Combining Convolutional Neural Networks and Cognitive Models to Predict Novel Object Recognition in Humans
Object representations from convolutional neural network (CNN) models of computer vision (LeCun, Bengio, & Hinton, 2015) were used to drive a cognitive model of decision making, the linear ballistic accumulator (LBA) model (Brown & Heathcote, 2008), to predict errors and response times (RTs)...
Gespeichert in:
Veröffentlicht in: | Journal of experimental psychology. Learning, memory, and cognition memory, and cognition, 2021-05, Vol.47 (5), p.785-807 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 807 |
---|---|
container_issue | 5 |
container_start_page | 785 |
container_title | Journal of experimental psychology. Learning, memory, and cognition |
container_volume | 47 |
creator | Annis, Jeffrey Gauthier, Isabel Palmeri, Thomas J. |
description | Object representations from convolutional neural network (CNN) models of computer vision (LeCun, Bengio, & Hinton, 2015) were used to drive a cognitive model of decision making, the linear ballistic accumulator (LBA) model (Brown & Heathcote, 2008), to predict errors and response times (RTs) in a novel object recognition task in humans. CNNs have become very successful at visual tasks like classifying objects in real-world images (e.g., He, Zhang, Ren, & Sun, 2015; Krizhevsky, Sutskever, & Hinton, 2012). We asked whether object representations learned by CNNs previously trained on a large corpus of natural images could be used to predict performance recognizing novel objects the network has never been trained on; we used novel Greebles, Ziggerins, and Sheinbugs that have been used in a number of previous object recognition studies. We specifically investigated whether a model combining high-level CNN representations of these novel objects could be used to drive an LBA model of decision making to account for errors and RTs in a same-different matching task (from Richler et al., 2019). Combining linearly transformed CNN object representations with the LBA provided reasonable accounts of performance not only on average, but at the individual-participant level and the item level as well. We frame the findings in the context of growing interest in using CNN models to understand visual object representations and the promise of using CNN representations to extend cognitive models to explain more complex aspects of human behavior. |
doi_str_mv | 10.1037/xlm0000968 |
format | Article |
fullrecord | <record><control><sourceid>proquest_eric_</sourceid><recordid>TN_cdi_proquest_miscellaneous_2458034236</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ1302005</ericid><sourcerecordid>2458034236</sourcerecordid><originalsourceid>FETCH-LOGICAL-a480t-e09562893dde9d7a7a782a44399a12c44d6a7f45acc4eb14baeeeb0cbd90f1263</originalsourceid><addsrcrecordid>eNqN0c1rFTEQAPAgin1WL96FBS9iWc3nJjnKUlultiJ6XrLZ2ZLnvuSZZF_tf2_WlRY8iMlhCPNjJskg9JzgNwQz-fbntMNl6UY9QBuima4JVeIh2mAqVS2ZZkfoSUrbBWGmHqMjxoggkqgN2rZh1zvv_HXVBn8I05xd8GaqLmGOv0O-CfF7qowfirj2LrsDVJ_CAFOqcqg-RxiczdVlOMBUXfVbKIcvYFcafOV8dT7vjE9P0aPRTAme_YnH6Nv706_teX1xdfahfXdRG65wrgFr0VCl2TCAHqQpW1HDOdPaEGo5HxojRy6MtRx6wnsDAD22_aDxSGjDjtGrte4-hh8zpNztXLIwTcZDmFNHuVCYccoW-vIvug1zLM8vSgimBMOc_VNxISVrsCRFvV6VjSGlCGO3j25n4m1HcLfMqbufU8EvVgzR2Tt4-pEwTDEWJX-y5m-gD2OyDryFO1eKNJJTyslSb9Hq_3XrslkG04bZ5_tGZm-6fbq1JmZnJ0h2jhF8Xi7dcdmJTpbf-AXVZ703</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2457736071</pqid></control><display><type>article</type><title>Combining Convolutional Neural Networks and Cognitive Models to Predict Novel Object Recognition in Humans</title><source>EBSCOhost APA PsycARTICLES</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>Web of Science - Social Sciences Citation Index – 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><creator>Annis, Jeffrey ; Gauthier, Isabel ; Palmeri, Thomas J.</creator><contributor>Benjamin, Aaron S</contributor><creatorcontrib>Annis, Jeffrey ; Gauthier, Isabel ; Palmeri, Thomas J. ; Benjamin, Aaron S</creatorcontrib><description>Object representations from convolutional neural network (CNN) models of computer vision (LeCun, Bengio, & Hinton, 2015) were used to drive a cognitive model of decision making, the linear ballistic accumulator (LBA) model (Brown & Heathcote, 2008), to predict errors and response times (RTs) in a novel object recognition task in humans. CNNs have become very successful at visual tasks like classifying objects in real-world images (e.g., He, Zhang, Ren, & Sun, 2015; Krizhevsky, Sutskever, & Hinton, 2012). We asked whether object representations learned by CNNs previously trained on a large corpus of natural images could be used to predict performance recognizing novel objects the network has never been trained on; we used novel Greebles, Ziggerins, and Sheinbugs that have been used in a number of previous object recognition studies. We specifically investigated whether a model combining high-level CNN representations of these novel objects could be used to drive an LBA model of decision making to account for errors and RTs in a same-different matching task (from Richler et al., 2019). Combining linearly transformed CNN object representations with the LBA provided reasonable accounts of performance not only on average, but at the individual-participant level and the item level as well. We frame the findings in the context of growing interest in using CNN models to understand visual object representations and the promise of using CNN representations to extend cognitive models to explain more complex aspects of human behavior.</description><identifier>ISSN: 0278-7393</identifier><identifier>EISSN: 1939-1285</identifier><identifier>DOI: 10.1037/xlm0000968</identifier><identifier>PMID: 33151718</identifier><language>eng</language><publisher>WASHINGTON: American Psychological Association</publisher><subject>Artificial Intelligence ; Artificial Neural Networks ; Behavior Patterns ; Brain Hemisphere Functions ; Classification ; Cognition & reasoning ; Cognitive ability ; Cognitive Complexity ; Cognitive models ; Computers ; Decision Making ; Error Patterns ; Human ; Memory ; Motivation ; Neural networks ; Novelty (Stimulus Dimension) ; Object Recognition ; Prediction ; Psychology ; Psychology, Experimental ; Reaction Time ; Recognition (Psychology) ; Social Sciences ; Studies ; Task Analysis ; Visualization</subject><ispartof>Journal of experimental psychology. Learning, memory, and cognition, 2021-05, Vol.47 (5), p.785-807</ispartof><rights>2020 American Psychological Association</rights><rights>2020, American Psychological Association</rights><rights>Copyright American Psychological Association May 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>9</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000674224100005</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-a480t-e09562893dde9d7a7a782a44399a12c44d6a7f45acc4eb14baeeeb0cbd90f1263</citedby><cites>FETCH-LOGICAL-a480t-e09562893dde9d7a7a782a44399a12c44d6a7f45acc4eb14baeeeb0cbd90f1263</cites><orcidid>0000-0002-6249-4769</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,27931,27932,39264,39265</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ1302005$$DView record in ERIC$$Hfree_for_read</backlink></links><search><contributor>Benjamin, Aaron S</contributor><creatorcontrib>Annis, Jeffrey</creatorcontrib><creatorcontrib>Gauthier, Isabel</creatorcontrib><creatorcontrib>Palmeri, Thomas J.</creatorcontrib><title>Combining Convolutional Neural Networks and Cognitive Models to Predict Novel Object Recognition in Humans</title><title>Journal of experimental psychology. Learning, memory, and cognition</title><addtitle>J EXP PSYCHOL LEARN</addtitle><description>Object representations from convolutional neural network (CNN) models of computer vision (LeCun, Bengio, & Hinton, 2015) were used to drive a cognitive model of decision making, the linear ballistic accumulator (LBA) model (Brown & Heathcote, 2008), to predict errors and response times (RTs) in a novel object recognition task in humans. CNNs have become very successful at visual tasks like classifying objects in real-world images (e.g., He, Zhang, Ren, & Sun, 2015; Krizhevsky, Sutskever, & Hinton, 2012). We asked whether object representations learned by CNNs previously trained on a large corpus of natural images could be used to predict performance recognizing novel objects the network has never been trained on; we used novel Greebles, Ziggerins, and Sheinbugs that have been used in a number of previous object recognition studies. We specifically investigated whether a model combining high-level CNN representations of these novel objects could be used to drive an LBA model of decision making to account for errors and RTs in a same-different matching task (from Richler et al., 2019). Combining linearly transformed CNN object representations with the LBA provided reasonable accounts of performance not only on average, but at the individual-participant level and the item level as well. We frame the findings in the context of growing interest in using CNN models to understand visual object representations and the promise of using CNN representations to extend cognitive models to explain more complex aspects of human behavior.</description><subject>Artificial Intelligence</subject><subject>Artificial Neural Networks</subject><subject>Behavior Patterns</subject><subject>Brain Hemisphere Functions</subject><subject>Classification</subject><subject>Cognition & reasoning</subject><subject>Cognitive ability</subject><subject>Cognitive Complexity</subject><subject>Cognitive models</subject><subject>Computers</subject><subject>Decision Making</subject><subject>Error Patterns</subject><subject>Human</subject><subject>Memory</subject><subject>Motivation</subject><subject>Neural networks</subject><subject>Novelty (Stimulus Dimension)</subject><subject>Object Recognition</subject><subject>Prediction</subject><subject>Psychology</subject><subject>Psychology, Experimental</subject><subject>Reaction Time</subject><subject>Recognition (Psychology)</subject><subject>Social Sciences</subject><subject>Studies</subject><subject>Task Analysis</subject><subject>Visualization</subject><issn>0278-7393</issn><issn>1939-1285</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>GIZIO</sourceid><sourceid>HGBXW</sourceid><recordid>eNqN0c1rFTEQAPAgin1WL96FBS9iWc3nJjnKUlultiJ6XrLZ2ZLnvuSZZF_tf2_WlRY8iMlhCPNjJskg9JzgNwQz-fbntMNl6UY9QBuima4JVeIh2mAqVS2ZZkfoSUrbBWGmHqMjxoggkqgN2rZh1zvv_HXVBn8I05xd8GaqLmGOv0O-CfF7qowfirj2LrsDVJ_CAFOqcqg-RxiczdVlOMBUXfVbKIcvYFcafOV8dT7vjE9P0aPRTAme_YnH6Nv706_teX1xdfahfXdRG65wrgFr0VCl2TCAHqQpW1HDOdPaEGo5HxojRy6MtRx6wnsDAD22_aDxSGjDjtGrte4-hh8zpNztXLIwTcZDmFNHuVCYccoW-vIvug1zLM8vSgimBMOc_VNxISVrsCRFvV6VjSGlCGO3j25n4m1HcLfMqbufU8EvVgzR2Tt4-pEwTDEWJX-y5m-gD2OyDryFO1eKNJJTyslSb9Hq_3XrslkG04bZ5_tGZm-6fbq1JmZnJ0h2jhF8Xi7dcdmJTpbf-AXVZ703</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Annis, Jeffrey</creator><creator>Gauthier, Isabel</creator><creator>Palmeri, Thomas J.</creator><general>American Psychological Association</general><general>Amer Psychological Assoc</general><scope>17B</scope><scope>BLEPL</scope><scope>DTL</scope><scope>DVR</scope><scope>EGQ</scope><scope>GIZIO</scope><scope>HGBXW</scope><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7RZ</scope><scope>PSYQQ</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6249-4769</orcidid></search><sort><creationdate>20210501</creationdate><title>Combining Convolutional Neural Networks and Cognitive Models to Predict Novel Object Recognition in Humans</title><author>Annis, Jeffrey ; Gauthier, Isabel ; Palmeri, Thomas J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a480t-e09562893dde9d7a7a782a44399a12c44d6a7f45acc4eb14baeeeb0cbd90f1263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial Intelligence</topic><topic>Artificial Neural Networks</topic><topic>Behavior Patterns</topic><topic>Brain Hemisphere Functions</topic><topic>Classification</topic><topic>Cognition & reasoning</topic><topic>Cognitive ability</topic><topic>Cognitive Complexity</topic><topic>Cognitive models</topic><topic>Computers</topic><topic>Decision Making</topic><topic>Error Patterns</topic><topic>Human</topic><topic>Memory</topic><topic>Motivation</topic><topic>Neural networks</topic><topic>Novelty (Stimulus Dimension)</topic><topic>Object Recognition</topic><topic>Prediction</topic><topic>Psychology</topic><topic>Psychology, Experimental</topic><topic>Reaction Time</topic><topic>Recognition (Psychology)</topic><topic>Social Sciences</topic><topic>Studies</topic><topic>Task Analysis</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Annis, Jeffrey</creatorcontrib><creatorcontrib>Gauthier, Isabel</creatorcontrib><creatorcontrib>Palmeri, Thomas J.</creatorcontrib><collection>Web of Knowledge</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Social Sciences Citation Index</collection><collection>Web of Science Primary (SCIE, SSCI & AHCI)</collection><collection>Web of Science - Social Sciences Citation Index – 2021</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>CrossRef</collection><collection>Access via APA PsycArticles® (ProQuest)</collection><collection>ProQuest One Psychology</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of experimental psychology. Learning, memory, and cognition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Annis, Jeffrey</au><au>Gauthier, Isabel</au><au>Palmeri, Thomas J.</au><au>Benjamin, Aaron S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ1302005</ericid><atitle>Combining Convolutional Neural Networks and Cognitive Models to Predict Novel Object Recognition in Humans</atitle><jtitle>Journal of experimental psychology. Learning, memory, and cognition</jtitle><stitle>J EXP PSYCHOL LEARN</stitle><date>2021-05-01</date><risdate>2021</risdate><volume>47</volume><issue>5</issue><spage>785</spage><epage>807</epage><pages>785-807</pages><issn>0278-7393</issn><eissn>1939-1285</eissn><abstract>Object representations from convolutional neural network (CNN) models of computer vision (LeCun, Bengio, & Hinton, 2015) were used to drive a cognitive model of decision making, the linear ballistic accumulator (LBA) model (Brown & Heathcote, 2008), to predict errors and response times (RTs) in a novel object recognition task in humans. CNNs have become very successful at visual tasks like classifying objects in real-world images (e.g., He, Zhang, Ren, & Sun, 2015; Krizhevsky, Sutskever, & Hinton, 2012). We asked whether object representations learned by CNNs previously trained on a large corpus of natural images could be used to predict performance recognizing novel objects the network has never been trained on; we used novel Greebles, Ziggerins, and Sheinbugs that have been used in a number of previous object recognition studies. We specifically investigated whether a model combining high-level CNN representations of these novel objects could be used to drive an LBA model of decision making to account for errors and RTs in a same-different matching task (from Richler et al., 2019). Combining linearly transformed CNN object representations with the LBA provided reasonable accounts of performance not only on average, but at the individual-participant level and the item level as well. We frame the findings in the context of growing interest in using CNN models to understand visual object representations and the promise of using CNN representations to extend cognitive models to explain more complex aspects of human behavior.</abstract><cop>WASHINGTON</cop><pub>American Psychological Association</pub><pmid>33151718</pmid><doi>10.1037/xlm0000968</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-6249-4769</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0278-7393 |
ispartof | Journal of experimental psychology. Learning, memory, and cognition, 2021-05, Vol.47 (5), p.785-807 |
issn | 0278-7393 1939-1285 |
language | eng |
recordid | cdi_proquest_miscellaneous_2458034236 |
source | EBSCOhost APA PsycARTICLES; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Web of Science - Social Sciences Citation Index – 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /> |
subjects | Artificial Intelligence Artificial Neural Networks Behavior Patterns Brain Hemisphere Functions Classification Cognition & reasoning Cognitive ability Cognitive Complexity Cognitive models Computers Decision Making Error Patterns Human Memory Motivation Neural networks Novelty (Stimulus Dimension) Object Recognition Prediction Psychology Psychology, Experimental Reaction Time Recognition (Psychology) Social Sciences Studies Task Analysis Visualization |
title | Combining Convolutional Neural Networks and Cognitive Models to Predict Novel Object Recognition in Humans |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T00%3A59%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_eric_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combining%20Convolutional%20Neural%20Networks%20and%20Cognitive%20Models%20to%20Predict%20Novel%20Object%20Recognition%20in%20Humans&rft.jtitle=Journal%20of%20experimental%20psychology.%20Learning,%20memory,%20and%20cognition&rft.au=Annis,%20Jeffrey&rft.date=2021-05-01&rft.volume=47&rft.issue=5&rft.spage=785&rft.epage=807&rft.pages=785-807&rft.issn=0278-7393&rft.eissn=1939-1285&rft_id=info:doi/10.1037/xlm0000968&rft_dat=%3Cproquest_eric_%3E2458034236%3C/proquest_eric_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2457736071&rft_id=info:pmid/33151718&rft_ericid=EJ1302005&rfr_iscdi=true |