Blur-Invariant Similarity Measurement of Images
This article is a comment on the recent TPAMI paper (Gopalan et al. , 2012) that introduced a blur-invariant distance measure between two images. We point out two mistakes of the theory presented in (Gopalan et al. , 2012) and propose a correction. We also compare the original and corrected methods...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence 2021-08, Vol.43 (8), p.2882-2884 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2884 |
---|---|
container_issue | 8 |
container_start_page | 2882 |
container_title | IEEE transactions on pattern analysis and machine intelligence |
container_volume | 43 |
creator | Lebl, Matej Sroubek, Filip Flusser, Jan |
description | This article is a comment on the recent TPAMI paper (Gopalan et al. , 2012) that introduced a blur-invariant distance measure between two images. We point out two mistakes of the theory presented in (Gopalan et al. , 2012) and propose a correction. We also compare the original and corrected methods experimentally. |
doi_str_mv | 10.1109/TPAMI.2020.3036630 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_2458726243</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9250602</ieee_id><sourcerecordid>2458726243</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-ff39437c199c1af0eebe1462f6b5ac8a66d096ca059260d9eb713efc508800ff3</originalsourceid><addsrcrecordid>eNpdkMtKAzEUQIMotlZ_QDcFN26mvXlOstTiY6BFwboOaXpHpsyjJjNC_96pLS5c5RLOuVwOIdcUJpSCmS7f7hfZhAGDCQeuFIcTMqSGm4RLbk7JEKhiidZMD8hFjBsAKiTwczLgnEqVajEk04eyC0lWf7tQuLodvxdVUfZzuxsv0MUuYIX9d5OPs8p9YrwkZ7krI14d3xH5eHpczl6S-etzNrufJ54z3SZ5zo3gqafGeOpyQFwhFYrlaiWd106pNRjlHUjDFKwNrlLKMfcStAbo7RG5O-zdhuarw9jaqogey9LV2HTRMiF1yhQTvEdv_6Gbpgt1f51lUqRKiFSbnmIHyocmxoC53YaicmFnKdh9Tvub0-5z2mPOXro5SAUi_gmGSVDA-A_v2G2W</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2547644789</pqid></control><display><type>article</type><title>Blur-Invariant Similarity Measurement of Images</title><source>IEEE Electronic Library (IEL)</source><creator>Lebl, Matej ; Sroubek, Filip ; Flusser, Jan</creator><creatorcontrib>Lebl, Matej ; Sroubek, Filip ; Flusser, Jan</creatorcontrib><description>This article is a comment on the recent TPAMI paper (Gopalan et al. , 2012) that introduced a blur-invariant distance measure between two images. We point out two mistakes of the theory presented in (Gopalan et al. , 2012) and propose a correction. We also compare the original and corrected methods experimentally.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2020.3036630</identifier><identifier>PMID: 33156784</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Blurred image classification ; constrained minimization ; Convolution ; Distance measurement ; Face recognition ; Image recognition ; invariant distance ; Invariants ; Kernel ; Manifolds ; Measurement ; Minimization ; subspace projections</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2021-08, Vol.43 (8), p.2882-2884</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-ff39437c199c1af0eebe1462f6b5ac8a66d096ca059260d9eb713efc508800ff3</citedby><cites>FETCH-LOGICAL-c328t-ff39437c199c1af0eebe1462f6b5ac8a66d096ca059260d9eb713efc508800ff3</cites><orcidid>0000-0001-6835-4911 ; 0000-0003-3747-9214</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9250602$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9250602$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lebl, Matej</creatorcontrib><creatorcontrib>Sroubek, Filip</creatorcontrib><creatorcontrib>Flusser, Jan</creatorcontrib><title>Blur-Invariant Similarity Measurement of Images</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><description>This article is a comment on the recent TPAMI paper (Gopalan et al. , 2012) that introduced a blur-invariant distance measure between two images. We point out two mistakes of the theory presented in (Gopalan et al. , 2012) and propose a correction. We also compare the original and corrected methods experimentally.</description><subject>Blurred image classification</subject><subject>constrained minimization</subject><subject>Convolution</subject><subject>Distance measurement</subject><subject>Face recognition</subject><subject>Image recognition</subject><subject>invariant distance</subject><subject>Invariants</subject><subject>Kernel</subject><subject>Manifolds</subject><subject>Measurement</subject><subject>Minimization</subject><subject>subspace projections</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkMtKAzEUQIMotlZ_QDcFN26mvXlOstTiY6BFwboOaXpHpsyjJjNC_96pLS5c5RLOuVwOIdcUJpSCmS7f7hfZhAGDCQeuFIcTMqSGm4RLbk7JEKhiidZMD8hFjBsAKiTwczLgnEqVajEk04eyC0lWf7tQuLodvxdVUfZzuxsv0MUuYIX9d5OPs8p9YrwkZ7krI14d3xH5eHpczl6S-etzNrufJ54z3SZ5zo3gqafGeOpyQFwhFYrlaiWd106pNRjlHUjDFKwNrlLKMfcStAbo7RG5O-zdhuarw9jaqogey9LV2HTRMiF1yhQTvEdv_6Gbpgt1f51lUqRKiFSbnmIHyocmxoC53YaicmFnKdh9Tvub0-5z2mPOXro5SAUi_gmGSVDA-A_v2G2W</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Lebl, Matej</creator><creator>Sroubek, Filip</creator><creator>Flusser, Jan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6835-4911</orcidid><orcidid>https://orcid.org/0000-0003-3747-9214</orcidid></search><sort><creationdate>20210801</creationdate><title>Blur-Invariant Similarity Measurement of Images</title><author>Lebl, Matej ; Sroubek, Filip ; Flusser, Jan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-ff39437c199c1af0eebe1462f6b5ac8a66d096ca059260d9eb713efc508800ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Blurred image classification</topic><topic>constrained minimization</topic><topic>Convolution</topic><topic>Distance measurement</topic><topic>Face recognition</topic><topic>Image recognition</topic><topic>invariant distance</topic><topic>Invariants</topic><topic>Kernel</topic><topic>Manifolds</topic><topic>Measurement</topic><topic>Minimization</topic><topic>subspace projections</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lebl, Matej</creatorcontrib><creatorcontrib>Sroubek, Filip</creatorcontrib><creatorcontrib>Flusser, Jan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lebl, Matej</au><au>Sroubek, Filip</au><au>Flusser, Jan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Blur-Invariant Similarity Measurement of Images</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><date>2021-08-01</date><risdate>2021</risdate><volume>43</volume><issue>8</issue><spage>2882</spage><epage>2884</epage><pages>2882-2884</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>This article is a comment on the recent TPAMI paper (Gopalan et al. , 2012) that introduced a blur-invariant distance measure between two images. We point out two mistakes of the theory presented in (Gopalan et al. , 2012) and propose a correction. We also compare the original and corrected methods experimentally.</abstract><cop>New York</cop><pub>IEEE</pub><pmid>33156784</pmid><doi>10.1109/TPAMI.2020.3036630</doi><tpages>3</tpages><orcidid>https://orcid.org/0000-0001-6835-4911</orcidid><orcidid>https://orcid.org/0000-0003-3747-9214</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0162-8828 |
ispartof | IEEE transactions on pattern analysis and machine intelligence, 2021-08, Vol.43 (8), p.2882-2884 |
issn | 0162-8828 1939-3539 2160-9292 |
language | eng |
recordid | cdi_proquest_miscellaneous_2458726243 |
source | IEEE Electronic Library (IEL) |
subjects | Blurred image classification constrained minimization Convolution Distance measurement Face recognition Image recognition invariant distance Invariants Kernel Manifolds Measurement Minimization subspace projections |
title | Blur-Invariant Similarity Measurement of Images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T17%3A47%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Blur-Invariant%20Similarity%20Measurement%20of%20Images&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Lebl,%20Matej&rft.date=2021-08-01&rft.volume=43&rft.issue=8&rft.spage=2882&rft.epage=2884&rft.pages=2882-2884&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2020.3036630&rft_dat=%3Cproquest_RIE%3E2458726243%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2547644789&rft_id=info:pmid/33156784&rft_ieee_id=9250602&rfr_iscdi=true |