Chlamydomonas reinhardtii swimming in the Plateau borders of 2D foams
Unicellular Chlamydomonas reinhardtii micro-algae cells were inserted into a quasi-2D Hele-Shaw chamber filled with saponin foam. The movement of the algae along the bubble borders was then manipulated and tracked. These self-propelled particles generate flow and stresses in their surrounding matter...
Gespeichert in:
Veröffentlicht in: | Soft matter 2021-01, Vol.17 (1), p.145-152 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 152 |
---|---|
container_issue | 1 |
container_start_page | 145 |
container_title | Soft matter |
container_volume | 17 |
creator | Tainio, Oskar Sohrabi, Fereshteh Janarek, Nikodem Koivisto, Juha Puisto, Antti Viitanen, Leevi Timonen, Jaakko V I Alava, Mikko |
description | Unicellular Chlamydomonas reinhardtii micro-algae cells were inserted into a quasi-2D Hele-Shaw chamber filled with saponin foam. The movement of the algae along the bubble borders was then manipulated and tracked. These self-propelled particles generate flow and stresses in their surrounding matter. In addition, the algae possess the capability of exerting forces that alter bubble boundaries while maintaining an imminent phototactic movement. We find that by controlling the gas fraction of the foam we can change the interaction of the algae and bubbles. Specifically, our data expose three distinct swimming regimes for the algae with respect to the level of confinement due to the Plateau border cross-section: unlimited bulk, transition, and overdamped regimes. At the transition regime we find the speed of the algae to be modeled by a simple force balance equation emerging from the shear inside the Plateau border. Thus, we have shown that it is possible to create an algae-friendly foam while controlling the algae motion. This opens doors to multiple applications where the flow of nutrients, oxygen and recirculation of living organisms is essential. |
doi_str_mv | 10.1039/d0sm01206h |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2458038364</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2458038364</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-cf483c6e669be0d5b069be737bee084583d7a755177f02f7eb8ee9cfb2b4b3133</originalsourceid><addsrcrecordid>eNpdkEFLwzAYhoMobk4v_gAJeBGhmjRpkx1lm06YKKjgrSTtV9vRNDNpkf17Mzd38PS9h4eH93sROqfkhhI2vi2IN4TGJK0O0JAKzqNUcnm4z-xjgE68XxLCJKfpMRowRpMkkXyIZpOqUWZdWGNb5bGDuq2UK7q6xv67NqZuP3Hd4q4C_NKoDlSPtXUFOI9tieMpLq0y_hQdlarxcLa7I_R-P3ubzKPF88Pj5G4R5UzKLspLLlmeQpqONZAi0WQTBBMagEieSFYIJZKEClGSuBSgJcA4L3WsuWaUsRG62npXzn714LvM1D6HplEt2N5ncXCEJ1nKA3r5D13a3rWhXaBEkgbdmATqekvlznrvoMxWrjbKrTNKss242ZS8Pv2OOw_wxU7ZawPFHv1bk_0Ag_5zmA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2475631390</pqid></control><display><type>article</type><title>Chlamydomonas reinhardtii swimming in the Plateau borders of 2D foams</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Tainio, Oskar ; Sohrabi, Fereshteh ; Janarek, Nikodem ; Koivisto, Juha ; Puisto, Antti ; Viitanen, Leevi ; Timonen, Jaakko V I ; Alava, Mikko</creator><creatorcontrib>Tainio, Oskar ; Sohrabi, Fereshteh ; Janarek, Nikodem ; Koivisto, Juha ; Puisto, Antti ; Viitanen, Leevi ; Timonen, Jaakko V I ; Alava, Mikko</creatorcontrib><description>Unicellular Chlamydomonas reinhardtii micro-algae cells were inserted into a quasi-2D Hele-Shaw chamber filled with saponin foam. The movement of the algae along the bubble borders was then manipulated and tracked. These self-propelled particles generate flow and stresses in their surrounding matter. In addition, the algae possess the capability of exerting forces that alter bubble boundaries while maintaining an imminent phototactic movement. We find that by controlling the gas fraction of the foam we can change the interaction of the algae and bubbles. Specifically, our data expose three distinct swimming regimes for the algae with respect to the level of confinement due to the Plateau border cross-section: unlimited bulk, transition, and overdamped regimes. At the transition regime we find the speed of the algae to be modeled by a simple force balance equation emerging from the shear inside the Plateau border. Thus, we have shown that it is possible to create an algae-friendly foam while controlling the algae motion. This opens doors to multiple applications where the flow of nutrients, oxygen and recirculation of living organisms is essential.</description><identifier>ISSN: 1744-683X</identifier><identifier>EISSN: 1744-6848</identifier><identifier>DOI: 10.1039/d0sm01206h</identifier><identifier>PMID: 33155584</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Algae ; Borders ; Chlamydomonas reinhardtii ; Foams ; Nutrients ; Saponins ; Swimming</subject><ispartof>Soft matter, 2021-01, Vol.17 (1), p.145-152</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-cf483c6e669be0d5b069be737bee084583d7a755177f02f7eb8ee9cfb2b4b3133</citedby><cites>FETCH-LOGICAL-c388t-cf483c6e669be0d5b069be737bee084583d7a755177f02f7eb8ee9cfb2b4b3133</cites><orcidid>0000-0002-2087-3330 ; 0000-0002-5499-1482 ; 0000-0001-9249-5079 ; 0000-0003-1297-434X ; 0000-0002-9002-6989 ; 0000-0003-0270-9403 ; 0000-0002-4461-3648 ; 0000-0001-9184-2892</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33155584$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tainio, Oskar</creatorcontrib><creatorcontrib>Sohrabi, Fereshteh</creatorcontrib><creatorcontrib>Janarek, Nikodem</creatorcontrib><creatorcontrib>Koivisto, Juha</creatorcontrib><creatorcontrib>Puisto, Antti</creatorcontrib><creatorcontrib>Viitanen, Leevi</creatorcontrib><creatorcontrib>Timonen, Jaakko V I</creatorcontrib><creatorcontrib>Alava, Mikko</creatorcontrib><title>Chlamydomonas reinhardtii swimming in the Plateau borders of 2D foams</title><title>Soft matter</title><addtitle>Soft Matter</addtitle><description>Unicellular Chlamydomonas reinhardtii micro-algae cells were inserted into a quasi-2D Hele-Shaw chamber filled with saponin foam. The movement of the algae along the bubble borders was then manipulated and tracked. These self-propelled particles generate flow and stresses in their surrounding matter. In addition, the algae possess the capability of exerting forces that alter bubble boundaries while maintaining an imminent phototactic movement. We find that by controlling the gas fraction of the foam we can change the interaction of the algae and bubbles. Specifically, our data expose three distinct swimming regimes for the algae with respect to the level of confinement due to the Plateau border cross-section: unlimited bulk, transition, and overdamped regimes. At the transition regime we find the speed of the algae to be modeled by a simple force balance equation emerging from the shear inside the Plateau border. Thus, we have shown that it is possible to create an algae-friendly foam while controlling the algae motion. This opens doors to multiple applications where the flow of nutrients, oxygen and recirculation of living organisms is essential.</description><subject>Algae</subject><subject>Borders</subject><subject>Chlamydomonas reinhardtii</subject><subject>Foams</subject><subject>Nutrients</subject><subject>Saponins</subject><subject>Swimming</subject><issn>1744-683X</issn><issn>1744-6848</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkEFLwzAYhoMobk4v_gAJeBGhmjRpkx1lm06YKKjgrSTtV9vRNDNpkf17Mzd38PS9h4eH93sROqfkhhI2vi2IN4TGJK0O0JAKzqNUcnm4z-xjgE68XxLCJKfpMRowRpMkkXyIZpOqUWZdWGNb5bGDuq2UK7q6xv67NqZuP3Hd4q4C_NKoDlSPtXUFOI9tieMpLq0y_hQdlarxcLa7I_R-P3ubzKPF88Pj5G4R5UzKLspLLlmeQpqONZAi0WQTBBMagEieSFYIJZKEClGSuBSgJcA4L3WsuWaUsRG62npXzn714LvM1D6HplEt2N5ncXCEJ1nKA3r5D13a3rWhXaBEkgbdmATqekvlznrvoMxWrjbKrTNKss242ZS8Pv2OOw_wxU7ZawPFHv1bk_0Ag_5zmA</recordid><startdate>20210107</startdate><enddate>20210107</enddate><creator>Tainio, Oskar</creator><creator>Sohrabi, Fereshteh</creator><creator>Janarek, Nikodem</creator><creator>Koivisto, Juha</creator><creator>Puisto, Antti</creator><creator>Viitanen, Leevi</creator><creator>Timonen, Jaakko V I</creator><creator>Alava, Mikko</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2087-3330</orcidid><orcidid>https://orcid.org/0000-0002-5499-1482</orcidid><orcidid>https://orcid.org/0000-0001-9249-5079</orcidid><orcidid>https://orcid.org/0000-0003-1297-434X</orcidid><orcidid>https://orcid.org/0000-0002-9002-6989</orcidid><orcidid>https://orcid.org/0000-0003-0270-9403</orcidid><orcidid>https://orcid.org/0000-0002-4461-3648</orcidid><orcidid>https://orcid.org/0000-0001-9184-2892</orcidid></search><sort><creationdate>20210107</creationdate><title>Chlamydomonas reinhardtii swimming in the Plateau borders of 2D foams</title><author>Tainio, Oskar ; Sohrabi, Fereshteh ; Janarek, Nikodem ; Koivisto, Juha ; Puisto, Antti ; Viitanen, Leevi ; Timonen, Jaakko V I ; Alava, Mikko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-cf483c6e669be0d5b069be737bee084583d7a755177f02f7eb8ee9cfb2b4b3133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algae</topic><topic>Borders</topic><topic>Chlamydomonas reinhardtii</topic><topic>Foams</topic><topic>Nutrients</topic><topic>Saponins</topic><topic>Swimming</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tainio, Oskar</creatorcontrib><creatorcontrib>Sohrabi, Fereshteh</creatorcontrib><creatorcontrib>Janarek, Nikodem</creatorcontrib><creatorcontrib>Koivisto, Juha</creatorcontrib><creatorcontrib>Puisto, Antti</creatorcontrib><creatorcontrib>Viitanen, Leevi</creatorcontrib><creatorcontrib>Timonen, Jaakko V I</creatorcontrib><creatorcontrib>Alava, Mikko</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Soft matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tainio, Oskar</au><au>Sohrabi, Fereshteh</au><au>Janarek, Nikodem</au><au>Koivisto, Juha</au><au>Puisto, Antti</au><au>Viitanen, Leevi</au><au>Timonen, Jaakko V I</au><au>Alava, Mikko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chlamydomonas reinhardtii swimming in the Plateau borders of 2D foams</atitle><jtitle>Soft matter</jtitle><addtitle>Soft Matter</addtitle><date>2021-01-07</date><risdate>2021</risdate><volume>17</volume><issue>1</issue><spage>145</spage><epage>152</epage><pages>145-152</pages><issn>1744-683X</issn><eissn>1744-6848</eissn><abstract>Unicellular Chlamydomonas reinhardtii micro-algae cells were inserted into a quasi-2D Hele-Shaw chamber filled with saponin foam. The movement of the algae along the bubble borders was then manipulated and tracked. These self-propelled particles generate flow and stresses in their surrounding matter. In addition, the algae possess the capability of exerting forces that alter bubble boundaries while maintaining an imminent phototactic movement. We find that by controlling the gas fraction of the foam we can change the interaction of the algae and bubbles. Specifically, our data expose three distinct swimming regimes for the algae with respect to the level of confinement due to the Plateau border cross-section: unlimited bulk, transition, and overdamped regimes. At the transition regime we find the speed of the algae to be modeled by a simple force balance equation emerging from the shear inside the Plateau border. Thus, we have shown that it is possible to create an algae-friendly foam while controlling the algae motion. This opens doors to multiple applications where the flow of nutrients, oxygen and recirculation of living organisms is essential.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>33155584</pmid><doi>10.1039/d0sm01206h</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-2087-3330</orcidid><orcidid>https://orcid.org/0000-0002-5499-1482</orcidid><orcidid>https://orcid.org/0000-0001-9249-5079</orcidid><orcidid>https://orcid.org/0000-0003-1297-434X</orcidid><orcidid>https://orcid.org/0000-0002-9002-6989</orcidid><orcidid>https://orcid.org/0000-0003-0270-9403</orcidid><orcidid>https://orcid.org/0000-0002-4461-3648</orcidid><orcidid>https://orcid.org/0000-0001-9184-2892</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1744-683X |
ispartof | Soft matter, 2021-01, Vol.17 (1), p.145-152 |
issn | 1744-683X 1744-6848 |
language | eng |
recordid | cdi_proquest_miscellaneous_2458038364 |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Algae Borders Chlamydomonas reinhardtii Foams Nutrients Saponins Swimming |
title | Chlamydomonas reinhardtii swimming in the Plateau borders of 2D foams |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T23%3A13%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chlamydomonas%20reinhardtii%20swimming%20in%20the%20Plateau%20borders%20of%202D%20foams&rft.jtitle=Soft%20matter&rft.au=Tainio,%20Oskar&rft.date=2021-01-07&rft.volume=17&rft.issue=1&rft.spage=145&rft.epage=152&rft.pages=145-152&rft.issn=1744-683X&rft.eissn=1744-6848&rft_id=info:doi/10.1039/d0sm01206h&rft_dat=%3Cproquest_cross%3E2458038364%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2475631390&rft_id=info:pmid/33155584&rfr_iscdi=true |