>Van der Waals Epitaxial Growth of Mosaic‐Like 2D Platinum Ditelluride Layers for Room‐Temperature Mid‐Infrared Photodetection up to 10.6 µm</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Mid‐infrared (MIR) photodetection, covering diverse molecular vibrational regions and atmospheric transmission windows, is vital to civil and military purposes. Versatile use of MIR photodetectors is commonly dominated by HgCdTe alloys, InSb, and quantum superlattices, which are limited by strict operation demands, high‐cost, and environmental toxicity. Despite the rapid advances of black phosphorus (BP)‐based MIR photodetectors, these are subject to poor stability and large‐area integration difficulty. Here, the van der Waals (vdW) epitaxial growth of a wafer‐scale 2D platinum ditelluride (PtTe2) layer is reported via a simple tellurium‐vapor transformation approach. The 2D PtTe2 layer possesses a unique mosaic‐like crystal structure consisting of single‐crystal domains with highly preferential [001] orientation along the normal direction, reducing the influence of interface defects and ensuring efficient out‐of‐plane carrier transportation. This characteristic, combined with the wide absorption of PtTe2 and well‐designed vertical device architecture, makes the PtTe2/Si Schottky junction photodetector capable of sensing ultra‐broadband light of up to 10.6 µm with a high specific detectivity. Also, the photodetector exhibits an excellent room‐temperature infrared‐imaging capability. This approach provides a new design concept for high‐performance, room‐temperature MIR photodetection based on 2D layered materials.
Van der Waals epitaxial growth of wafer‐scale mosaic‐like 2D PtTe2 layers is achieved for highly sensitive MIR photodetection. A photodetector based on a PtTe2/Si Schottky junction is capable of sensing ultrabroadband light of up to 10.6 µm with a high specific detectivity. The photodetector arrays also display an excellent room‐temperature MIR imaging capability.</description><subject>2D platinum ditelluride</subject><subject>Broadband</subject><subject>Computer architecture</subject><subject>Crystal defects</subject><subject>Crystal structure</subject><subject>Epitaxial growth</subject><subject>Infrared imaging</subject><subject>Layered materials</subject><subject>Materials science</subject><subject>mid‐infrared photodetection</subject><subject>mosaic‐like structures</subject><subject>photodetectors</subject><subject>Photometers</subject><subject>Platinum</subject><subject>Superlattices</subject><subject>Tellurium</subject><subject>Toxicity</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkc1O3DAUhS3UCqbAliWy1A2bDP5N4uWIoRRpRkUVLcvIiW-EaRKntiM6uz5C1XfpC_RR-iQYDaVSN6yudPXdo3PuQeiIkjklhJ1q0-s5I4wQISjbQTMqGc0EUfIVmhHFZaZyUe6hNyHcEUJUTvJdtMc5zZXI5Qz9_KwHbMDjG627gM9HG_U3qzt84d19vMWuxWsXtG3-fP-xsl8AsyW-6nS0w9TjpY3QdZO3BvBKb8AH3DqPPzrXJ_wa-hG8jpMHvLYmbS6H1msPBl_duugMRGiidQOeRhwdTpFy_PtXf4Bet8kLHD7NffTp3fn12fts9eHi8myxyhouBcuASF0ooySXbZo1FaUAwkxdCl3KmuiaCUXLgtW54argRdNwJRlr86LktOF8H51sdUfvvk4QYtXb0KRAegA3hYoJmf7HCC0T-vY_9M5NfkjuElVwQtO_RaLmW6rxLgQPbTV622u_qSipHtuqHtuqnttKB8dPslPdg3nG_9aTALUF7m0HmxfkqsVyvfgn_gCw8aMH</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Zeng, Longhui</creator><creator>Wu, Di</creator><creator>Jie, Jiansheng</creator><creator>Ren, Xiaoyan</creator><creator>Hu, Xin</creator><creator>Lau, Shu Ping</creator><creator>Chai, Yang</creator><creator>Tsang, Yuen Hong</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5632-5224</orcidid></search><sort><creationdate>20201201</creationdate><title>Van der Waals Epitaxial Growth of Mosaic‐Like 2D Platinum Ditelluride Layers for Room‐Temperature Mid‐Infrared Photodetection up to 10.6 µm</title><author>Zeng, Longhui ; Wu, Di ; Jie, Jiansheng ; Ren, Xiaoyan ; Hu, Xin ; Lau, Shu Ping ; Chai, Yang ; Tsang, Yuen Hong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3542-e05a79d9535f79db1484e02db84a85b0ab2491872b6d39737cc39522f67831c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>2D platinum ditelluride</topic><topic>Broadband</topic><topic>Computer architecture</topic><topic>Crystal defects</topic><topic>Crystal structure</topic><topic>Epitaxial growth</topic><topic>Infrared imaging</topic><topic>Layered materials</topic><topic>Materials science</topic><topic>mid‐infrared photodetection</topic><topic>mosaic‐like structures</topic><topic>photodetectors</topic><topic>Photometers</topic><topic>Platinum</topic><topic>Superlattices</topic><topic>Tellurium</topic><topic>Toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zeng, Longhui</creatorcontrib><creatorcontrib>Wu, Di</creatorcontrib><creatorcontrib>Jie, Jiansheng</creatorcontrib><creatorcontrib>Ren, Xiaoyan</creatorcontrib><creatorcontrib>Hu, Xin</creatorcontrib><creatorcontrib>Lau, Shu Ping</creatorcontrib><creatorcontrib>Chai, Yang</creatorcontrib><creatorcontrib>Tsang, Yuen Hong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zeng, Longhui</au><au>Wu, Di</au><au>Jie, Jiansheng</au><au>Ren, Xiaoyan</au><au>Hu, Xin</au><au>Lau, Shu Ping</au><au>Chai, Yang</au><au>Tsang, Yuen Hong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Van der Waals Epitaxial Growth of Mosaic‐Like 2D Platinum Ditelluride Layers for Room‐Temperature Mid‐Infrared Photodetection up to 10.6 µm</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2020-12-01</date><risdate>2020</risdate><volume>32</volume><issue>52</issue><spage>e2004412</spage><epage>n/a</epage><pages>e2004412-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Mid‐infrared (MIR) photodetection, covering diverse molecular vibrational regions and atmospheric transmission windows, is vital to civil and military purposes. Versatile use of MIR photodetectors is commonly dominated by HgCdTe alloys, InSb, and quantum superlattices, which are limited by strict operation demands, high‐cost, and environmental toxicity. Despite the rapid advances of black phosphorus (BP)‐based MIR photodetectors, these are subject to poor stability and large‐area integration difficulty. Here, the van der Waals (vdW) epitaxial growth of a wafer‐scale 2D platinum ditelluride (PtTe2) layer is reported via a simple tellurium‐vapor transformation approach. The 2D PtTe2 layer possesses a unique mosaic‐like crystal structure consisting of single‐crystal domains with highly preferential [001] orientation along the normal direction, reducing the influence of interface defects and ensuring efficient out‐of‐plane carrier transportation. This characteristic, combined with the wide absorption of PtTe2 and well‐designed vertical device architecture, makes the PtTe2/Si Schottky junction photodetector capable of sensing ultra‐broadband light of up to 10.6 µm with a high specific detectivity. Also, the photodetector exhibits an excellent room‐temperature infrared‐imaging capability. This approach provides a new design concept for high‐performance, room‐temperature MIR photodetection based on 2D layered materials.
Van der Waals epitaxial growth of wafer‐scale mosaic‐like 2D PtTe2 layers is achieved for highly sensitive MIR photodetection. A photodetector based on a PtTe2/Si Schottky junction is capable of sensing ultrabroadband light of up to 10.6 µm with a high specific detectivity. The photodetector arrays also display an excellent room‐temperature MIR imaging capability.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>33169465</pmid><doi>10.1002/adma.202004412</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-5632-5224</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2020-12, Vol.32 (52), p.e2004412-n/a |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_proquest_miscellaneous_2459352018 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | 2D platinum ditelluride Broadband Computer architecture Crystal defects Crystal structure Epitaxial growth Infrared imaging Layered materials Materials science mid‐infrared photodetection mosaic‐like structures photodetectors Photometers Platinum Superlattices Tellurium Toxicity |
title | Van der Waals Epitaxial Growth of Mosaic‐Like 2D Platinum Ditelluride Layers for Room‐Temperature Mid‐Infrared Photodetection up to 10.6 µm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T18%3A59%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Van%20der%20Waals%20Epitaxial%20Growth%20of%20Mosaic%E2%80%90Like%202D%20Platinum%20Ditelluride%20Layers%20for%20Room%E2%80%90Temperature%20Mid%E2%80%90Infrared%20Photodetection%20up%20to%2010.6%20%C2%B5m&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Zeng,%20Longhui&rft.date=2020-12-01&rft.volume=32&rft.issue=52&rft.spage=e2004412&rft.epage=n/a&rft.pages=e2004412-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202004412&rft_dat=%3Cproquest_cross%3E2473010954%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2473010954&rft_id=info:pmid/33169465&rfr_iscdi=true |