Combining Convolutional Neural Networks and Cognitive Models to Predict Novel Object Recognition in Humans

Object representations from convolutional neural network (CNN) models of computer vision (LeCun, Bengio, & Hinton, 2015) were used to drive a cognitive model of decision making, the linear ballistic accumulator (LBA) model (Brown & Heathcote, 2008), to predict errors and response times (RTs)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental psychology. Learning, memory, and cognition memory, and cognition, 2021-05, Vol.47 (5), p.785-807
Hauptverfasser: Annis, Jeffrey, Gauthier, Isabel, Palmeri, Thomas J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 807
container_issue 5
container_start_page 785
container_title Journal of experimental psychology. Learning, memory, and cognition
container_volume 47
creator Annis, Jeffrey
Gauthier, Isabel
Palmeri, Thomas J.
description Object representations from convolutional neural network (CNN) models of computer vision (LeCun, Bengio, & Hinton, 2015) were used to drive a cognitive model of decision making, the linear ballistic accumulator (LBA) model (Brown & Heathcote, 2008), to predict errors and response times (RTs) in a novel object recognition task in humans. CNNs have become very successful at visual tasks like classifying objects in real-world images (e.g., He, Zhang, Ren, & Sun, 2015; Krizhevsky, Sutskever, & Hinton, 2012). We asked whether object representations learned by CNNs previously trained on a large corpus of natural images could be used to predict performance recognizing novel objects the network has never been trained on; we used novel Greebles, Ziggerins, and Sheinbugs that have been used in a number of previous object recognition studies. We specifically investigated whether a model combining high-level CNN representations of these novel objects could be used to drive an LBA model of decision making to account for errors and RTs in a same-different matching task (from Richler et al., 2019). Combining linearly transformed CNN object representations with the LBA provided reasonable accounts of performance not only on average, but at the individual-participant level and the item level as well. We frame the findings in the context of growing interest in using CNN models to understand visual object representations and the promise of using CNN representations to extend cognitive models to explain more complex aspects of human behavior.
doi_str_mv 10.1037/xlm0000968
format Article
fullrecord <record><control><sourceid>proquest_eric_</sourceid><recordid>TN_cdi_proquest_miscellaneous_2458034236</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ1302005</ericid><sourcerecordid>2458034236</sourcerecordid><originalsourceid>FETCH-LOGICAL-a480t-e09562893dde9d7a7a782a44399a12c44d6a7f45acc4eb14baeeeb0cbd90f1263</originalsourceid><addsrcrecordid>eNqN0c1rFTEQAPAgin1WL96FBS9iWc3nJjnKUlultiJ6XrLZ2ZLnvuSZZF_tf2_WlRY8iMlhCPNjJskg9JzgNwQz-fbntMNl6UY9QBuima4JVeIh2mAqVS2ZZkfoSUrbBWGmHqMjxoggkqgN2rZh1zvv_HXVBn8I05xd8GaqLmGOv0O-CfF7qowfirj2LrsDVJ_CAFOqcqg-RxiczdVlOMBUXfVbKIcvYFcafOV8dT7vjE9P0aPRTAme_YnH6Nv706_teX1xdfahfXdRG65wrgFr0VCl2TCAHqQpW1HDOdPaEGo5HxojRy6MtRx6wnsDAD22_aDxSGjDjtGrte4-hh8zpNztXLIwTcZDmFNHuVCYccoW-vIvug1zLM8vSgimBMOc_VNxISVrsCRFvV6VjSGlCGO3j25n4m1HcLfMqbufU8EvVgzR2Tt4-pEwTDEWJX-y5m-gD2OyDryFO1eKNJJTyslSb9Hq_3XrslkG04bZ5_tGZm-6fbq1JmZnJ0h2jhF8Xi7dcdmJTpbf-AXVZ703</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2457736071</pqid></control><display><type>article</type><title>Combining Convolutional Neural Networks and Cognitive Models to Predict Novel Object Recognition in Humans</title><source>EBSCOhost APA PsycARTICLES</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>Web of Science - Social Sciences Citation Index – 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Annis, Jeffrey ; Gauthier, Isabel ; Palmeri, Thomas J.</creator><contributor>Benjamin, Aaron S</contributor><creatorcontrib>Annis, Jeffrey ; Gauthier, Isabel ; Palmeri, Thomas J. ; Benjamin, Aaron S</creatorcontrib><description>Object representations from convolutional neural network (CNN) models of computer vision (LeCun, Bengio, &amp; Hinton, 2015) were used to drive a cognitive model of decision making, the linear ballistic accumulator (LBA) model (Brown &amp; Heathcote, 2008), to predict errors and response times (RTs) in a novel object recognition task in humans. CNNs have become very successful at visual tasks like classifying objects in real-world images (e.g., He, Zhang, Ren, &amp; Sun, 2015; Krizhevsky, Sutskever, &amp; Hinton, 2012). We asked whether object representations learned by CNNs previously trained on a large corpus of natural images could be used to predict performance recognizing novel objects the network has never been trained on; we used novel Greebles, Ziggerins, and Sheinbugs that have been used in a number of previous object recognition studies. We specifically investigated whether a model combining high-level CNN representations of these novel objects could be used to drive an LBA model of decision making to account for errors and RTs in a same-different matching task (from Richler et al., 2019). Combining linearly transformed CNN object representations with the LBA provided reasonable accounts of performance not only on average, but at the individual-participant level and the item level as well. We frame the findings in the context of growing interest in using CNN models to understand visual object representations and the promise of using CNN representations to extend cognitive models to explain more complex aspects of human behavior.</description><identifier>ISSN: 0278-7393</identifier><identifier>EISSN: 1939-1285</identifier><identifier>DOI: 10.1037/xlm0000968</identifier><identifier>PMID: 33151718</identifier><language>eng</language><publisher>WASHINGTON: American Psychological Association</publisher><subject>Artificial Intelligence ; Artificial Neural Networks ; Behavior Patterns ; Brain Hemisphere Functions ; Classification ; Cognition &amp; reasoning ; Cognitive ability ; Cognitive Complexity ; Cognitive models ; Computers ; Decision Making ; Error Patterns ; Human ; Memory ; Motivation ; Neural networks ; Novelty (Stimulus Dimension) ; Object Recognition ; Prediction ; Psychology ; Psychology, Experimental ; Reaction Time ; Recognition (Psychology) ; Social Sciences ; Studies ; Task Analysis ; Visualization</subject><ispartof>Journal of experimental psychology. Learning, memory, and cognition, 2021-05, Vol.47 (5), p.785-807</ispartof><rights>2020 American Psychological Association</rights><rights>2020, American Psychological Association</rights><rights>Copyright American Psychological Association May 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>9</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000674224100005</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-a480t-e09562893dde9d7a7a782a44399a12c44d6a7f45acc4eb14baeeeb0cbd90f1263</citedby><cites>FETCH-LOGICAL-a480t-e09562893dde9d7a7a782a44399a12c44d6a7f45acc4eb14baeeeb0cbd90f1263</cites><orcidid>0000-0002-6249-4769</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,27931,27932,39264,39265</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ1302005$$DView record in ERIC$$Hfree_for_read</backlink></links><search><contributor>Benjamin, Aaron S</contributor><creatorcontrib>Annis, Jeffrey</creatorcontrib><creatorcontrib>Gauthier, Isabel</creatorcontrib><creatorcontrib>Palmeri, Thomas J.</creatorcontrib><title>Combining Convolutional Neural Networks and Cognitive Models to Predict Novel Object Recognition in Humans</title><title>Journal of experimental psychology. Learning, memory, and cognition</title><addtitle>J EXP PSYCHOL LEARN</addtitle><description>Object representations from convolutional neural network (CNN) models of computer vision (LeCun, Bengio, &amp; Hinton, 2015) were used to drive a cognitive model of decision making, the linear ballistic accumulator (LBA) model (Brown &amp; Heathcote, 2008), to predict errors and response times (RTs) in a novel object recognition task in humans. CNNs have become very successful at visual tasks like classifying objects in real-world images (e.g., He, Zhang, Ren, &amp; Sun, 2015; Krizhevsky, Sutskever, &amp; Hinton, 2012). We asked whether object representations learned by CNNs previously trained on a large corpus of natural images could be used to predict performance recognizing novel objects the network has never been trained on; we used novel Greebles, Ziggerins, and Sheinbugs that have been used in a number of previous object recognition studies. We specifically investigated whether a model combining high-level CNN representations of these novel objects could be used to drive an LBA model of decision making to account for errors and RTs in a same-different matching task (from Richler et al., 2019). Combining linearly transformed CNN object representations with the LBA provided reasonable accounts of performance not only on average, but at the individual-participant level and the item level as well. We frame the findings in the context of growing interest in using CNN models to understand visual object representations and the promise of using CNN representations to extend cognitive models to explain more complex aspects of human behavior.</description><subject>Artificial Intelligence</subject><subject>Artificial Neural Networks</subject><subject>Behavior Patterns</subject><subject>Brain Hemisphere Functions</subject><subject>Classification</subject><subject>Cognition &amp; reasoning</subject><subject>Cognitive ability</subject><subject>Cognitive Complexity</subject><subject>Cognitive models</subject><subject>Computers</subject><subject>Decision Making</subject><subject>Error Patterns</subject><subject>Human</subject><subject>Memory</subject><subject>Motivation</subject><subject>Neural networks</subject><subject>Novelty (Stimulus Dimension)</subject><subject>Object Recognition</subject><subject>Prediction</subject><subject>Psychology</subject><subject>Psychology, Experimental</subject><subject>Reaction Time</subject><subject>Recognition (Psychology)</subject><subject>Social Sciences</subject><subject>Studies</subject><subject>Task Analysis</subject><subject>Visualization</subject><issn>0278-7393</issn><issn>1939-1285</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>GIZIO</sourceid><sourceid>HGBXW</sourceid><recordid>eNqN0c1rFTEQAPAgin1WL96FBS9iWc3nJjnKUlultiJ6XrLZ2ZLnvuSZZF_tf2_WlRY8iMlhCPNjJskg9JzgNwQz-fbntMNl6UY9QBuima4JVeIh2mAqVS2ZZkfoSUrbBWGmHqMjxoggkqgN2rZh1zvv_HXVBn8I05xd8GaqLmGOv0O-CfF7qowfirj2LrsDVJ_CAFOqcqg-RxiczdVlOMBUXfVbKIcvYFcafOV8dT7vjE9P0aPRTAme_YnH6Nv706_teX1xdfahfXdRG65wrgFr0VCl2TCAHqQpW1HDOdPaEGo5HxojRy6MtRx6wnsDAD22_aDxSGjDjtGrte4-hh8zpNztXLIwTcZDmFNHuVCYccoW-vIvug1zLM8vSgimBMOc_VNxISVrsCRFvV6VjSGlCGO3j25n4m1HcLfMqbufU8EvVgzR2Tt4-pEwTDEWJX-y5m-gD2OyDryFO1eKNJJTyslSb9Hq_3XrslkG04bZ5_tGZm-6fbq1JmZnJ0h2jhF8Xi7dcdmJTpbf-AXVZ703</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Annis, Jeffrey</creator><creator>Gauthier, Isabel</creator><creator>Palmeri, Thomas J.</creator><general>American Psychological Association</general><general>Amer Psychological Assoc</general><scope>17B</scope><scope>BLEPL</scope><scope>DTL</scope><scope>DVR</scope><scope>EGQ</scope><scope>GIZIO</scope><scope>HGBXW</scope><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7RZ</scope><scope>PSYQQ</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6249-4769</orcidid></search><sort><creationdate>20210501</creationdate><title>Combining Convolutional Neural Networks and Cognitive Models to Predict Novel Object Recognition in Humans</title><author>Annis, Jeffrey ; Gauthier, Isabel ; Palmeri, Thomas J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a480t-e09562893dde9d7a7a782a44399a12c44d6a7f45acc4eb14baeeeb0cbd90f1263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial Intelligence</topic><topic>Artificial Neural Networks</topic><topic>Behavior Patterns</topic><topic>Brain Hemisphere Functions</topic><topic>Classification</topic><topic>Cognition &amp; reasoning</topic><topic>Cognitive ability</topic><topic>Cognitive Complexity</topic><topic>Cognitive models</topic><topic>Computers</topic><topic>Decision Making</topic><topic>Error Patterns</topic><topic>Human</topic><topic>Memory</topic><topic>Motivation</topic><topic>Neural networks</topic><topic>Novelty (Stimulus Dimension)</topic><topic>Object Recognition</topic><topic>Prediction</topic><topic>Psychology</topic><topic>Psychology, Experimental</topic><topic>Reaction Time</topic><topic>Recognition (Psychology)</topic><topic>Social Sciences</topic><topic>Studies</topic><topic>Task Analysis</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Annis, Jeffrey</creatorcontrib><creatorcontrib>Gauthier, Isabel</creatorcontrib><creatorcontrib>Palmeri, Thomas J.</creatorcontrib><collection>Web of Knowledge</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Social Sciences Citation Index</collection><collection>Web of Science Primary (SCIE, SSCI &amp; AHCI)</collection><collection>Web of Science - Social Sciences Citation Index – 2021</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>CrossRef</collection><collection>Access via APA PsycArticles® (ProQuest)</collection><collection>ProQuest One Psychology</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of experimental psychology. Learning, memory, and cognition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Annis, Jeffrey</au><au>Gauthier, Isabel</au><au>Palmeri, Thomas J.</au><au>Benjamin, Aaron S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ1302005</ericid><atitle>Combining Convolutional Neural Networks and Cognitive Models to Predict Novel Object Recognition in Humans</atitle><jtitle>Journal of experimental psychology. Learning, memory, and cognition</jtitle><stitle>J EXP PSYCHOL LEARN</stitle><date>2021-05-01</date><risdate>2021</risdate><volume>47</volume><issue>5</issue><spage>785</spage><epage>807</epage><pages>785-807</pages><issn>0278-7393</issn><eissn>1939-1285</eissn><abstract>Object representations from convolutional neural network (CNN) models of computer vision (LeCun, Bengio, &amp; Hinton, 2015) were used to drive a cognitive model of decision making, the linear ballistic accumulator (LBA) model (Brown &amp; Heathcote, 2008), to predict errors and response times (RTs) in a novel object recognition task in humans. CNNs have become very successful at visual tasks like classifying objects in real-world images (e.g., He, Zhang, Ren, &amp; Sun, 2015; Krizhevsky, Sutskever, &amp; Hinton, 2012). We asked whether object representations learned by CNNs previously trained on a large corpus of natural images could be used to predict performance recognizing novel objects the network has never been trained on; we used novel Greebles, Ziggerins, and Sheinbugs that have been used in a number of previous object recognition studies. We specifically investigated whether a model combining high-level CNN representations of these novel objects could be used to drive an LBA model of decision making to account for errors and RTs in a same-different matching task (from Richler et al., 2019). Combining linearly transformed CNN object representations with the LBA provided reasonable accounts of performance not only on average, but at the individual-participant level and the item level as well. We frame the findings in the context of growing interest in using CNN models to understand visual object representations and the promise of using CNN representations to extend cognitive models to explain more complex aspects of human behavior.</abstract><cop>WASHINGTON</cop><pub>American Psychological Association</pub><pmid>33151718</pmid><doi>10.1037/xlm0000968</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-6249-4769</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0278-7393
ispartof Journal of experimental psychology. Learning, memory, and cognition, 2021-05, Vol.47 (5), p.785-807
issn 0278-7393
1939-1285
language eng
recordid cdi_proquest_miscellaneous_2458034236
source EBSCOhost APA PsycARTICLES; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Web of Science - Social Sciences Citation Index – 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Artificial Intelligence
Artificial Neural Networks
Behavior Patterns
Brain Hemisphere Functions
Classification
Cognition & reasoning
Cognitive ability
Cognitive Complexity
Cognitive models
Computers
Decision Making
Error Patterns
Human
Memory
Motivation
Neural networks
Novelty (Stimulus Dimension)
Object Recognition
Prediction
Psychology
Psychology, Experimental
Reaction Time
Recognition (Psychology)
Social Sciences
Studies
Task Analysis
Visualization
title Combining Convolutional Neural Networks and Cognitive Models to Predict Novel Object Recognition in Humans
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T00%3A59%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_eric_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combining%20Convolutional%20Neural%20Networks%20and%20Cognitive%20Models%20to%20Predict%20Novel%20Object%20Recognition%20in%20Humans&rft.jtitle=Journal%20of%20experimental%20psychology.%20Learning,%20memory,%20and%20cognition&rft.au=Annis,%20Jeffrey&rft.date=2021-05-01&rft.volume=47&rft.issue=5&rft.spage=785&rft.epage=807&rft.pages=785-807&rft.issn=0278-7393&rft.eissn=1939-1285&rft_id=info:doi/10.1037/xlm0000968&rft_dat=%3Cproquest_eric_%3E2458034236%3C/proquest_eric_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2457736071&rft_id=info:pmid/33151718&rft_ericid=EJ1302005&rfr_iscdi=true