Droplet Evaporation Dynamics of Low Surface Tension Fluids Using the Steady Method

Droplet evaporation governs many heat- and mass-transfer processes germane in nature and industry. In the past 3 centuries, transient techniques have been developed to characterize the evaporation of sessile droplets. These methods have difficulty in reconciling transient effects induced by the drop...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2020-11, Vol.36 (46), p.13860-13871
Hauptverfasser: Günay, A. Alperen, Gnadt, Marisa, Sett, Soumyadip, Vahabi, Hamed, Kota, Arun K, Miljkovic, Nenad
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13871
container_issue 46
container_start_page 13860
container_title Langmuir
container_volume 36
creator Günay, A. Alperen
Gnadt, Marisa
Sett, Soumyadip
Vahabi, Hamed
Kota, Arun K
Miljkovic, Nenad
description Droplet evaporation governs many heat- and mass-transfer processes germane in nature and industry. In the past 3 centuries, transient techniques have been developed to characterize the evaporation of sessile droplets. These methods have difficulty in reconciling transient effects induced by the droplet shape and size changes during evaporation. Furthermore, investigation of evaporation of microdroplets residing on wetting substrates, or fluids having low surface tensions (
doi_str_mv 10.1021/acs.langmuir.0c02272
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2459350003</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2459350003</sourcerecordid><originalsourceid>FETCH-LOGICAL-a325t-e0cdeab7e3c15800aa22c4d306757b6ed9e76f47606bca61fb7efd91fe1697073</originalsourceid><addsrcrecordid>eNp9kD1PwzAURS0EEqXwDxg8sqQ824ndjKgtH1IREm1ny3We21RJXOwE1H9PqpaV6Q33nifdQ8g9gxEDzh6NjaPKNJu6K8MILHCu-AUZsIxDko25uiQDUKlIVCrFNbmJcQcAuUjzAfmcBr-vsKWzb7P3wbSlb-j00Ji6tJF6R-f-hy664IxFusQmHvPnqiuLSFexbDa03SJdtGiKA33HduuLW3LlTBXx7nyHZPU8W05ek_nHy9vkaZ4YwbM2QbAFmrVCYVk2BjCGc5sWAqTK1FpikaOSLlUS5NoayVxfdUXOHDKZK1BiSB5Of_fBf3UYW12X0WLVm0DfRc3TLBdZv1T01fRUtcHHGNDpfShrEw6agT4q1L1C_adQnxX2GJywY7rzXWj6Pf8jv69weTQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2459350003</pqid></control><display><type>article</type><title>Droplet Evaporation Dynamics of Low Surface Tension Fluids Using the Steady Method</title><source>American Chemical Society Journals</source><creator>Günay, A. Alperen ; Gnadt, Marisa ; Sett, Soumyadip ; Vahabi, Hamed ; Kota, Arun K ; Miljkovic, Nenad</creator><creatorcontrib>Günay, A. Alperen ; Gnadt, Marisa ; Sett, Soumyadip ; Vahabi, Hamed ; Kota, Arun K ; Miljkovic, Nenad</creatorcontrib><description><![CDATA[Droplet evaporation governs many heat- and mass-transfer processes germane in nature and industry. In the past 3 centuries, transient techniques have been developed to characterize the evaporation of sessile droplets. These methods have difficulty in reconciling transient effects induced by the droplet shape and size changes during evaporation. Furthermore, investigation of evaporation of microdroplets residing on wetting substrates, or fluids having low surface tensions (<30 mN/m), is difficult to perform using established approaches. Here, we use the steady method to study the microdroplet evaporation dynamics of low surface tension liquids. We start by employing the steady method to benchmark with water droplets having base radii (20 ≤ R b ≤ 260 μm), apparent advancing contact angle (45° ≤ θa,app ≤ 162°), surface temperature (30 < T s < 60 °C), and relative humidity (40% < ϕ < 60%). Following validation, evaporation of ethanol (≈22 mN/m), hexane (≈18 mN/m), and dodecane (≈25 mN/m) were studied for 90 ≤ R b ≤ 400 μm and 10 < T s < 25 °C. We elucidate the mechanisms governing the observed behavior using heat and mass transport scaling analysis during evaporation, demonstrating our steady technique to be particularly advantageous for microdroplets, where Marangoni and buoyant forces are negligible. Our work not only elucidates the droplet evaporation mechanisms of low surface tension liquids but also demonstrates the steady method as a means to study phase change processes.]]></description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/acs.langmuir.0c02272</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Langmuir, 2020-11, Vol.36 (46), p.13860-13871</ispartof><rights>2020 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a325t-e0cdeab7e3c15800aa22c4d306757b6ed9e76f47606bca61fb7efd91fe1697073</citedby><cites>FETCH-LOGICAL-a325t-e0cdeab7e3c15800aa22c4d306757b6ed9e76f47606bca61fb7efd91fe1697073</cites><orcidid>0000-0002-0866-3680 ; 0000-0002-2013-9101 ; 0000-0001-9061-7896</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.langmuir.0c02272$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.langmuir.0c02272$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Günay, A. Alperen</creatorcontrib><creatorcontrib>Gnadt, Marisa</creatorcontrib><creatorcontrib>Sett, Soumyadip</creatorcontrib><creatorcontrib>Vahabi, Hamed</creatorcontrib><creatorcontrib>Kota, Arun K</creatorcontrib><creatorcontrib>Miljkovic, Nenad</creatorcontrib><title>Droplet Evaporation Dynamics of Low Surface Tension Fluids Using the Steady Method</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description><![CDATA[Droplet evaporation governs many heat- and mass-transfer processes germane in nature and industry. In the past 3 centuries, transient techniques have been developed to characterize the evaporation of sessile droplets. These methods have difficulty in reconciling transient effects induced by the droplet shape and size changes during evaporation. Furthermore, investigation of evaporation of microdroplets residing on wetting substrates, or fluids having low surface tensions (<30 mN/m), is difficult to perform using established approaches. Here, we use the steady method to study the microdroplet evaporation dynamics of low surface tension liquids. We start by employing the steady method to benchmark with water droplets having base radii (20 ≤ R b ≤ 260 μm), apparent advancing contact angle (45° ≤ θa,app ≤ 162°), surface temperature (30 < T s < 60 °C), and relative humidity (40% < ϕ < 60%). Following validation, evaporation of ethanol (≈22 mN/m), hexane (≈18 mN/m), and dodecane (≈25 mN/m) were studied for 90 ≤ R b ≤ 400 μm and 10 < T s < 25 °C. We elucidate the mechanisms governing the observed behavior using heat and mass transport scaling analysis during evaporation, demonstrating our steady technique to be particularly advantageous for microdroplets, where Marangoni and buoyant forces are negligible. Our work not only elucidates the droplet evaporation mechanisms of low surface tension liquids but also demonstrates the steady method as a means to study phase change processes.]]></description><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAURS0EEqXwDxg8sqQ824ndjKgtH1IREm1ny3We21RJXOwE1H9PqpaV6Q33nifdQ8g9gxEDzh6NjaPKNJu6K8MILHCu-AUZsIxDko25uiQDUKlIVCrFNbmJcQcAuUjzAfmcBr-vsKWzb7P3wbSlb-j00Ji6tJF6R-f-hy664IxFusQmHvPnqiuLSFexbDa03SJdtGiKA33HduuLW3LlTBXx7nyHZPU8W05ek_nHy9vkaZ4YwbM2QbAFmrVCYVk2BjCGc5sWAqTK1FpikaOSLlUS5NoayVxfdUXOHDKZK1BiSB5Of_fBf3UYW12X0WLVm0DfRc3TLBdZv1T01fRUtcHHGNDpfShrEw6agT4q1L1C_adQnxX2GJywY7rzXWj6Pf8jv69weTQ</recordid><startdate>20201124</startdate><enddate>20201124</enddate><creator>Günay, A. Alperen</creator><creator>Gnadt, Marisa</creator><creator>Sett, Soumyadip</creator><creator>Vahabi, Hamed</creator><creator>Kota, Arun K</creator><creator>Miljkovic, Nenad</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0866-3680</orcidid><orcidid>https://orcid.org/0000-0002-2013-9101</orcidid><orcidid>https://orcid.org/0000-0001-9061-7896</orcidid></search><sort><creationdate>20201124</creationdate><title>Droplet Evaporation Dynamics of Low Surface Tension Fluids Using the Steady Method</title><author>Günay, A. Alperen ; Gnadt, Marisa ; Sett, Soumyadip ; Vahabi, Hamed ; Kota, Arun K ; Miljkovic, Nenad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a325t-e0cdeab7e3c15800aa22c4d306757b6ed9e76f47606bca61fb7efd91fe1697073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Günay, A. Alperen</creatorcontrib><creatorcontrib>Gnadt, Marisa</creatorcontrib><creatorcontrib>Sett, Soumyadip</creatorcontrib><creatorcontrib>Vahabi, Hamed</creatorcontrib><creatorcontrib>Kota, Arun K</creatorcontrib><creatorcontrib>Miljkovic, Nenad</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Günay, A. Alperen</au><au>Gnadt, Marisa</au><au>Sett, Soumyadip</au><au>Vahabi, Hamed</au><au>Kota, Arun K</au><au>Miljkovic, Nenad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Droplet Evaporation Dynamics of Low Surface Tension Fluids Using the Steady Method</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2020-11-24</date><risdate>2020</risdate><volume>36</volume><issue>46</issue><spage>13860</spage><epage>13871</epage><pages>13860-13871</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><abstract><![CDATA[Droplet evaporation governs many heat- and mass-transfer processes germane in nature and industry. In the past 3 centuries, transient techniques have been developed to characterize the evaporation of sessile droplets. These methods have difficulty in reconciling transient effects induced by the droplet shape and size changes during evaporation. Furthermore, investigation of evaporation of microdroplets residing on wetting substrates, or fluids having low surface tensions (<30 mN/m), is difficult to perform using established approaches. Here, we use the steady method to study the microdroplet evaporation dynamics of low surface tension liquids. We start by employing the steady method to benchmark with water droplets having base radii (20 ≤ R b ≤ 260 μm), apparent advancing contact angle (45° ≤ θa,app ≤ 162°), surface temperature (30 < T s < 60 °C), and relative humidity (40% < ϕ < 60%). Following validation, evaporation of ethanol (≈22 mN/m), hexane (≈18 mN/m), and dodecane (≈25 mN/m) were studied for 90 ≤ R b ≤ 400 μm and 10 < T s < 25 °C. We elucidate the mechanisms governing the observed behavior using heat and mass transport scaling analysis during evaporation, demonstrating our steady technique to be particularly advantageous for microdroplets, where Marangoni and buoyant forces are negligible. Our work not only elucidates the droplet evaporation mechanisms of low surface tension liquids but also demonstrates the steady method as a means to study phase change processes.]]></abstract><pub>American Chemical Society</pub><doi>10.1021/acs.langmuir.0c02272</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0866-3680</orcidid><orcidid>https://orcid.org/0000-0002-2013-9101</orcidid><orcidid>https://orcid.org/0000-0001-9061-7896</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0743-7463
ispartof Langmuir, 2020-11, Vol.36 (46), p.13860-13871
issn 0743-7463
1520-5827
language eng
recordid cdi_proquest_miscellaneous_2459350003
source American Chemical Society Journals
title Droplet Evaporation Dynamics of Low Surface Tension Fluids Using the Steady Method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T04%3A54%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Droplet%20Evaporation%20Dynamics%20of%20Low%20Surface%20Tension%20Fluids%20Using%20the%20Steady%20Method&rft.jtitle=Langmuir&rft.au=Gu%CC%88nay,%20A.%20Alperen&rft.date=2020-11-24&rft.volume=36&rft.issue=46&rft.spage=13860&rft.epage=13871&rft.pages=13860-13871&rft.issn=0743-7463&rft.eissn=1520-5827&rft_id=info:doi/10.1021/acs.langmuir.0c02272&rft_dat=%3Cproquest_cross%3E2459350003%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2459350003&rft_id=info:pmid/&rfr_iscdi=true