Modes of genetic adaptations underlying functional innovations in the rumen
The rumen is the hallmark organ of ruminants and hosts a diverse ecosystem of microorganisms that facilitates efficient digestion of plant fibers. We analyzed 897 transcriptomes from three Cetartiodactyla lineages: ruminants, camels and cetaceans, as well as data from ruminant comparative genomics a...
Gespeichert in:
Veröffentlicht in: | Science China. Life sciences 2021, Vol.64 (1), p.1-21 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 21 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | Science China. Life sciences |
container_volume | 64 |
creator | Pan, Xiangyu Cai, Yudong Li, Zongjun Chen, Xianqing Heller, Rasmus Wang, Nini Wang, Yu Zhao, Chen Wang, Yong Xu, Han Li, Songhai Li, Ming Li, Cunyuan Hu, Shengwei Li, Hui Wang, Kun Chen, Lei Wei, Bin Zheng, Zhuqing Fu, Weiwei Yang, Yue Zhang, Tingting Hou, Zhuoting Yan, Yueyang Lv, Xiaoyang Sun, Wei Li, Xinyu Huang, Shisheng Liu, Lixiang Mao, Shengyong Liu, Wenqing Hua, Jinlian Li, Zhipeng Zhang, Guojie Chen, Yulin Wang, Xihong Qiu, Qiang Dalrymple, Brian P. Wang, Wen Jiang, Yu |
description | The rumen is the hallmark organ of ruminants and hosts a diverse ecosystem of microorganisms that facilitates efficient digestion of plant fibers. We analyzed 897 transcriptomes from three Cetartiodactyla lineages: ruminants, camels and cetaceans, as well as data from ruminant comparative genomics and functional assays to explore the genetic basis of rumen functional innovations. We identified genes with relatively high expression in the rumen, of which many appeared to be recruited from other tissues. These genes show functional enrichment in ketone body metabolism, regulation of microbial community, and epithelium absorption, which are the most prominent biological processes involved in rumen innovations. Several modes of genetic change underlying rumen functional innovations were uncovered, including coding mutations, genes newly evolved, and changes of regulatory elements. We validated that the key ketogenesis rate-limiting gene (
HMGCS2
) with five ruminant-specific mutations was under positive selection and exhibits higher synthesis activity than those of other mammals. Two newly evolved genes (
LYZ1
and
DEFB1
) are resistant to Gram-positive bacteria and thereby may regulate microbial community equilibrium. Furthermore, we confirmed that the changes of regulatory elements accounted for the majority of rumen gene recruitment. These results greatly improve our understanding of rumen evolution and organ evo-devo in general. |
doi_str_mv | 10.1007/s11427-020-1828-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2458964724</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2458964724</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-60a9e72d913774aa3bf5cedfdf8a224b89c829ea7b2eadb3a9695df50692f40c3</originalsourceid><addsrcrecordid>eNp1kF1LwzAUhoMobuh-gDdS8Mabar7aJJcy_MKJN3od0uZkdnTpTFph_96UTQXB3Jzk5DlvyIPQGcFXBGNxHQnhVOSY4pxIKnN5gKZEliqdpDpM-1LwXDBcTNAsxhVOizFMhThGE8ZIWUhCp-jpubMQs85lS_DQN3VmrNn0pm86H7PBWwjttvHLzA2-HpumzRrvu8890fisf4csDGvwp-jImTbCbF9P0Nvd7ev8IV-83D_ObxZ5zQTt8xIbBYJaRZgQ3BhWuaIG66yThlJeSVVLqsCIioKxFTOqVIV1BS4VdRzX7ARd7nI3ofsYIPZ63cQa2tZ46IaoKS-kKrmgPKEXf9BVN4T0iZESipcFlyRRZEfVoYsxgNOb0KxN2GqC9Shb72TrJFuPsrVMM-f75KFag_2Z-FabALoDYrrySwi_T_-f-gVYv4nj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2479465481</pqid></control><display><type>article</type><title>Modes of genetic adaptations underlying functional innovations in the rumen</title><source>SpringerNature Journals</source><source>Alma/SFX Local Collection</source><creator>Pan, Xiangyu ; Cai, Yudong ; Li, Zongjun ; Chen, Xianqing ; Heller, Rasmus ; Wang, Nini ; Wang, Yu ; Zhao, Chen ; Wang, Yong ; Xu, Han ; Li, Songhai ; Li, Ming ; Li, Cunyuan ; Hu, Shengwei ; Li, Hui ; Wang, Kun ; Chen, Lei ; Wei, Bin ; Zheng, Zhuqing ; Fu, Weiwei ; Yang, Yue ; Zhang, Tingting ; Hou, Zhuoting ; Yan, Yueyang ; Lv, Xiaoyang ; Sun, Wei ; Li, Xinyu ; Huang, Shisheng ; Liu, Lixiang ; Mao, Shengyong ; Liu, Wenqing ; Hua, Jinlian ; Li, Zhipeng ; Zhang, Guojie ; Chen, Yulin ; Wang, Xihong ; Qiu, Qiang ; Dalrymple, Brian P. ; Wang, Wen ; Jiang, Yu</creator><creatorcontrib>Pan, Xiangyu ; Cai, Yudong ; Li, Zongjun ; Chen, Xianqing ; Heller, Rasmus ; Wang, Nini ; Wang, Yu ; Zhao, Chen ; Wang, Yong ; Xu, Han ; Li, Songhai ; Li, Ming ; Li, Cunyuan ; Hu, Shengwei ; Li, Hui ; Wang, Kun ; Chen, Lei ; Wei, Bin ; Zheng, Zhuqing ; Fu, Weiwei ; Yang, Yue ; Zhang, Tingting ; Hou, Zhuoting ; Yan, Yueyang ; Lv, Xiaoyang ; Sun, Wei ; Li, Xinyu ; Huang, Shisheng ; Liu, Lixiang ; Mao, Shengyong ; Liu, Wenqing ; Hua, Jinlian ; Li, Zhipeng ; Zhang, Guojie ; Chen, Yulin ; Wang, Xihong ; Qiu, Qiang ; Dalrymple, Brian P. ; Wang, Wen ; Jiang, Yu</creatorcontrib><description>The rumen is the hallmark organ of ruminants and hosts a diverse ecosystem of microorganisms that facilitates efficient digestion of plant fibers. We analyzed 897 transcriptomes from three Cetartiodactyla lineages: ruminants, camels and cetaceans, as well as data from ruminant comparative genomics and functional assays to explore the genetic basis of rumen functional innovations. We identified genes with relatively high expression in the rumen, of which many appeared to be recruited from other tissues. These genes show functional enrichment in ketone body metabolism, regulation of microbial community, and epithelium absorption, which are the most prominent biological processes involved in rumen innovations. Several modes of genetic change underlying rumen functional innovations were uncovered, including coding mutations, genes newly evolved, and changes of regulatory elements. We validated that the key ketogenesis rate-limiting gene (
HMGCS2
) with five ruminant-specific mutations was under positive selection and exhibits higher synthesis activity than those of other mammals. Two newly evolved genes (
LYZ1
and
DEFB1
) are resistant to Gram-positive bacteria and thereby may regulate microbial community equilibrium. Furthermore, we confirmed that the changes of regulatory elements accounted for the majority of rumen gene recruitment. These results greatly improve our understanding of rumen evolution and organ evo-devo in general.</description><identifier>ISSN: 1674-7305</identifier><identifier>EISSN: 1869-1889</identifier><identifier>DOI: 10.1007/s11427-020-1828-8</identifier><identifier>PMID: 33165812</identifier><language>eng</language><publisher>Beijing: Science China Press</publisher><subject>Adaptation ; Biomedical and Life Sciences ; Cover Article ; Developmental biology ; Epithelium ; Genes ; Genomics ; Gram-positive bacteria ; Ketogenesis ; Life Sciences ; Mutation ; Positive selection ; Regulatory sequences ; Rumen</subject><ispartof>Science China. Life sciences, 2021, Vol.64 (1), p.1-21</ispartof><rights>Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-60a9e72d913774aa3bf5cedfdf8a224b89c829ea7b2eadb3a9695df50692f40c3</citedby><cites>FETCH-LOGICAL-c372t-60a9e72d913774aa3bf5cedfdf8a224b89c829ea7b2eadb3a9695df50692f40c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11427-020-1828-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11427-020-1828-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33165812$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pan, Xiangyu</creatorcontrib><creatorcontrib>Cai, Yudong</creatorcontrib><creatorcontrib>Li, Zongjun</creatorcontrib><creatorcontrib>Chen, Xianqing</creatorcontrib><creatorcontrib>Heller, Rasmus</creatorcontrib><creatorcontrib>Wang, Nini</creatorcontrib><creatorcontrib>Wang, Yu</creatorcontrib><creatorcontrib>Zhao, Chen</creatorcontrib><creatorcontrib>Wang, Yong</creatorcontrib><creatorcontrib>Xu, Han</creatorcontrib><creatorcontrib>Li, Songhai</creatorcontrib><creatorcontrib>Li, Ming</creatorcontrib><creatorcontrib>Li, Cunyuan</creatorcontrib><creatorcontrib>Hu, Shengwei</creatorcontrib><creatorcontrib>Li, Hui</creatorcontrib><creatorcontrib>Wang, Kun</creatorcontrib><creatorcontrib>Chen, Lei</creatorcontrib><creatorcontrib>Wei, Bin</creatorcontrib><creatorcontrib>Zheng, Zhuqing</creatorcontrib><creatorcontrib>Fu, Weiwei</creatorcontrib><creatorcontrib>Yang, Yue</creatorcontrib><creatorcontrib>Zhang, Tingting</creatorcontrib><creatorcontrib>Hou, Zhuoting</creatorcontrib><creatorcontrib>Yan, Yueyang</creatorcontrib><creatorcontrib>Lv, Xiaoyang</creatorcontrib><creatorcontrib>Sun, Wei</creatorcontrib><creatorcontrib>Li, Xinyu</creatorcontrib><creatorcontrib>Huang, Shisheng</creatorcontrib><creatorcontrib>Liu, Lixiang</creatorcontrib><creatorcontrib>Mao, Shengyong</creatorcontrib><creatorcontrib>Liu, Wenqing</creatorcontrib><creatorcontrib>Hua, Jinlian</creatorcontrib><creatorcontrib>Li, Zhipeng</creatorcontrib><creatorcontrib>Zhang, Guojie</creatorcontrib><creatorcontrib>Chen, Yulin</creatorcontrib><creatorcontrib>Wang, Xihong</creatorcontrib><creatorcontrib>Qiu, Qiang</creatorcontrib><creatorcontrib>Dalrymple, Brian P.</creatorcontrib><creatorcontrib>Wang, Wen</creatorcontrib><creatorcontrib>Jiang, Yu</creatorcontrib><title>Modes of genetic adaptations underlying functional innovations in the rumen</title><title>Science China. Life sciences</title><addtitle>Sci. China Life Sci</addtitle><addtitle>Sci China Life Sci</addtitle><description>The rumen is the hallmark organ of ruminants and hosts a diverse ecosystem of microorganisms that facilitates efficient digestion of plant fibers. We analyzed 897 transcriptomes from three Cetartiodactyla lineages: ruminants, camels and cetaceans, as well as data from ruminant comparative genomics and functional assays to explore the genetic basis of rumen functional innovations. We identified genes with relatively high expression in the rumen, of which many appeared to be recruited from other tissues. These genes show functional enrichment in ketone body metabolism, regulation of microbial community, and epithelium absorption, which are the most prominent biological processes involved in rumen innovations. Several modes of genetic change underlying rumen functional innovations were uncovered, including coding mutations, genes newly evolved, and changes of regulatory elements. We validated that the key ketogenesis rate-limiting gene (
HMGCS2
) with five ruminant-specific mutations was under positive selection and exhibits higher synthesis activity than those of other mammals. Two newly evolved genes (
LYZ1
and
DEFB1
) are resistant to Gram-positive bacteria and thereby may regulate microbial community equilibrium. Furthermore, we confirmed that the changes of regulatory elements accounted for the majority of rumen gene recruitment. These results greatly improve our understanding of rumen evolution and organ evo-devo in general.</description><subject>Adaptation</subject><subject>Biomedical and Life Sciences</subject><subject>Cover Article</subject><subject>Developmental biology</subject><subject>Epithelium</subject><subject>Genes</subject><subject>Genomics</subject><subject>Gram-positive bacteria</subject><subject>Ketogenesis</subject><subject>Life Sciences</subject><subject>Mutation</subject><subject>Positive selection</subject><subject>Regulatory sequences</subject><subject>Rumen</subject><issn>1674-7305</issn><issn>1869-1889</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kF1LwzAUhoMobuh-gDdS8Mabar7aJJcy_MKJN3od0uZkdnTpTFph_96UTQXB3Jzk5DlvyIPQGcFXBGNxHQnhVOSY4pxIKnN5gKZEliqdpDpM-1LwXDBcTNAsxhVOizFMhThGE8ZIWUhCp-jpubMQs85lS_DQN3VmrNn0pm86H7PBWwjttvHLzA2-HpumzRrvu8890fisf4csDGvwp-jImTbCbF9P0Nvd7ev8IV-83D_ObxZ5zQTt8xIbBYJaRZgQ3BhWuaIG66yThlJeSVVLqsCIioKxFTOqVIV1BS4VdRzX7ARd7nI3ofsYIPZ63cQa2tZ46IaoKS-kKrmgPKEXf9BVN4T0iZESipcFlyRRZEfVoYsxgNOb0KxN2GqC9Shb72TrJFuPsrVMM-f75KFag_2Z-FabALoDYrrySwi_T_-f-gVYv4nj</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Pan, Xiangyu</creator><creator>Cai, Yudong</creator><creator>Li, Zongjun</creator><creator>Chen, Xianqing</creator><creator>Heller, Rasmus</creator><creator>Wang, Nini</creator><creator>Wang, Yu</creator><creator>Zhao, Chen</creator><creator>Wang, Yong</creator><creator>Xu, Han</creator><creator>Li, Songhai</creator><creator>Li, Ming</creator><creator>Li, Cunyuan</creator><creator>Hu, Shengwei</creator><creator>Li, Hui</creator><creator>Wang, Kun</creator><creator>Chen, Lei</creator><creator>Wei, Bin</creator><creator>Zheng, Zhuqing</creator><creator>Fu, Weiwei</creator><creator>Yang, Yue</creator><creator>Zhang, Tingting</creator><creator>Hou, Zhuoting</creator><creator>Yan, Yueyang</creator><creator>Lv, Xiaoyang</creator><creator>Sun, Wei</creator><creator>Li, Xinyu</creator><creator>Huang, Shisheng</creator><creator>Liu, Lixiang</creator><creator>Mao, Shengyong</creator><creator>Liu, Wenqing</creator><creator>Hua, Jinlian</creator><creator>Li, Zhipeng</creator><creator>Zhang, Guojie</creator><creator>Chen, Yulin</creator><creator>Wang, Xihong</creator><creator>Qiu, Qiang</creator><creator>Dalrymple, Brian P.</creator><creator>Wang, Wen</creator><creator>Jiang, Yu</creator><general>Science China Press</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>7U9</scope><scope>H94</scope><scope>K9.</scope><scope>7X8</scope></search><sort><creationdate>2021</creationdate><title>Modes of genetic adaptations underlying functional innovations in the rumen</title><author>Pan, Xiangyu ; Cai, Yudong ; Li, Zongjun ; Chen, Xianqing ; Heller, Rasmus ; Wang, Nini ; Wang, Yu ; Zhao, Chen ; Wang, Yong ; Xu, Han ; Li, Songhai ; Li, Ming ; Li, Cunyuan ; Hu, Shengwei ; Li, Hui ; Wang, Kun ; Chen, Lei ; Wei, Bin ; Zheng, Zhuqing ; Fu, Weiwei ; Yang, Yue ; Zhang, Tingting ; Hou, Zhuoting ; Yan, Yueyang ; Lv, Xiaoyang ; Sun, Wei ; Li, Xinyu ; Huang, Shisheng ; Liu, Lixiang ; Mao, Shengyong ; Liu, Wenqing ; Hua, Jinlian ; Li, Zhipeng ; Zhang, Guojie ; Chen, Yulin ; Wang, Xihong ; Qiu, Qiang ; Dalrymple, Brian P. ; Wang, Wen ; Jiang, Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-60a9e72d913774aa3bf5cedfdf8a224b89c829ea7b2eadb3a9695df50692f40c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptation</topic><topic>Biomedical and Life Sciences</topic><topic>Cover Article</topic><topic>Developmental biology</topic><topic>Epithelium</topic><topic>Genes</topic><topic>Genomics</topic><topic>Gram-positive bacteria</topic><topic>Ketogenesis</topic><topic>Life Sciences</topic><topic>Mutation</topic><topic>Positive selection</topic><topic>Regulatory sequences</topic><topic>Rumen</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pan, Xiangyu</creatorcontrib><creatorcontrib>Cai, Yudong</creatorcontrib><creatorcontrib>Li, Zongjun</creatorcontrib><creatorcontrib>Chen, Xianqing</creatorcontrib><creatorcontrib>Heller, Rasmus</creatorcontrib><creatorcontrib>Wang, Nini</creatorcontrib><creatorcontrib>Wang, Yu</creatorcontrib><creatorcontrib>Zhao, Chen</creatorcontrib><creatorcontrib>Wang, Yong</creatorcontrib><creatorcontrib>Xu, Han</creatorcontrib><creatorcontrib>Li, Songhai</creatorcontrib><creatorcontrib>Li, Ming</creatorcontrib><creatorcontrib>Li, Cunyuan</creatorcontrib><creatorcontrib>Hu, Shengwei</creatorcontrib><creatorcontrib>Li, Hui</creatorcontrib><creatorcontrib>Wang, Kun</creatorcontrib><creatorcontrib>Chen, Lei</creatorcontrib><creatorcontrib>Wei, Bin</creatorcontrib><creatorcontrib>Zheng, Zhuqing</creatorcontrib><creatorcontrib>Fu, Weiwei</creatorcontrib><creatorcontrib>Yang, Yue</creatorcontrib><creatorcontrib>Zhang, Tingting</creatorcontrib><creatorcontrib>Hou, Zhuoting</creatorcontrib><creatorcontrib>Yan, Yueyang</creatorcontrib><creatorcontrib>Lv, Xiaoyang</creatorcontrib><creatorcontrib>Sun, Wei</creatorcontrib><creatorcontrib>Li, Xinyu</creatorcontrib><creatorcontrib>Huang, Shisheng</creatorcontrib><creatorcontrib>Liu, Lixiang</creatorcontrib><creatorcontrib>Mao, Shengyong</creatorcontrib><creatorcontrib>Liu, Wenqing</creatorcontrib><creatorcontrib>Hua, Jinlian</creatorcontrib><creatorcontrib>Li, Zhipeng</creatorcontrib><creatorcontrib>Zhang, Guojie</creatorcontrib><creatorcontrib>Chen, Yulin</creatorcontrib><creatorcontrib>Wang, Xihong</creatorcontrib><creatorcontrib>Qiu, Qiang</creatorcontrib><creatorcontrib>Dalrymple, Brian P.</creatorcontrib><creatorcontrib>Wang, Wen</creatorcontrib><creatorcontrib>Jiang, Yu</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Science China. Life sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pan, Xiangyu</au><au>Cai, Yudong</au><au>Li, Zongjun</au><au>Chen, Xianqing</au><au>Heller, Rasmus</au><au>Wang, Nini</au><au>Wang, Yu</au><au>Zhao, Chen</au><au>Wang, Yong</au><au>Xu, Han</au><au>Li, Songhai</au><au>Li, Ming</au><au>Li, Cunyuan</au><au>Hu, Shengwei</au><au>Li, Hui</au><au>Wang, Kun</au><au>Chen, Lei</au><au>Wei, Bin</au><au>Zheng, Zhuqing</au><au>Fu, Weiwei</au><au>Yang, Yue</au><au>Zhang, Tingting</au><au>Hou, Zhuoting</au><au>Yan, Yueyang</au><au>Lv, Xiaoyang</au><au>Sun, Wei</au><au>Li, Xinyu</au><au>Huang, Shisheng</au><au>Liu, Lixiang</au><au>Mao, Shengyong</au><au>Liu, Wenqing</au><au>Hua, Jinlian</au><au>Li, Zhipeng</au><au>Zhang, Guojie</au><au>Chen, Yulin</au><au>Wang, Xihong</au><au>Qiu, Qiang</au><au>Dalrymple, Brian P.</au><au>Wang, Wen</au><au>Jiang, Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modes of genetic adaptations underlying functional innovations in the rumen</atitle><jtitle>Science China. Life sciences</jtitle><stitle>Sci. China Life Sci</stitle><addtitle>Sci China Life Sci</addtitle><date>2021</date><risdate>2021</risdate><volume>64</volume><issue>1</issue><spage>1</spage><epage>21</epage><pages>1-21</pages><issn>1674-7305</issn><eissn>1869-1889</eissn><abstract>The rumen is the hallmark organ of ruminants and hosts a diverse ecosystem of microorganisms that facilitates efficient digestion of plant fibers. We analyzed 897 transcriptomes from three Cetartiodactyla lineages: ruminants, camels and cetaceans, as well as data from ruminant comparative genomics and functional assays to explore the genetic basis of rumen functional innovations. We identified genes with relatively high expression in the rumen, of which many appeared to be recruited from other tissues. These genes show functional enrichment in ketone body metabolism, regulation of microbial community, and epithelium absorption, which are the most prominent biological processes involved in rumen innovations. Several modes of genetic change underlying rumen functional innovations were uncovered, including coding mutations, genes newly evolved, and changes of regulatory elements. We validated that the key ketogenesis rate-limiting gene (
HMGCS2
) with five ruminant-specific mutations was under positive selection and exhibits higher synthesis activity than those of other mammals. Two newly evolved genes (
LYZ1
and
DEFB1
) are resistant to Gram-positive bacteria and thereby may regulate microbial community equilibrium. Furthermore, we confirmed that the changes of regulatory elements accounted for the majority of rumen gene recruitment. These results greatly improve our understanding of rumen evolution and organ evo-devo in general.</abstract><cop>Beijing</cop><pub>Science China Press</pub><pmid>33165812</pmid><doi>10.1007/s11427-020-1828-8</doi><tpages>21</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1674-7305 |
ispartof | Science China. Life sciences, 2021, Vol.64 (1), p.1-21 |
issn | 1674-7305 1869-1889 |
language | eng |
recordid | cdi_proquest_miscellaneous_2458964724 |
source | SpringerNature Journals; Alma/SFX Local Collection |
subjects | Adaptation Biomedical and Life Sciences Cover Article Developmental biology Epithelium Genes Genomics Gram-positive bacteria Ketogenesis Life Sciences Mutation Positive selection Regulatory sequences Rumen |
title | Modes of genetic adaptations underlying functional innovations in the rumen |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T07%3A28%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modes%20of%20genetic%20adaptations%20underlying%20functional%20innovations%20in%20the%20rumen&rft.jtitle=Science%20China.%20Life%20sciences&rft.au=Pan,%20Xiangyu&rft.date=2021&rft.volume=64&rft.issue=1&rft.spage=1&rft.epage=21&rft.pages=1-21&rft.issn=1674-7305&rft.eissn=1869-1889&rft_id=info:doi/10.1007/s11427-020-1828-8&rft_dat=%3Cproquest_cross%3E2458964724%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2479465481&rft_id=info:pmid/33165812&rfr_iscdi=true |