Polyazamacrocycle Ligands Facilitate 89Zr Radiochemistry and Yield 89Zr Complexes with Remarkable Stability
Over the last three decades, the chemistry of zirconium has facilitated antibody development and the clinical management of disease in the precision medicine era. Scientists have harnessed its reactivity, coordination chemistry, and nuclear chemistry to develop antibody-based radiopharmaceuticals in...
Gespeichert in:
Veröffentlicht in: | Inorganic chemistry 2020-12, Vol.59 (23), p.17473-17487 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 17487 |
---|---|
container_issue | 23 |
container_start_page | 17473 |
container_title | Inorganic chemistry |
container_volume | 59 |
creator | Pandya, Darpan N Henry, Kelly E Day, Cynthia S Graves, Stephen A Nagle, Veronica L Dilling, Thomas R Sinha, Akesh Ehrmann, Brandie M Bhatt, Nikunj B Menda, Yusuf Lewis, Jason S Wadas, Thaddeus J |
description | Over the last three decades, the chemistry of zirconium has facilitated antibody development and the clinical management of disease in the precision medicine era. Scientists have harnessed its reactivity, coordination chemistry, and nuclear chemistry to develop antibody-based radiopharmaceuticals incorporating zirconium-89 (89Zr: t 1/2 = 78.4 h, β+: 22.8%, E β+max = 901 keV; EC: 77%, E γ = 909 keV) to improve disease detection, identify patients for individualized therapeutic interventions. and monitor their response to those interventions. However, release of the 89Zr4+ ion from the radiopharmaceutical remains a concern, since it may confound the interpretation of clinical imaging data, negatively affect dosimetric calculations, and hinder treatment planning. In this report, we relate our novel observations involving the use of polyazamacrocycles as zirconium-89 chelators. We describe the synthesis and complete characterization of zirconium 2,2′,2″,2‴-(1,4,7,10-tetraazacyclotridecane-1,4,7,10-tetrayl)tetraacetic acid (Zr-TRITA), zirconium 3,6,9,15-Tetraazabicyclo[9.3.1] pentadeca-1(15),11,13-triene-3,6,9-triacetic acid (Zr-PCTA), and zirconium 2,2′,2″-(1,4,7-triazacyclononane-1,4,7-triyl)triacetic acid (Zr-NOTA). In addition, we elucidate the solid-state structure of each complex using single-crystal X-ray diffraction analysis. Finally, we found that [89Zr]Zr-PCTA and [89Zr]Zr-NOTA demonstrate excellent stability in vitro and in vivo and provide a rationale for these observations. These innovative findings have the potential to guide the development of safer and more robust immuno-PET agents to improve precision medicine applications. |
doi_str_mv | 10.1021/acs.inorgchem.0c02722 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2459350309</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2459350309</sourcerecordid><originalsourceid>FETCH-LOGICAL-a262t-8645e655c110a345fe6d0f80043df8351fb51f1d3be075387839441750bf384f3</originalsourceid><addsrcrecordid>eNqNklGL1DAQx4Mo3rr6EYQ-CrLrpGnS9kWQ4nnCgnIqqC8hTae7uUuTNWm9q5_elF0OfPMhJMz85zfJP0PISwpbCjl9o3TcGufDXh9w2IKGvMzzR2RFeQ4bTuH7Y7ICSGcqRH1BnsV4AwA1K8RTcsEYFbUAviK3n72d1R81KB28nrXFbGf2ynUxu1TaWDOqEbOq_hmya9UZv3QzcQxzljTZD4O2O2UbPxwt3mPM7sx4yK5xUOFWtYn3ZVTtApqfkye9shFfnPc1-Xb5_mtztdl9-vCxebfbqFzk46YSBUfBuaYUFCt4j6KDvgIoWNdXjNO-TYt2rEUoOavKitVFQUsObc-qomdr8vbEPU7tgJ1GNwZl5TGYdKdZemXkvxlnDnLvf8uKJYsgT4BXZ0DwvyaMo0xv1mitcuinKPOC14wDS3auSXWS3mHr-6gNOo0PrRKN1zWtYQGXZbO4abxr_OTGVPr6_0uTmp7U6ePljZ-CSxZKCnKZBrkEH6ZBnqeB_QVe7amQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2459350309</pqid></control><display><type>article</type><title>Polyazamacrocycle Ligands Facilitate 89Zr Radiochemistry and Yield 89Zr Complexes with Remarkable Stability</title><source>ACS Publications</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><creator>Pandya, Darpan N ; Henry, Kelly E ; Day, Cynthia S ; Graves, Stephen A ; Nagle, Veronica L ; Dilling, Thomas R ; Sinha, Akesh ; Ehrmann, Brandie M ; Bhatt, Nikunj B ; Menda, Yusuf ; Lewis, Jason S ; Wadas, Thaddeus J</creator><creatorcontrib>Pandya, Darpan N ; Henry, Kelly E ; Day, Cynthia S ; Graves, Stephen A ; Nagle, Veronica L ; Dilling, Thomas R ; Sinha, Akesh ; Ehrmann, Brandie M ; Bhatt, Nikunj B ; Menda, Yusuf ; Lewis, Jason S ; Wadas, Thaddeus J</creatorcontrib><description>Over the last three decades, the chemistry of zirconium has facilitated antibody development and the clinical management of disease in the precision medicine era. Scientists have harnessed its reactivity, coordination chemistry, and nuclear chemistry to develop antibody-based radiopharmaceuticals incorporating zirconium-89 (89Zr: t 1/2 = 78.4 h, β+: 22.8%, E β+max = 901 keV; EC: 77%, E γ = 909 keV) to improve disease detection, identify patients for individualized therapeutic interventions. and monitor their response to those interventions. However, release of the 89Zr4+ ion from the radiopharmaceutical remains a concern, since it may confound the interpretation of clinical imaging data, negatively affect dosimetric calculations, and hinder treatment planning. In this report, we relate our novel observations involving the use of polyazamacrocycles as zirconium-89 chelators. We describe the synthesis and complete characterization of zirconium 2,2′,2″,2‴-(1,4,7,10-tetraazacyclotridecane-1,4,7,10-tetrayl)tetraacetic acid (Zr-TRITA), zirconium 3,6,9,15-Tetraazabicyclo[9.3.1] pentadeca-1(15),11,13-triene-3,6,9-triacetic acid (Zr-PCTA), and zirconium 2,2′,2″-(1,4,7-triazacyclononane-1,4,7-triyl)triacetic acid (Zr-NOTA). In addition, we elucidate the solid-state structure of each complex using single-crystal X-ray diffraction analysis. Finally, we found that [89Zr]Zr-PCTA and [89Zr]Zr-NOTA demonstrate excellent stability in vitro and in vivo and provide a rationale for these observations. These innovative findings have the potential to guide the development of safer and more robust immuno-PET agents to improve precision medicine applications.</description><identifier>ISSN: 0020-1669</identifier><identifier>EISSN: 1520-510X</identifier><identifier>DOI: 10.1021/acs.inorgchem.0c02722</identifier><identifier>PMID: 33169605</identifier><language>eng</language><publisher>WASHINGTON: American Chemical Society</publisher><subject>Chemistry ; Chemistry, Inorganic & Nuclear ; Physical Sciences ; Science & Technology</subject><ispartof>Inorganic chemistry, 2020-12, Vol.59 (23), p.17473-17487</ispartof><rights>2020 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>16</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000599190300077</woscitedreferencesoriginalsourcerecordid><cites>FETCH-LOGICAL-a262t-8645e655c110a345fe6d0f80043df8351fb51f1d3be075387839441750bf384f3</cites><orcidid>0000-0001-7065-4534 ; 0000-0002-9913-0336 ; 0000-0001-7551-2789 ; 0000-0003-2732-3064 ; 0000-0001-9714-1122</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.inorgchem.0c02722$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.inorgchem.0c02722$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,315,781,785,886,27081,27929,27930,28253,56743,56793</link.rule.ids></links><search><creatorcontrib>Pandya, Darpan N</creatorcontrib><creatorcontrib>Henry, Kelly E</creatorcontrib><creatorcontrib>Day, Cynthia S</creatorcontrib><creatorcontrib>Graves, Stephen A</creatorcontrib><creatorcontrib>Nagle, Veronica L</creatorcontrib><creatorcontrib>Dilling, Thomas R</creatorcontrib><creatorcontrib>Sinha, Akesh</creatorcontrib><creatorcontrib>Ehrmann, Brandie M</creatorcontrib><creatorcontrib>Bhatt, Nikunj B</creatorcontrib><creatorcontrib>Menda, Yusuf</creatorcontrib><creatorcontrib>Lewis, Jason S</creatorcontrib><creatorcontrib>Wadas, Thaddeus J</creatorcontrib><title>Polyazamacrocycle Ligands Facilitate 89Zr Radiochemistry and Yield 89Zr Complexes with Remarkable Stability</title><title>Inorganic chemistry</title><addtitle>INORG CHEM</addtitle><addtitle>Inorg. Chem</addtitle><description>Over the last three decades, the chemistry of zirconium has facilitated antibody development and the clinical management of disease in the precision medicine era. Scientists have harnessed its reactivity, coordination chemistry, and nuclear chemistry to develop antibody-based radiopharmaceuticals incorporating zirconium-89 (89Zr: t 1/2 = 78.4 h, β+: 22.8%, E β+max = 901 keV; EC: 77%, E γ = 909 keV) to improve disease detection, identify patients for individualized therapeutic interventions. and monitor their response to those interventions. However, release of the 89Zr4+ ion from the radiopharmaceutical remains a concern, since it may confound the interpretation of clinical imaging data, negatively affect dosimetric calculations, and hinder treatment planning. In this report, we relate our novel observations involving the use of polyazamacrocycles as zirconium-89 chelators. We describe the synthesis and complete characterization of zirconium 2,2′,2″,2‴-(1,4,7,10-tetraazacyclotridecane-1,4,7,10-tetrayl)tetraacetic acid (Zr-TRITA), zirconium 3,6,9,15-Tetraazabicyclo[9.3.1] pentadeca-1(15),11,13-triene-3,6,9-triacetic acid (Zr-PCTA), and zirconium 2,2′,2″-(1,4,7-triazacyclononane-1,4,7-triyl)triacetic acid (Zr-NOTA). In addition, we elucidate the solid-state structure of each complex using single-crystal X-ray diffraction analysis. Finally, we found that [89Zr]Zr-PCTA and [89Zr]Zr-NOTA demonstrate excellent stability in vitro and in vivo and provide a rationale for these observations. These innovative findings have the potential to guide the development of safer and more robust immuno-PET agents to improve precision medicine applications.</description><subject>Chemistry</subject><subject>Chemistry, Inorganic & Nuclear</subject><subject>Physical Sciences</subject><subject>Science & Technology</subject><issn>0020-1669</issn><issn>1520-510X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNklGL1DAQx4Mo3rr6EYQ-CrLrpGnS9kWQ4nnCgnIqqC8hTae7uUuTNWm9q5_elF0OfPMhJMz85zfJP0PISwpbCjl9o3TcGufDXh9w2IKGvMzzR2RFeQ4bTuH7Y7ICSGcqRH1BnsV4AwA1K8RTcsEYFbUAviK3n72d1R81KB28nrXFbGf2ynUxu1TaWDOqEbOq_hmya9UZv3QzcQxzljTZD4O2O2UbPxwt3mPM7sx4yK5xUOFWtYn3ZVTtApqfkye9shFfnPc1-Xb5_mtztdl9-vCxebfbqFzk46YSBUfBuaYUFCt4j6KDvgIoWNdXjNO-TYt2rEUoOavKitVFQUsObc-qomdr8vbEPU7tgJ1GNwZl5TGYdKdZemXkvxlnDnLvf8uKJYsgT4BXZ0DwvyaMo0xv1mitcuinKPOC14wDS3auSXWS3mHr-6gNOo0PrRKN1zWtYQGXZbO4abxr_OTGVPr6_0uTmp7U6ePljZ-CSxZKCnKZBrkEH6ZBnqeB_QVe7amQ</recordid><startdate>20201207</startdate><enddate>20201207</enddate><creator>Pandya, Darpan N</creator><creator>Henry, Kelly E</creator><creator>Day, Cynthia S</creator><creator>Graves, Stephen A</creator><creator>Nagle, Veronica L</creator><creator>Dilling, Thomas R</creator><creator>Sinha, Akesh</creator><creator>Ehrmann, Brandie M</creator><creator>Bhatt, Nikunj B</creator><creator>Menda, Yusuf</creator><creator>Lewis, Jason S</creator><creator>Wadas, Thaddeus J</creator><general>American Chemical Society</general><general>Amer Chemical Soc</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7065-4534</orcidid><orcidid>https://orcid.org/0000-0002-9913-0336</orcidid><orcidid>https://orcid.org/0000-0001-7551-2789</orcidid><orcidid>https://orcid.org/0000-0003-2732-3064</orcidid><orcidid>https://orcid.org/0000-0001-9714-1122</orcidid></search><sort><creationdate>20201207</creationdate><title>Polyazamacrocycle Ligands Facilitate 89Zr Radiochemistry and Yield 89Zr Complexes with Remarkable Stability</title><author>Pandya, Darpan N ; Henry, Kelly E ; Day, Cynthia S ; Graves, Stephen A ; Nagle, Veronica L ; Dilling, Thomas R ; Sinha, Akesh ; Ehrmann, Brandie M ; Bhatt, Nikunj B ; Menda, Yusuf ; Lewis, Jason S ; Wadas, Thaddeus J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a262t-8645e655c110a345fe6d0f80043df8351fb51f1d3be075387839441750bf384f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chemistry</topic><topic>Chemistry, Inorganic & Nuclear</topic><topic>Physical Sciences</topic><topic>Science & Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pandya, Darpan N</creatorcontrib><creatorcontrib>Henry, Kelly E</creatorcontrib><creatorcontrib>Day, Cynthia S</creatorcontrib><creatorcontrib>Graves, Stephen A</creatorcontrib><creatorcontrib>Nagle, Veronica L</creatorcontrib><creatorcontrib>Dilling, Thomas R</creatorcontrib><creatorcontrib>Sinha, Akesh</creatorcontrib><creatorcontrib>Ehrmann, Brandie M</creatorcontrib><creatorcontrib>Bhatt, Nikunj B</creatorcontrib><creatorcontrib>Menda, Yusuf</creatorcontrib><creatorcontrib>Lewis, Jason S</creatorcontrib><creatorcontrib>Wadas, Thaddeus J</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Inorganic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pandya, Darpan N</au><au>Henry, Kelly E</au><au>Day, Cynthia S</au><au>Graves, Stephen A</au><au>Nagle, Veronica L</au><au>Dilling, Thomas R</au><au>Sinha, Akesh</au><au>Ehrmann, Brandie M</au><au>Bhatt, Nikunj B</au><au>Menda, Yusuf</au><au>Lewis, Jason S</au><au>Wadas, Thaddeus J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polyazamacrocycle Ligands Facilitate 89Zr Radiochemistry and Yield 89Zr Complexes with Remarkable Stability</atitle><jtitle>Inorganic chemistry</jtitle><stitle>INORG CHEM</stitle><addtitle>Inorg. Chem</addtitle><date>2020-12-07</date><risdate>2020</risdate><volume>59</volume><issue>23</issue><spage>17473</spage><epage>17487</epage><pages>17473-17487</pages><issn>0020-1669</issn><eissn>1520-510X</eissn><abstract>Over the last three decades, the chemistry of zirconium has facilitated antibody development and the clinical management of disease in the precision medicine era. Scientists have harnessed its reactivity, coordination chemistry, and nuclear chemistry to develop antibody-based radiopharmaceuticals incorporating zirconium-89 (89Zr: t 1/2 = 78.4 h, β+: 22.8%, E β+max = 901 keV; EC: 77%, E γ = 909 keV) to improve disease detection, identify patients for individualized therapeutic interventions. and monitor their response to those interventions. However, release of the 89Zr4+ ion from the radiopharmaceutical remains a concern, since it may confound the interpretation of clinical imaging data, negatively affect dosimetric calculations, and hinder treatment planning. In this report, we relate our novel observations involving the use of polyazamacrocycles as zirconium-89 chelators. We describe the synthesis and complete characterization of zirconium 2,2′,2″,2‴-(1,4,7,10-tetraazacyclotridecane-1,4,7,10-tetrayl)tetraacetic acid (Zr-TRITA), zirconium 3,6,9,15-Tetraazabicyclo[9.3.1] pentadeca-1(15),11,13-triene-3,6,9-triacetic acid (Zr-PCTA), and zirconium 2,2′,2″-(1,4,7-triazacyclononane-1,4,7-triyl)triacetic acid (Zr-NOTA). In addition, we elucidate the solid-state structure of each complex using single-crystal X-ray diffraction analysis. Finally, we found that [89Zr]Zr-PCTA and [89Zr]Zr-NOTA demonstrate excellent stability in vitro and in vivo and provide a rationale for these observations. These innovative findings have the potential to guide the development of safer and more robust immuno-PET agents to improve precision medicine applications.</abstract><cop>WASHINGTON</cop><pub>American Chemical Society</pub><pmid>33169605</pmid><doi>10.1021/acs.inorgchem.0c02722</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-7065-4534</orcidid><orcidid>https://orcid.org/0000-0002-9913-0336</orcidid><orcidid>https://orcid.org/0000-0001-7551-2789</orcidid><orcidid>https://orcid.org/0000-0003-2732-3064</orcidid><orcidid>https://orcid.org/0000-0001-9714-1122</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-1669 |
ispartof | Inorganic chemistry, 2020-12, Vol.59 (23), p.17473-17487 |
issn | 0020-1669 1520-510X |
language | eng |
recordid | cdi_proquest_miscellaneous_2459350309 |
source | ACS Publications; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /> |
subjects | Chemistry Chemistry, Inorganic & Nuclear Physical Sciences Science & Technology |
title | Polyazamacrocycle Ligands Facilitate 89Zr Radiochemistry and Yield 89Zr Complexes with Remarkable Stability |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T18%3A13%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polyazamacrocycle%20Ligands%20Facilitate%2089Zr%20Radiochemistry%20and%20Yield%2089Zr%20Complexes%20with%20Remarkable%20Stability&rft.jtitle=Inorganic%20chemistry&rft.au=Pandya,%20Darpan%20N&rft.date=2020-12-07&rft.volume=59&rft.issue=23&rft.spage=17473&rft.epage=17487&rft.pages=17473-17487&rft.issn=0020-1669&rft.eissn=1520-510X&rft_id=info:doi/10.1021/acs.inorgchem.0c02722&rft_dat=%3Cproquest_pubme%3E2459350309%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2459350309&rft_id=info:pmid/33169605&rfr_iscdi=true |