Chlamydomonas reinhardtii swimming in the Plateau borders of 2D foams

Unicellular Chlamydomonas reinhardtii micro-algae cells were inserted into a quasi-2D Hele-Shaw chamber filled with saponin foam. The movement of the algae along the bubble borders was then manipulated and tracked. These self-propelled particles generate flow and stresses in their surrounding matter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft matter 2021-01, Vol.17 (1), p.145-152
Hauptverfasser: Tainio, Oskar, Sohrabi, Fereshteh, Janarek, Nikodem, Koivisto, Juha, Puisto, Antti, Viitanen, Leevi, Timonen, Jaakko V I, Alava, Mikko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 152
container_issue 1
container_start_page 145
container_title Soft matter
container_volume 17
creator Tainio, Oskar
Sohrabi, Fereshteh
Janarek, Nikodem
Koivisto, Juha
Puisto, Antti
Viitanen, Leevi
Timonen, Jaakko V I
Alava, Mikko
description Unicellular Chlamydomonas reinhardtii micro-algae cells were inserted into a quasi-2D Hele-Shaw chamber filled with saponin foam. The movement of the algae along the bubble borders was then manipulated and tracked. These self-propelled particles generate flow and stresses in their surrounding matter. In addition, the algae possess the capability of exerting forces that alter bubble boundaries while maintaining an imminent phototactic movement. We find that by controlling the gas fraction of the foam we can change the interaction of the algae and bubbles. Specifically, our data expose three distinct swimming regimes for the algae with respect to the level of confinement due to the Plateau border cross-section: unlimited bulk, transition, and overdamped regimes. At the transition regime we find the speed of the algae to be modeled by a simple force balance equation emerging from the shear inside the Plateau border. Thus, we have shown that it is possible to create an algae-friendly foam while controlling the algae motion. This opens doors to multiple applications where the flow of nutrients, oxygen and recirculation of living organisms is essential.
doi_str_mv 10.1039/d0sm01206h
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2458038364</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2458038364</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-cf483c6e669be0d5b069be737bee084583d7a755177f02f7eb8ee9cfb2b4b3133</originalsourceid><addsrcrecordid>eNpdkEFLwzAYhoMobk4v_gAJeBGhmjRpkx1lm06YKKjgrSTtV9vRNDNpkf17Mzd38PS9h4eH93sROqfkhhI2vi2IN4TGJK0O0JAKzqNUcnm4z-xjgE68XxLCJKfpMRowRpMkkXyIZpOqUWZdWGNb5bGDuq2UK7q6xv67NqZuP3Hd4q4C_NKoDlSPtXUFOI9tieMpLq0y_hQdlarxcLa7I_R-P3ubzKPF88Pj5G4R5UzKLspLLlmeQpqONZAi0WQTBBMagEieSFYIJZKEClGSuBSgJcA4L3WsuWaUsRG62npXzn714LvM1D6HplEt2N5ncXCEJ1nKA3r5D13a3rWhXaBEkgbdmATqekvlznrvoMxWrjbKrTNKss242ZS8Pv2OOw_wxU7ZawPFHv1bk_0Ag_5zmA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2475631390</pqid></control><display><type>article</type><title>Chlamydomonas reinhardtii swimming in the Plateau borders of 2D foams</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Tainio, Oskar ; Sohrabi, Fereshteh ; Janarek, Nikodem ; Koivisto, Juha ; Puisto, Antti ; Viitanen, Leevi ; Timonen, Jaakko V I ; Alava, Mikko</creator><creatorcontrib>Tainio, Oskar ; Sohrabi, Fereshteh ; Janarek, Nikodem ; Koivisto, Juha ; Puisto, Antti ; Viitanen, Leevi ; Timonen, Jaakko V I ; Alava, Mikko</creatorcontrib><description>Unicellular Chlamydomonas reinhardtii micro-algae cells were inserted into a quasi-2D Hele-Shaw chamber filled with saponin foam. The movement of the algae along the bubble borders was then manipulated and tracked. These self-propelled particles generate flow and stresses in their surrounding matter. In addition, the algae possess the capability of exerting forces that alter bubble boundaries while maintaining an imminent phototactic movement. We find that by controlling the gas fraction of the foam we can change the interaction of the algae and bubbles. Specifically, our data expose three distinct swimming regimes for the algae with respect to the level of confinement due to the Plateau border cross-section: unlimited bulk, transition, and overdamped regimes. At the transition regime we find the speed of the algae to be modeled by a simple force balance equation emerging from the shear inside the Plateau border. Thus, we have shown that it is possible to create an algae-friendly foam while controlling the algae motion. This opens doors to multiple applications where the flow of nutrients, oxygen and recirculation of living organisms is essential.</description><identifier>ISSN: 1744-683X</identifier><identifier>EISSN: 1744-6848</identifier><identifier>DOI: 10.1039/d0sm01206h</identifier><identifier>PMID: 33155584</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Algae ; Borders ; Chlamydomonas reinhardtii ; Foams ; Nutrients ; Saponins ; Swimming</subject><ispartof>Soft matter, 2021-01, Vol.17 (1), p.145-152</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-cf483c6e669be0d5b069be737bee084583d7a755177f02f7eb8ee9cfb2b4b3133</citedby><cites>FETCH-LOGICAL-c388t-cf483c6e669be0d5b069be737bee084583d7a755177f02f7eb8ee9cfb2b4b3133</cites><orcidid>0000-0002-2087-3330 ; 0000-0002-5499-1482 ; 0000-0001-9249-5079 ; 0000-0003-1297-434X ; 0000-0002-9002-6989 ; 0000-0003-0270-9403 ; 0000-0002-4461-3648 ; 0000-0001-9184-2892</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33155584$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tainio, Oskar</creatorcontrib><creatorcontrib>Sohrabi, Fereshteh</creatorcontrib><creatorcontrib>Janarek, Nikodem</creatorcontrib><creatorcontrib>Koivisto, Juha</creatorcontrib><creatorcontrib>Puisto, Antti</creatorcontrib><creatorcontrib>Viitanen, Leevi</creatorcontrib><creatorcontrib>Timonen, Jaakko V I</creatorcontrib><creatorcontrib>Alava, Mikko</creatorcontrib><title>Chlamydomonas reinhardtii swimming in the Plateau borders of 2D foams</title><title>Soft matter</title><addtitle>Soft Matter</addtitle><description>Unicellular Chlamydomonas reinhardtii micro-algae cells were inserted into a quasi-2D Hele-Shaw chamber filled with saponin foam. The movement of the algae along the bubble borders was then manipulated and tracked. These self-propelled particles generate flow and stresses in their surrounding matter. In addition, the algae possess the capability of exerting forces that alter bubble boundaries while maintaining an imminent phototactic movement. We find that by controlling the gas fraction of the foam we can change the interaction of the algae and bubbles. Specifically, our data expose three distinct swimming regimes for the algae with respect to the level of confinement due to the Plateau border cross-section: unlimited bulk, transition, and overdamped regimes. At the transition regime we find the speed of the algae to be modeled by a simple force balance equation emerging from the shear inside the Plateau border. Thus, we have shown that it is possible to create an algae-friendly foam while controlling the algae motion. This opens doors to multiple applications where the flow of nutrients, oxygen and recirculation of living organisms is essential.</description><subject>Algae</subject><subject>Borders</subject><subject>Chlamydomonas reinhardtii</subject><subject>Foams</subject><subject>Nutrients</subject><subject>Saponins</subject><subject>Swimming</subject><issn>1744-683X</issn><issn>1744-6848</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkEFLwzAYhoMobk4v_gAJeBGhmjRpkx1lm06YKKjgrSTtV9vRNDNpkf17Mzd38PS9h4eH93sROqfkhhI2vi2IN4TGJK0O0JAKzqNUcnm4z-xjgE68XxLCJKfpMRowRpMkkXyIZpOqUWZdWGNb5bGDuq2UK7q6xv67NqZuP3Hd4q4C_NKoDlSPtXUFOI9tieMpLq0y_hQdlarxcLa7I_R-P3ubzKPF88Pj5G4R5UzKLspLLlmeQpqONZAi0WQTBBMagEieSFYIJZKEClGSuBSgJcA4L3WsuWaUsRG62npXzn714LvM1D6HplEt2N5ncXCEJ1nKA3r5D13a3rWhXaBEkgbdmATqekvlznrvoMxWrjbKrTNKss242ZS8Pv2OOw_wxU7ZawPFHv1bk_0Ag_5zmA</recordid><startdate>20210107</startdate><enddate>20210107</enddate><creator>Tainio, Oskar</creator><creator>Sohrabi, Fereshteh</creator><creator>Janarek, Nikodem</creator><creator>Koivisto, Juha</creator><creator>Puisto, Antti</creator><creator>Viitanen, Leevi</creator><creator>Timonen, Jaakko V I</creator><creator>Alava, Mikko</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2087-3330</orcidid><orcidid>https://orcid.org/0000-0002-5499-1482</orcidid><orcidid>https://orcid.org/0000-0001-9249-5079</orcidid><orcidid>https://orcid.org/0000-0003-1297-434X</orcidid><orcidid>https://orcid.org/0000-0002-9002-6989</orcidid><orcidid>https://orcid.org/0000-0003-0270-9403</orcidid><orcidid>https://orcid.org/0000-0002-4461-3648</orcidid><orcidid>https://orcid.org/0000-0001-9184-2892</orcidid></search><sort><creationdate>20210107</creationdate><title>Chlamydomonas reinhardtii swimming in the Plateau borders of 2D foams</title><author>Tainio, Oskar ; Sohrabi, Fereshteh ; Janarek, Nikodem ; Koivisto, Juha ; Puisto, Antti ; Viitanen, Leevi ; Timonen, Jaakko V I ; Alava, Mikko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-cf483c6e669be0d5b069be737bee084583d7a755177f02f7eb8ee9cfb2b4b3133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algae</topic><topic>Borders</topic><topic>Chlamydomonas reinhardtii</topic><topic>Foams</topic><topic>Nutrients</topic><topic>Saponins</topic><topic>Swimming</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tainio, Oskar</creatorcontrib><creatorcontrib>Sohrabi, Fereshteh</creatorcontrib><creatorcontrib>Janarek, Nikodem</creatorcontrib><creatorcontrib>Koivisto, Juha</creatorcontrib><creatorcontrib>Puisto, Antti</creatorcontrib><creatorcontrib>Viitanen, Leevi</creatorcontrib><creatorcontrib>Timonen, Jaakko V I</creatorcontrib><creatorcontrib>Alava, Mikko</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Soft matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tainio, Oskar</au><au>Sohrabi, Fereshteh</au><au>Janarek, Nikodem</au><au>Koivisto, Juha</au><au>Puisto, Antti</au><au>Viitanen, Leevi</au><au>Timonen, Jaakko V I</au><au>Alava, Mikko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chlamydomonas reinhardtii swimming in the Plateau borders of 2D foams</atitle><jtitle>Soft matter</jtitle><addtitle>Soft Matter</addtitle><date>2021-01-07</date><risdate>2021</risdate><volume>17</volume><issue>1</issue><spage>145</spage><epage>152</epage><pages>145-152</pages><issn>1744-683X</issn><eissn>1744-6848</eissn><abstract>Unicellular Chlamydomonas reinhardtii micro-algae cells were inserted into a quasi-2D Hele-Shaw chamber filled with saponin foam. The movement of the algae along the bubble borders was then manipulated and tracked. These self-propelled particles generate flow and stresses in their surrounding matter. In addition, the algae possess the capability of exerting forces that alter bubble boundaries while maintaining an imminent phototactic movement. We find that by controlling the gas fraction of the foam we can change the interaction of the algae and bubbles. Specifically, our data expose three distinct swimming regimes for the algae with respect to the level of confinement due to the Plateau border cross-section: unlimited bulk, transition, and overdamped regimes. At the transition regime we find the speed of the algae to be modeled by a simple force balance equation emerging from the shear inside the Plateau border. Thus, we have shown that it is possible to create an algae-friendly foam while controlling the algae motion. This opens doors to multiple applications where the flow of nutrients, oxygen and recirculation of living organisms is essential.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>33155584</pmid><doi>10.1039/d0sm01206h</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-2087-3330</orcidid><orcidid>https://orcid.org/0000-0002-5499-1482</orcidid><orcidid>https://orcid.org/0000-0001-9249-5079</orcidid><orcidid>https://orcid.org/0000-0003-1297-434X</orcidid><orcidid>https://orcid.org/0000-0002-9002-6989</orcidid><orcidid>https://orcid.org/0000-0003-0270-9403</orcidid><orcidid>https://orcid.org/0000-0002-4461-3648</orcidid><orcidid>https://orcid.org/0000-0001-9184-2892</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1744-683X
ispartof Soft matter, 2021-01, Vol.17 (1), p.145-152
issn 1744-683X
1744-6848
language eng
recordid cdi_proquest_miscellaneous_2458038364
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Algae
Borders
Chlamydomonas reinhardtii
Foams
Nutrients
Saponins
Swimming
title Chlamydomonas reinhardtii swimming in the Plateau borders of 2D foams
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T23%3A13%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chlamydomonas%20reinhardtii%20swimming%20in%20the%20Plateau%20borders%20of%202D%20foams&rft.jtitle=Soft%20matter&rft.au=Tainio,%20Oskar&rft.date=2021-01-07&rft.volume=17&rft.issue=1&rft.spage=145&rft.epage=152&rft.pages=145-152&rft.issn=1744-683X&rft.eissn=1744-6848&rft_id=info:doi/10.1039/d0sm01206h&rft_dat=%3Cproquest_cross%3E2458038364%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2475631390&rft_id=info:pmid/33155584&rfr_iscdi=true