Finite periodic structure approach to large scanning array problems

There are two conventional techniques dealing with mutual coupling problems for antenna arrays. The "element-by-element" method is useful for small to moderate size arrays. The "infinite periodic structure" method deals with one cell of infinite periodic structures, including all...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:I.R.E. transactions on antennas and propagation 1985-11, Vol.33 (11), p.1213-1220
Hauptverfasser: Ishimaru, A., Coe, R., Miller, G., Geren, W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1220
container_issue 11
container_start_page 1213
container_title I.R.E. transactions on antennas and propagation
container_volume 33
creator Ishimaru, A.
Coe, R.
Miller, G.
Geren, W.
description There are two conventional techniques dealing with mutual coupling problems for antenna arrays. The "element-by-element" method is useful for small to moderate size arrays. The "infinite periodic structure" method deals with one cell of infinite periodic structures, including all the mutual coupling effects. It cannot, however, include edge effects, current tapers, and nonuniform spacings. A new technique called the "finite periodic structure" method, is presented and applied to represent the active impedance of an array, it involves two operations. The first is to convert the discrete array problem into a series of continuous aperture problems by the use of Poisson's sum formula. The second is to use spatial Fourier transforms to represent the impedance in a form similar to the infinite periodic structure approach. The active impedance is then given by a convolution integral involving the infinite periodic structure solution and the Fourier transform of the equivalent aperture distribution of the current over the entire area of the array. The formulation is particularly useful for large finite arrays, and edge effects, current tapers, and nonuniform spacings can also be included in the general formulation. Although the general formulation is valid for both the free and forced modes of excitation, the forced excitation problem is discussed to illustrate the method.
doi_str_mv 10.1109/TAP.1985.1143507
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_24590749</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1143507</ieee_id><sourcerecordid>24590749</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-5060e93d20689d9527a83492271ca9c0c648d6ec993d59f27c3d98eb591f2353</originalsourceid><addsrcrecordid>eNpFkD1PwzAQhi0EEqWwI7F4QGwp_kzssapoQaoEQwc2y3UuxShNgp0M_fe4SgTT6XTPPad7EbqnZEEp0c-75ceCaiVTJ7gkxQWaUSlVxhijl2hGCFWZZvnnNbqJ8Tu1QgkxQ6u1b3wPuIPg29I7HPswuH4IgG3Xhda6L9y3uLbhADg62zS-OWAbgj3hNN7XcIy36KqydYS7qc7Rbv2yW71m2_fN22q5zRxnvM8kyQloXjKSK11qyQqruNCMFdRZ7YjLhSpzcDoxUlescLzUCvZS04pxyefoadSmuz8DxN4cfXRQ17aBdoiGCalJIXQCyQi60MYYoDJd8EcbToYScw7LpLDMOSwzhZVWHie3TU_WVbCN8_FvT-VMJnHCHkbMA8C_dZL8AtV3cbQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>24590749</pqid></control><display><type>article</type><title>Finite periodic structure approach to large scanning array problems</title><source>IEEE Electronic Library (IEL)</source><creator>Ishimaru, A. ; Coe, R. ; Miller, G. ; Geren, W.</creator><creatorcontrib>Ishimaru, A. ; Coe, R. ; Miller, G. ; Geren, W.</creatorcontrib><description>There are two conventional techniques dealing with mutual coupling problems for antenna arrays. The "element-by-element" method is useful for small to moderate size arrays. The "infinite periodic structure" method deals with one cell of infinite periodic structures, including all the mutual coupling effects. It cannot, however, include edge effects, current tapers, and nonuniform spacings. A new technique called the "finite periodic structure" method, is presented and applied to represent the active impedance of an array, it involves two operations. The first is to convert the discrete array problem into a series of continuous aperture problems by the use of Poisson's sum formula. The second is to use spatial Fourier transforms to represent the impedance in a form similar to the infinite periodic structure approach. The active impedance is then given by a convolution integral involving the infinite periodic structure solution and the Fourier transform of the equivalent aperture distribution of the current over the entire area of the array. The formulation is particularly useful for large finite arrays, and edge effects, current tapers, and nonuniform spacings can also be included in the general formulation. Although the general formulation is valid for both the free and forced modes of excitation, the forced excitation problem is discussed to illustrate the method.</description><identifier>ISSN: 0018-926X</identifier><identifier>ISSN: 0096-1973</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/TAP.1985.1143507</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Admittance ; Aerospace engineering ; Antenna arrays ; Antennas ; Apertures ; Applied sciences ; Convolution ; Equations ; Exact sciences and technology ; Fourier transforms ; Impedance ; Mutual coupling ; Periodic structures ; Radiocommunications ; Telecommunications ; Telecommunications and information theory</subject><ispartof>I.R.E. transactions on antennas and propagation, 1985-11, Vol.33 (11), p.1213-1220</ispartof><rights>1986 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c323t-5060e93d20689d9527a83492271ca9c0c648d6ec993d59f27c3d98eb591f2353</citedby><cites>FETCH-LOGICAL-c323t-5060e93d20689d9527a83492271ca9c0c648d6ec993d59f27c3d98eb591f2353</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1143507$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1143507$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=8625493$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ishimaru, A.</creatorcontrib><creatorcontrib>Coe, R.</creatorcontrib><creatorcontrib>Miller, G.</creatorcontrib><creatorcontrib>Geren, W.</creatorcontrib><title>Finite periodic structure approach to large scanning array problems</title><title>I.R.E. transactions on antennas and propagation</title><addtitle>TAP</addtitle><description>There are two conventional techniques dealing with mutual coupling problems for antenna arrays. The "element-by-element" method is useful for small to moderate size arrays. The "infinite periodic structure" method deals with one cell of infinite periodic structures, including all the mutual coupling effects. It cannot, however, include edge effects, current tapers, and nonuniform spacings. A new technique called the "finite periodic structure" method, is presented and applied to represent the active impedance of an array, it involves two operations. The first is to convert the discrete array problem into a series of continuous aperture problems by the use of Poisson's sum formula. The second is to use spatial Fourier transforms to represent the impedance in a form similar to the infinite periodic structure approach. The active impedance is then given by a convolution integral involving the infinite periodic structure solution and the Fourier transform of the equivalent aperture distribution of the current over the entire area of the array. The formulation is particularly useful for large finite arrays, and edge effects, current tapers, and nonuniform spacings can also be included in the general formulation. Although the general formulation is valid for both the free and forced modes of excitation, the forced excitation problem is discussed to illustrate the method.</description><subject>Admittance</subject><subject>Aerospace engineering</subject><subject>Antenna arrays</subject><subject>Antennas</subject><subject>Apertures</subject><subject>Applied sciences</subject><subject>Convolution</subject><subject>Equations</subject><subject>Exact sciences and technology</subject><subject>Fourier transforms</subject><subject>Impedance</subject><subject>Mutual coupling</subject><subject>Periodic structures</subject><subject>Radiocommunications</subject><subject>Telecommunications</subject><subject>Telecommunications and information theory</subject><issn>0018-926X</issn><issn>0096-1973</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1985</creationdate><recordtype>article</recordtype><recordid>eNpFkD1PwzAQhi0EEqWwI7F4QGwp_kzssapoQaoEQwc2y3UuxShNgp0M_fe4SgTT6XTPPad7EbqnZEEp0c-75ceCaiVTJ7gkxQWaUSlVxhijl2hGCFWZZvnnNbqJ8Tu1QgkxQ6u1b3wPuIPg29I7HPswuH4IgG3Xhda6L9y3uLbhADg62zS-OWAbgj3hNN7XcIy36KqydYS7qc7Rbv2yW71m2_fN22q5zRxnvM8kyQloXjKSK11qyQqruNCMFdRZ7YjLhSpzcDoxUlescLzUCvZS04pxyefoadSmuz8DxN4cfXRQ17aBdoiGCalJIXQCyQi60MYYoDJd8EcbToYScw7LpLDMOSwzhZVWHie3TU_WVbCN8_FvT-VMJnHCHkbMA8C_dZL8AtV3cbQ</recordid><startdate>19851101</startdate><enddate>19851101</enddate><creator>Ishimaru, A.</creator><creator>Coe, R.</creator><creator>Miller, G.</creator><creator>Geren, W.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>19851101</creationdate><title>Finite periodic structure approach to large scanning array problems</title><author>Ishimaru, A. ; Coe, R. ; Miller, G. ; Geren, W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-5060e93d20689d9527a83492271ca9c0c648d6ec993d59f27c3d98eb591f2353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1985</creationdate><topic>Admittance</topic><topic>Aerospace engineering</topic><topic>Antenna arrays</topic><topic>Antennas</topic><topic>Apertures</topic><topic>Applied sciences</topic><topic>Convolution</topic><topic>Equations</topic><topic>Exact sciences and technology</topic><topic>Fourier transforms</topic><topic>Impedance</topic><topic>Mutual coupling</topic><topic>Periodic structures</topic><topic>Radiocommunications</topic><topic>Telecommunications</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ishimaru, A.</creatorcontrib><creatorcontrib>Coe, R.</creatorcontrib><creatorcontrib>Miller, G.</creatorcontrib><creatorcontrib>Geren, W.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>I.R.E. transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ishimaru, A.</au><au>Coe, R.</au><au>Miller, G.</au><au>Geren, W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finite periodic structure approach to large scanning array problems</atitle><jtitle>I.R.E. transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>1985-11-01</date><risdate>1985</risdate><volume>33</volume><issue>11</issue><spage>1213</spage><epage>1220</epage><pages>1213-1220</pages><issn>0018-926X</issn><issn>0096-1973</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract>There are two conventional techniques dealing with mutual coupling problems for antenna arrays. The "element-by-element" method is useful for small to moderate size arrays. The "infinite periodic structure" method deals with one cell of infinite periodic structures, including all the mutual coupling effects. It cannot, however, include edge effects, current tapers, and nonuniform spacings. A new technique called the "finite periodic structure" method, is presented and applied to represent the active impedance of an array, it involves two operations. The first is to convert the discrete array problem into a series of continuous aperture problems by the use of Poisson's sum formula. The second is to use spatial Fourier transforms to represent the impedance in a form similar to the infinite periodic structure approach. The active impedance is then given by a convolution integral involving the infinite periodic structure solution and the Fourier transform of the equivalent aperture distribution of the current over the entire area of the array. The formulation is particularly useful for large finite arrays, and edge effects, current tapers, and nonuniform spacings can also be included in the general formulation. Although the general formulation is valid for both the free and forced modes of excitation, the forced excitation problem is discussed to illustrate the method.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TAP.1985.1143507</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-926X
ispartof I.R.E. transactions on antennas and propagation, 1985-11, Vol.33 (11), p.1213-1220
issn 0018-926X
0096-1973
1558-2221
language eng
recordid cdi_proquest_miscellaneous_24590749
source IEEE Electronic Library (IEL)
subjects Admittance
Aerospace engineering
Antenna arrays
Antennas
Apertures
Applied sciences
Convolution
Equations
Exact sciences and technology
Fourier transforms
Impedance
Mutual coupling
Periodic structures
Radiocommunications
Telecommunications
Telecommunications and information theory
title Finite periodic structure approach to large scanning array problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T05%3A13%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finite%20periodic%20structure%20approach%20to%20large%20scanning%20array%20problems&rft.jtitle=I.R.E.%20transactions%20on%20antennas%20and%20propagation&rft.au=Ishimaru,%20A.&rft.date=1985-11-01&rft.volume=33&rft.issue=11&rft.spage=1213&rft.epage=1220&rft.pages=1213-1220&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/TAP.1985.1143507&rft_dat=%3Cproquest_RIE%3E24590749%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=24590749&rft_id=info:pmid/&rft_ieee_id=1143507&rfr_iscdi=true