Droplet Evaporation Dynamics of Low Surface Tension Fluids Using the Steady Method
Droplet evaporation governs many heat- and mass-transfer processes germane in nature and industry. In the past 3 centuries, transient techniques have been developed to characterize the evaporation of sessile droplets. These methods have difficulty in reconciling transient effects induced by the drop...
Gespeichert in:
Veröffentlicht in: | Langmuir 2020-11, Vol.36 (46), p.13860-13871 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13871 |
---|---|
container_issue | 46 |
container_start_page | 13860 |
container_title | Langmuir |
container_volume | 36 |
creator | Günay, A. Alperen Gnadt, Marisa Sett, Soumyadip Vahabi, Hamed Kota, Arun K Miljkovic, Nenad |
description | Droplet evaporation governs many heat- and mass-transfer processes germane in nature and industry. In the past 3 centuries, transient techniques have been developed to characterize the evaporation of sessile droplets. These methods have difficulty in reconciling transient effects induced by the droplet shape and size changes during evaporation. Furthermore, investigation of evaporation of microdroplets residing on wetting substrates, or fluids having low surface tensions ( |
doi_str_mv | 10.1021/acs.langmuir.0c02272 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2459350003</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2459350003</sourcerecordid><originalsourceid>FETCH-LOGICAL-a325t-e0cdeab7e3c15800aa22c4d306757b6ed9e76f47606bca61fb7efd91fe1697073</originalsourceid><addsrcrecordid>eNp9kD1PwzAURS0EEqXwDxg8sqQ824ndjKgtH1IREm1ny3We21RJXOwE1H9PqpaV6Q33nifdQ8g9gxEDzh6NjaPKNJu6K8MILHCu-AUZsIxDko25uiQDUKlIVCrFNbmJcQcAuUjzAfmcBr-vsKWzb7P3wbSlb-j00Ji6tJF6R-f-hy664IxFusQmHvPnqiuLSFexbDa03SJdtGiKA33HduuLW3LlTBXx7nyHZPU8W05ek_nHy9vkaZ4YwbM2QbAFmrVCYVk2BjCGc5sWAqTK1FpikaOSLlUS5NoayVxfdUXOHDKZK1BiSB5Of_fBf3UYW12X0WLVm0DfRc3TLBdZv1T01fRUtcHHGNDpfShrEw6agT4q1L1C_adQnxX2GJywY7rzXWj6Pf8jv69weTQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2459350003</pqid></control><display><type>article</type><title>Droplet Evaporation Dynamics of Low Surface Tension Fluids Using the Steady Method</title><source>American Chemical Society Journals</source><creator>Günay, A. Alperen ; Gnadt, Marisa ; Sett, Soumyadip ; Vahabi, Hamed ; Kota, Arun K ; Miljkovic, Nenad</creator><creatorcontrib>Günay, A. Alperen ; Gnadt, Marisa ; Sett, Soumyadip ; Vahabi, Hamed ; Kota, Arun K ; Miljkovic, Nenad</creatorcontrib><description><![CDATA[Droplet evaporation governs many heat- and mass-transfer processes germane in nature and industry. In the past 3 centuries, transient techniques have been developed to characterize the evaporation of sessile droplets. These methods have difficulty in reconciling transient effects induced by the droplet shape and size changes during evaporation. Furthermore, investigation of evaporation of microdroplets residing on wetting substrates, or fluids having low surface tensions (<30 mN/m), is difficult to perform using established approaches. Here, we use the steady method to study the microdroplet evaporation dynamics of low surface tension liquids. We start by employing the steady method to benchmark with water droplets having base radii (20 ≤ R b ≤ 260 μm), apparent advancing contact angle (45° ≤ θa,app ≤ 162°), surface temperature (30 < T s < 60 °C), and relative humidity (40% < ϕ < 60%). Following validation, evaporation of ethanol (≈22 mN/m), hexane (≈18 mN/m), and dodecane (≈25 mN/m) were studied for 90 ≤ R b ≤ 400 μm and 10 < T s < 25 °C. We elucidate the mechanisms governing the observed behavior using heat and mass transport scaling analysis during evaporation, demonstrating our steady technique to be particularly advantageous for microdroplets, where Marangoni and buoyant forces are negligible. Our work not only elucidates the droplet evaporation mechanisms of low surface tension liquids but also demonstrates the steady method as a means to study phase change processes.]]></description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/acs.langmuir.0c02272</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Langmuir, 2020-11, Vol.36 (46), p.13860-13871</ispartof><rights>2020 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a325t-e0cdeab7e3c15800aa22c4d306757b6ed9e76f47606bca61fb7efd91fe1697073</citedby><cites>FETCH-LOGICAL-a325t-e0cdeab7e3c15800aa22c4d306757b6ed9e76f47606bca61fb7efd91fe1697073</cites><orcidid>0000-0002-0866-3680 ; 0000-0002-2013-9101 ; 0000-0001-9061-7896</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.langmuir.0c02272$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.langmuir.0c02272$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Günay, A. Alperen</creatorcontrib><creatorcontrib>Gnadt, Marisa</creatorcontrib><creatorcontrib>Sett, Soumyadip</creatorcontrib><creatorcontrib>Vahabi, Hamed</creatorcontrib><creatorcontrib>Kota, Arun K</creatorcontrib><creatorcontrib>Miljkovic, Nenad</creatorcontrib><title>Droplet Evaporation Dynamics of Low Surface Tension Fluids Using the Steady Method</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description><![CDATA[Droplet evaporation governs many heat- and mass-transfer processes germane in nature and industry. In the past 3 centuries, transient techniques have been developed to characterize the evaporation of sessile droplets. These methods have difficulty in reconciling transient effects induced by the droplet shape and size changes during evaporation. Furthermore, investigation of evaporation of microdroplets residing on wetting substrates, or fluids having low surface tensions (<30 mN/m), is difficult to perform using established approaches. Here, we use the steady method to study the microdroplet evaporation dynamics of low surface tension liquids. We start by employing the steady method to benchmark with water droplets having base radii (20 ≤ R b ≤ 260 μm), apparent advancing contact angle (45° ≤ θa,app ≤ 162°), surface temperature (30 < T s < 60 °C), and relative humidity (40% < ϕ < 60%). Following validation, evaporation of ethanol (≈22 mN/m), hexane (≈18 mN/m), and dodecane (≈25 mN/m) were studied for 90 ≤ R b ≤ 400 μm and 10 < T s < 25 °C. We elucidate the mechanisms governing the observed behavior using heat and mass transport scaling analysis during evaporation, demonstrating our steady technique to be particularly advantageous for microdroplets, where Marangoni and buoyant forces are negligible. Our work not only elucidates the droplet evaporation mechanisms of low surface tension liquids but also demonstrates the steady method as a means to study phase change processes.]]></description><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAURS0EEqXwDxg8sqQ824ndjKgtH1IREm1ny3We21RJXOwE1H9PqpaV6Q33nifdQ8g9gxEDzh6NjaPKNJu6K8MILHCu-AUZsIxDko25uiQDUKlIVCrFNbmJcQcAuUjzAfmcBr-vsKWzb7P3wbSlb-j00Ji6tJF6R-f-hy664IxFusQmHvPnqiuLSFexbDa03SJdtGiKA33HduuLW3LlTBXx7nyHZPU8W05ek_nHy9vkaZ4YwbM2QbAFmrVCYVk2BjCGc5sWAqTK1FpikaOSLlUS5NoayVxfdUXOHDKZK1BiSB5Of_fBf3UYW12X0WLVm0DfRc3TLBdZv1T01fRUtcHHGNDpfShrEw6agT4q1L1C_adQnxX2GJywY7rzXWj6Pf8jv69weTQ</recordid><startdate>20201124</startdate><enddate>20201124</enddate><creator>Günay, A. Alperen</creator><creator>Gnadt, Marisa</creator><creator>Sett, Soumyadip</creator><creator>Vahabi, Hamed</creator><creator>Kota, Arun K</creator><creator>Miljkovic, Nenad</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0866-3680</orcidid><orcidid>https://orcid.org/0000-0002-2013-9101</orcidid><orcidid>https://orcid.org/0000-0001-9061-7896</orcidid></search><sort><creationdate>20201124</creationdate><title>Droplet Evaporation Dynamics of Low Surface Tension Fluids Using the Steady Method</title><author>Günay, A. Alperen ; Gnadt, Marisa ; Sett, Soumyadip ; Vahabi, Hamed ; Kota, Arun K ; Miljkovic, Nenad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a325t-e0cdeab7e3c15800aa22c4d306757b6ed9e76f47606bca61fb7efd91fe1697073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Günay, A. Alperen</creatorcontrib><creatorcontrib>Gnadt, Marisa</creatorcontrib><creatorcontrib>Sett, Soumyadip</creatorcontrib><creatorcontrib>Vahabi, Hamed</creatorcontrib><creatorcontrib>Kota, Arun K</creatorcontrib><creatorcontrib>Miljkovic, Nenad</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Günay, A. Alperen</au><au>Gnadt, Marisa</au><au>Sett, Soumyadip</au><au>Vahabi, Hamed</au><au>Kota, Arun K</au><au>Miljkovic, Nenad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Droplet Evaporation Dynamics of Low Surface Tension Fluids Using the Steady Method</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2020-11-24</date><risdate>2020</risdate><volume>36</volume><issue>46</issue><spage>13860</spage><epage>13871</epage><pages>13860-13871</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><abstract><![CDATA[Droplet evaporation governs many heat- and mass-transfer processes germane in nature and industry. In the past 3 centuries, transient techniques have been developed to characterize the evaporation of sessile droplets. These methods have difficulty in reconciling transient effects induced by the droplet shape and size changes during evaporation. Furthermore, investigation of evaporation of microdroplets residing on wetting substrates, or fluids having low surface tensions (<30 mN/m), is difficult to perform using established approaches. Here, we use the steady method to study the microdroplet evaporation dynamics of low surface tension liquids. We start by employing the steady method to benchmark with water droplets having base radii (20 ≤ R b ≤ 260 μm), apparent advancing contact angle (45° ≤ θa,app ≤ 162°), surface temperature (30 < T s < 60 °C), and relative humidity (40% < ϕ < 60%). Following validation, evaporation of ethanol (≈22 mN/m), hexane (≈18 mN/m), and dodecane (≈25 mN/m) were studied for 90 ≤ R b ≤ 400 μm and 10 < T s < 25 °C. We elucidate the mechanisms governing the observed behavior using heat and mass transport scaling analysis during evaporation, demonstrating our steady technique to be particularly advantageous for microdroplets, where Marangoni and buoyant forces are negligible. Our work not only elucidates the droplet evaporation mechanisms of low surface tension liquids but also demonstrates the steady method as a means to study phase change processes.]]></abstract><pub>American Chemical Society</pub><doi>10.1021/acs.langmuir.0c02272</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0866-3680</orcidid><orcidid>https://orcid.org/0000-0002-2013-9101</orcidid><orcidid>https://orcid.org/0000-0001-9061-7896</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0743-7463 |
ispartof | Langmuir, 2020-11, Vol.36 (46), p.13860-13871 |
issn | 0743-7463 1520-5827 |
language | eng |
recordid | cdi_proquest_miscellaneous_2459350003 |
source | American Chemical Society Journals |
title | Droplet Evaporation Dynamics of Low Surface Tension Fluids Using the Steady Method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T04%3A54%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Droplet%20Evaporation%20Dynamics%20of%20Low%20Surface%20Tension%20Fluids%20Using%20the%20Steady%20Method&rft.jtitle=Langmuir&rft.au=Gu%CC%88nay,%20A.%20Alperen&rft.date=2020-11-24&rft.volume=36&rft.issue=46&rft.spage=13860&rft.epage=13871&rft.pages=13860-13871&rft.issn=0743-7463&rft.eissn=1520-5827&rft_id=info:doi/10.1021/acs.langmuir.0c02272&rft_dat=%3Cproquest_cross%3E2459350003%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2459350003&rft_id=info:pmid/&rfr_iscdi=true |