Acyl-Ghrelin Influences Pancreatic β-Cell Function by Interference with KATP Channels

The aim for this study was to elucidate how the hypothalamic hunger-inducing hormone acyl-ghrelin (AG), which is also produced in the pancreas, affects β-cell function, with particular attention to the role of ATP-sensitive K+ (KATP) channels and the exact site of action of the hormone. AG hyperpola...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Diabetes (New York, N.Y.) N.Y.), 2021-02, Vol.70 (2), p.423-435
Hauptverfasser: Kaiser, Julia, Krippeit-Drews, Peter, Drews, Gisela
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The aim for this study was to elucidate how the hypothalamic hunger-inducing hormone acyl-ghrelin (AG), which is also produced in the pancreas, affects β-cell function, with particular attention to the role of ATP-sensitive K+ (KATP) channels and the exact site of action of the hormone. AG hyperpolarized the membrane potential and decreased cytoplasmic calcium concentration [Ca2+]c and glucose-stimulated insulin secretion (GSIS). These effects were abolished in β-cells from SUR1-knockout (KO) mice. AG increased KATP current but only in a configuration with intact metabolism. Unacylated ghrelin counteracted the effects of AG. The influence of AG on membrane potential and GSIS could only be averted in the combined presence of a ghrelin receptor (GHSR1a) antagonist and an inverse agonist. The inhibition of GSIS by AG could be prevented by dibutyryl cyclic–cAMP or 3-isobutyl-1-methylxanthine and the somatostatin (SST) receptor 2–5 antagonist H6056. These data indicate that AG indirectly opens KATP channels probably by interference with the cAMP/cAMP-dependent protein kinase pathway, resulting in a decrease of [Ca2+]c and GSIS. The experiments with SUR1-KO β-cells point to a direct effect of AG on β-cells and not, as earlier suggested, to an exclusive effect by AG-induced SST release from δ-cells. Nevertheless, SST receptors may be involved in the effect of AG, possibly by heteromerization of AG and SST receptors.
ISSN:0012-1797
1939-327X
DOI:10.2337/db20-0231