Evaluating the effectiveness of several synchronization control methods applying to the electrically and the chemically coupled hindmarsh-rose neurons
This study focuses on the synchronization control between the coupled neurons. The achievements of several synchronization control methods have been checked by evaluating the effects of the synaptic coupling weight alteration on the synchronization. Here, a neural ensemble has been constructed by ut...
Gespeichert in:
Veröffentlicht in: | BioSystems 2020-12, Vol.198, p.104284-104284, Article 104284 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 104284 |
---|---|
container_issue | |
container_start_page | 104284 |
container_title | BioSystems |
container_volume | 198 |
creator | Çimen, Zühra Korkmaz, Nimet Altuncu, Yasemin Kılıç, Recai |
description | This study focuses on the synchronization control between the coupled neurons. The achievements of several synchronization control methods have been checked by evaluating the effects of the synaptic coupling weight alteration on the synchronization. Here, a neural ensemble has been constructed by utilizing the Hindmarsh Rose (HR) Neuron Model. The HR neurons have been linked to each other with the bidirectional coupling. The synchrony or the asynchrony states between these coupled neurons have been observed by using the standard deviation results. Here, firstly, the electrically and the chemically coupled HR neurons have been handled without using any control method, separately and the effects of the synaptic coupling weight alteration on the synchronic firing have been assessed by considering the features of the coupling types. Then, while the electrically coupled HR neurons are generally preferred in the available synchronization control studies; the Lyapunov, the back-stepping, and the feedback synchronization control methods have been adapted to both the electrically and the chemically coupled HR neurons. Thus, a remarkable contribution has been provided to the limited number of studies, which are about the synchronization control of the chemically coupled HR neurons. Also, the synchronization control between the electrically or the chemically coupled HR neurons has been provided by the back-stepping method for the first time. Finally, the differences between the membrane potentials of the coupled neurons have been calculated by utilizing an alternative error function. Since this function calculates the amplitude and the phase errors, separately; the effectiveness of these methods can be evaluated correctly in terms of the performing the minimum differences between the neural dynamics. |
doi_str_mv | 10.1016/j.biosystems.2020.104284 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2458727214</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0303264720301647</els_id><sourcerecordid>2458727214</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-97e16849c7a041bb600a60d4d57bf94fd42900247a5a08789108ce73c98459343</originalsourceid><addsrcrecordid>eNqFkcFu1DAQhi0EEkvhHXzkksV2nMQ5QlUoUiUu7dny2hPilWMHT7JSeBCeF29TiSNzsfTrn2_G8xNCOTtyxttP5-PJJ9xwgQmPgomrLIWSr8iBq05UqhbyNTmwmtWVaGX3lrxDPLNSjeIH8ufuYsJqFh9_0mUECsMAdvEXiIBI00ARLpBNoLhFO-YU_e9iTpHaFJecAp1gGZNDauY5bM-UtINC4WRvTQgbNdE9i3aE6UWyaZ0DODr66CaTcaxyQqAR1jIE35M3gwkIH17eG_L09e7x9r56-PHt--3nh8rWDV-qvgPeKtnbzjDJT6eWMdMyJ13TnYZeDk6KnjEhO9MYpjrVc6YsdLXtlWz6WtY35OPOnXP6tQIuevJoIQQTIa2ohWzKETvBr1a1W21ZFDMMes6-bL5pzvQ1Cn3W_6LQ1yj0HkVp_bK3QvnKxUPWaD1EC87nciXtkv8_5C-4upuY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2458727214</pqid></control><display><type>article</type><title>Evaluating the effectiveness of several synchronization control methods applying to the electrically and the chemically coupled hindmarsh-rose neurons</title><source>Elsevier ScienceDirect Journals</source><creator>Çimen, Zühra ; Korkmaz, Nimet ; Altuncu, Yasemin ; Kılıç, Recai</creator><creatorcontrib>Çimen, Zühra ; Korkmaz, Nimet ; Altuncu, Yasemin ; Kılıç, Recai</creatorcontrib><description>This study focuses on the synchronization control between the coupled neurons. The achievements of several synchronization control methods have been checked by evaluating the effects of the synaptic coupling weight alteration on the synchronization. Here, a neural ensemble has been constructed by utilizing the Hindmarsh Rose (HR) Neuron Model. The HR neurons have been linked to each other with the bidirectional coupling. The synchrony or the asynchrony states between these coupled neurons have been observed by using the standard deviation results. Here, firstly, the electrically and the chemically coupled HR neurons have been handled without using any control method, separately and the effects of the synaptic coupling weight alteration on the synchronic firing have been assessed by considering the features of the coupling types. Then, while the electrically coupled HR neurons are generally preferred in the available synchronization control studies; the Lyapunov, the back-stepping, and the feedback synchronization control methods have been adapted to both the electrically and the chemically coupled HR neurons. Thus, a remarkable contribution has been provided to the limited number of studies, which are about the synchronization control of the chemically coupled HR neurons. Also, the synchronization control between the electrically or the chemically coupled HR neurons has been provided by the back-stepping method for the first time. Finally, the differences between the membrane potentials of the coupled neurons have been calculated by utilizing an alternative error function. Since this function calculates the amplitude and the phase errors, separately; the effectiveness of these methods can be evaluated correctly in terms of the performing the minimum differences between the neural dynamics.</description><identifier>ISSN: 0303-2647</identifier><identifier>EISSN: 1872-8324</identifier><identifier>DOI: 10.1016/j.biosystems.2020.104284</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Back-stepping control method ; Error calculation ; Feedback control method ; Hindmarsh-rose neuron model ; Lyapunov control method ; Neuronal coupling</subject><ispartof>BioSystems, 2020-12, Vol.198, p.104284-104284, Article 104284</ispartof><rights>2020 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-97e16849c7a041bb600a60d4d57bf94fd42900247a5a08789108ce73c98459343</citedby><cites>FETCH-LOGICAL-c351t-97e16849c7a041bb600a60d4d57bf94fd42900247a5a08789108ce73c98459343</cites><orcidid>0000-0002-7419-1538</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.biosystems.2020.104284$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids></links><search><creatorcontrib>Çimen, Zühra</creatorcontrib><creatorcontrib>Korkmaz, Nimet</creatorcontrib><creatorcontrib>Altuncu, Yasemin</creatorcontrib><creatorcontrib>Kılıç, Recai</creatorcontrib><title>Evaluating the effectiveness of several synchronization control methods applying to the electrically and the chemically coupled hindmarsh-rose neurons</title><title>BioSystems</title><description>This study focuses on the synchronization control between the coupled neurons. The achievements of several synchronization control methods have been checked by evaluating the effects of the synaptic coupling weight alteration on the synchronization. Here, a neural ensemble has been constructed by utilizing the Hindmarsh Rose (HR) Neuron Model. The HR neurons have been linked to each other with the bidirectional coupling. The synchrony or the asynchrony states between these coupled neurons have been observed by using the standard deviation results. Here, firstly, the electrically and the chemically coupled HR neurons have been handled without using any control method, separately and the effects of the synaptic coupling weight alteration on the synchronic firing have been assessed by considering the features of the coupling types. Then, while the electrically coupled HR neurons are generally preferred in the available synchronization control studies; the Lyapunov, the back-stepping, and the feedback synchronization control methods have been adapted to both the electrically and the chemically coupled HR neurons. Thus, a remarkable contribution has been provided to the limited number of studies, which are about the synchronization control of the chemically coupled HR neurons. Also, the synchronization control between the electrically or the chemically coupled HR neurons has been provided by the back-stepping method for the first time. Finally, the differences between the membrane potentials of the coupled neurons have been calculated by utilizing an alternative error function. Since this function calculates the amplitude and the phase errors, separately; the effectiveness of these methods can be evaluated correctly in terms of the performing the minimum differences between the neural dynamics.</description><subject>Back-stepping control method</subject><subject>Error calculation</subject><subject>Feedback control method</subject><subject>Hindmarsh-rose neuron model</subject><subject>Lyapunov control method</subject><subject>Neuronal coupling</subject><issn>0303-2647</issn><issn>1872-8324</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkcFu1DAQhi0EEkvhHXzkksV2nMQ5QlUoUiUu7dny2hPilWMHT7JSeBCeF29TiSNzsfTrn2_G8xNCOTtyxttP5-PJJ9xwgQmPgomrLIWSr8iBq05UqhbyNTmwmtWVaGX3lrxDPLNSjeIH8ufuYsJqFh9_0mUECsMAdvEXiIBI00ARLpBNoLhFO-YU_e9iTpHaFJecAp1gGZNDauY5bM-UtINC4WRvTQgbNdE9i3aE6UWyaZ0DODr66CaTcaxyQqAR1jIE35M3gwkIH17eG_L09e7x9r56-PHt--3nh8rWDV-qvgPeKtnbzjDJT6eWMdMyJ13TnYZeDk6KnjEhO9MYpjrVc6YsdLXtlWz6WtY35OPOnXP6tQIuevJoIQQTIa2ohWzKETvBr1a1W21ZFDMMes6-bL5pzvQ1Cn3W_6LQ1yj0HkVp_bK3QvnKxUPWaD1EC87nciXtkv8_5C-4upuY</recordid><startdate>202012</startdate><enddate>202012</enddate><creator>Çimen, Zühra</creator><creator>Korkmaz, Nimet</creator><creator>Altuncu, Yasemin</creator><creator>Kılıç, Recai</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7419-1538</orcidid></search><sort><creationdate>202012</creationdate><title>Evaluating the effectiveness of several synchronization control methods applying to the electrically and the chemically coupled hindmarsh-rose neurons</title><author>Çimen, Zühra ; Korkmaz, Nimet ; Altuncu, Yasemin ; Kılıç, Recai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-97e16849c7a041bb600a60d4d57bf94fd42900247a5a08789108ce73c98459343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Back-stepping control method</topic><topic>Error calculation</topic><topic>Feedback control method</topic><topic>Hindmarsh-rose neuron model</topic><topic>Lyapunov control method</topic><topic>Neuronal coupling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Çimen, Zühra</creatorcontrib><creatorcontrib>Korkmaz, Nimet</creatorcontrib><creatorcontrib>Altuncu, Yasemin</creatorcontrib><creatorcontrib>Kılıç, Recai</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>BioSystems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Çimen, Zühra</au><au>Korkmaz, Nimet</au><au>Altuncu, Yasemin</au><au>Kılıç, Recai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluating the effectiveness of several synchronization control methods applying to the electrically and the chemically coupled hindmarsh-rose neurons</atitle><jtitle>BioSystems</jtitle><date>2020-12</date><risdate>2020</risdate><volume>198</volume><spage>104284</spage><epage>104284</epage><pages>104284-104284</pages><artnum>104284</artnum><issn>0303-2647</issn><eissn>1872-8324</eissn><abstract>This study focuses on the synchronization control between the coupled neurons. The achievements of several synchronization control methods have been checked by evaluating the effects of the synaptic coupling weight alteration on the synchronization. Here, a neural ensemble has been constructed by utilizing the Hindmarsh Rose (HR) Neuron Model. The HR neurons have been linked to each other with the bidirectional coupling. The synchrony or the asynchrony states between these coupled neurons have been observed by using the standard deviation results. Here, firstly, the electrically and the chemically coupled HR neurons have been handled without using any control method, separately and the effects of the synaptic coupling weight alteration on the synchronic firing have been assessed by considering the features of the coupling types. Then, while the electrically coupled HR neurons are generally preferred in the available synchronization control studies; the Lyapunov, the back-stepping, and the feedback synchronization control methods have been adapted to both the electrically and the chemically coupled HR neurons. Thus, a remarkable contribution has been provided to the limited number of studies, which are about the synchronization control of the chemically coupled HR neurons. Also, the synchronization control between the electrically or the chemically coupled HR neurons has been provided by the back-stepping method for the first time. Finally, the differences between the membrane potentials of the coupled neurons have been calculated by utilizing an alternative error function. Since this function calculates the amplitude and the phase errors, separately; the effectiveness of these methods can be evaluated correctly in terms of the performing the minimum differences between the neural dynamics.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.biosystems.2020.104284</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-7419-1538</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0303-2647 |
ispartof | BioSystems, 2020-12, Vol.198, p.104284-104284, Article 104284 |
issn | 0303-2647 1872-8324 |
language | eng |
recordid | cdi_proquest_miscellaneous_2458727214 |
source | Elsevier ScienceDirect Journals |
subjects | Back-stepping control method Error calculation Feedback control method Hindmarsh-rose neuron model Lyapunov control method Neuronal coupling |
title | Evaluating the effectiveness of several synchronization control methods applying to the electrically and the chemically coupled hindmarsh-rose neurons |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T06%3A28%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluating%20the%20effectiveness%20of%20several%20synchronization%20control%20methods%20applying%20to%20the%20electrically%20and%20the%20chemically%20coupled%20hindmarsh-rose%20neurons&rft.jtitle=BioSystems&rft.au=%C3%87imen,%20Z%C3%BChra&rft.date=2020-12&rft.volume=198&rft.spage=104284&rft.epage=104284&rft.pages=104284-104284&rft.artnum=104284&rft.issn=0303-2647&rft.eissn=1872-8324&rft_id=info:doi/10.1016/j.biosystems.2020.104284&rft_dat=%3Cproquest_cross%3E2458727214%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2458727214&rft_id=info:pmid/&rft_els_id=S0303264720301647&rfr_iscdi=true |