Improved body quantitative susceptibility mapping by using a variable‐layer single‐min‐cut graph‐cut for field‐mapping

Purpose To develop a robust algorithm for field‐mapping in the presence of water–fat components, large B0 field inhomogeneities and MR signal voids and to apply the developed method in body applications of quantitative susceptibility mapping (QSM). Methods A framework solving the cost‐function of th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Magnetic resonance in medicine 2021-03, Vol.85 (3), p.1697-1712
Hauptverfasser: Boehm, Christof, Diefenbach, Maximilian N., Makowski, Marcus R., Karampinos, Dimitrios C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1712
container_issue 3
container_start_page 1697
container_title Magnetic resonance in medicine
container_volume 85
creator Boehm, Christof
Diefenbach, Maximilian N.
Makowski, Marcus R.
Karampinos, Dimitrios C.
description Purpose To develop a robust algorithm for field‐mapping in the presence of water–fat components, large B0 field inhomogeneities and MR signal voids and to apply the developed method in body applications of quantitative susceptibility mapping (QSM). Methods A framework solving the cost‐function of the water–fat separation problem in a single‐min‐cut graph‐cut based on the variable‐layer graph construction concept was developed. The developed framework was applied to a numerical phantom enclosing an MR signal void, an air bubble experimental phantom, 14 large field of view (FOV) head/neck region in vivo scans and to 6 lumbar spine in vivo scans. Field‐mapping and subsequent QSM results using the proposed algorithm were compared to results using an iterative graph‐cut algorithm and a formerly proposed single‐min‐cut graph‐cut. Results The proposed method was shown to yield accurate field‐map and susceptibility values in all simulation and in vivo datasets when compared to reference values (simulation) or literature values (in vivo). The proposed method showed improved field‐map and susceptibility results compared to iterative graph‐cut field‐mapping especially in regions with low SNR, strong field‐map variations and high R2∗ values. Conclusions A single‐min‐cut graph‐cut field‐mapping method with a variable‐layer construction was developed for field‐mapping in body water–fat regions, improving quantitative susceptibility mapping particularly in areas close to MR signal voids.
doi_str_mv 10.1002/mrm.28515
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2457971086</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2457971086</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3885-41974ac204bc83d80bec5a93f032ebc77dce0db50f324ca340eec29989de74ed3</originalsourceid><addsrcrecordid>eNp1kctu1TAQhi1ERQ-FBS-ALLEpi7Tj20m8RBWXSq0qIVhHvkyKq9xqJwdl10foM_Ik-DQHFkhs7Bnr06cZ_4S8YXDGAPh5F7szXimmnpENU5wXXGn5nGyglFAIpuUxeZnSHQBoXcoX5FgIptgW5IY8XHZjHHboqR38Qu9n009hMlPYIU1zcjhOwYY2TAvtzDiG_pbahc5pXxi6MzEY2-Kvh8fWLBjp_v2p7UKfTzdP9Daa8cehboZIm4Ct3xOr7hU5akyb8PXhPiHfP338dvGluLr5fHnx4apwoqpUIVme3DgO0rpK-AosOmW0aEBwtK4svUPwVkEjuHRGSEB0XOtKeywlenFCTldvXvd-xjTVXcjrta3pcZhTzaUqdcmg2mb03T_o3TDHPk-Xqe1WlPlfRaber5SLQ0oRm3qMoTNxqRnU-1jqHEv9FEtm3x6Ms-3Q_yX_5JCB8xX4GVpc_m-qr79er8rfFrqeVw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2466370743</pqid></control><display><type>article</type><title>Improved body quantitative susceptibility mapping by using a variable‐layer single‐min‐cut graph‐cut for field‐mapping</title><source>Access via Wiley Online Library</source><source>MEDLINE</source><creator>Boehm, Christof ; Diefenbach, Maximilian N. ; Makowski, Marcus R. ; Karampinos, Dimitrios C.</creator><creatorcontrib>Boehm, Christof ; Diefenbach, Maximilian N. ; Makowski, Marcus R. ; Karampinos, Dimitrios C.</creatorcontrib><description>Purpose To develop a robust algorithm for field‐mapping in the presence of water–fat components, large B0 field inhomogeneities and MR signal voids and to apply the developed method in body applications of quantitative susceptibility mapping (QSM). Methods A framework solving the cost‐function of the water–fat separation problem in a single‐min‐cut graph‐cut based on the variable‐layer graph construction concept was developed. The developed framework was applied to a numerical phantom enclosing an MR signal void, an air bubble experimental phantom, 14 large field of view (FOV) head/neck region in vivo scans and to 6 lumbar spine in vivo scans. Field‐mapping and subsequent QSM results using the proposed algorithm were compared to results using an iterative graph‐cut algorithm and a formerly proposed single‐min‐cut graph‐cut. Results The proposed method was shown to yield accurate field‐map and susceptibility values in all simulation and in vivo datasets when compared to reference values (simulation) or literature values (in vivo). The proposed method showed improved field‐map and susceptibility results compared to iterative graph‐cut field‐mapping especially in regions with low SNR, strong field‐map variations and high R2∗ values. Conclusions A single‐min‐cut graph‐cut field‐mapping method with a variable‐layer construction was developed for field‐mapping in body water–fat regions, improving quantitative susceptibility mapping particularly in areas close to MR signal voids.</description><identifier>ISSN: 0740-3194</identifier><identifier>EISSN: 1522-2594</identifier><identifier>DOI: 10.1002/mrm.28515</identifier><identifier>PMID: 33151604</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Air bubbles ; Algorithms ; Body water ; chemical shift encoding‐based water–fat separation ; Computer Simulation ; Construction ; Dixon imaging ; Field of view ; field‐mapping ; graph‐cuts ; Image Processing, Computer-Assisted ; In vivo methods and tests ; Iterative methods ; Magnetic Resonance Imaging ; Mapping ; Mathematical analysis ; Phantoms, Imaging ; quantitative susceptibility mapping ; Robustness (mathematics) ; Simulation ; Spine ; Spine (lumbar) ; Susceptibility</subject><ispartof>Magnetic resonance in medicine, 2021-03, Vol.85 (3), p.1697-1712</ispartof><rights>2020 The Authors. published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine</rights><rights>2020 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.</rights><rights>Copyright Wiley Subscription Services, Inc. Mar 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3885-41974ac204bc83d80bec5a93f032ebc77dce0db50f324ca340eec29989de74ed3</citedby><cites>FETCH-LOGICAL-c3885-41974ac204bc83d80bec5a93f032ebc77dce0db50f324ca340eec29989de74ed3</cites><orcidid>0000-0002-5581-885X ; 0000-0003-1321-5804</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmrm.28515$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmrm.28515$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33151604$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Boehm, Christof</creatorcontrib><creatorcontrib>Diefenbach, Maximilian N.</creatorcontrib><creatorcontrib>Makowski, Marcus R.</creatorcontrib><creatorcontrib>Karampinos, Dimitrios C.</creatorcontrib><title>Improved body quantitative susceptibility mapping by using a variable‐layer single‐min‐cut graph‐cut for field‐mapping</title><title>Magnetic resonance in medicine</title><addtitle>Magn Reson Med</addtitle><description>Purpose To develop a robust algorithm for field‐mapping in the presence of water–fat components, large B0 field inhomogeneities and MR signal voids and to apply the developed method in body applications of quantitative susceptibility mapping (QSM). Methods A framework solving the cost‐function of the water–fat separation problem in a single‐min‐cut graph‐cut based on the variable‐layer graph construction concept was developed. The developed framework was applied to a numerical phantom enclosing an MR signal void, an air bubble experimental phantom, 14 large field of view (FOV) head/neck region in vivo scans and to 6 lumbar spine in vivo scans. Field‐mapping and subsequent QSM results using the proposed algorithm were compared to results using an iterative graph‐cut algorithm and a formerly proposed single‐min‐cut graph‐cut. Results The proposed method was shown to yield accurate field‐map and susceptibility values in all simulation and in vivo datasets when compared to reference values (simulation) or literature values (in vivo). The proposed method showed improved field‐map and susceptibility results compared to iterative graph‐cut field‐mapping especially in regions with low SNR, strong field‐map variations and high R2∗ values. Conclusions A single‐min‐cut graph‐cut field‐mapping method with a variable‐layer construction was developed for field‐mapping in body water–fat regions, improving quantitative susceptibility mapping particularly in areas close to MR signal voids.</description><subject>Air bubbles</subject><subject>Algorithms</subject><subject>Body water</subject><subject>chemical shift encoding‐based water–fat separation</subject><subject>Computer Simulation</subject><subject>Construction</subject><subject>Dixon imaging</subject><subject>Field of view</subject><subject>field‐mapping</subject><subject>graph‐cuts</subject><subject>Image Processing, Computer-Assisted</subject><subject>In vivo methods and tests</subject><subject>Iterative methods</subject><subject>Magnetic Resonance Imaging</subject><subject>Mapping</subject><subject>Mathematical analysis</subject><subject>Phantoms, Imaging</subject><subject>quantitative susceptibility mapping</subject><subject>Robustness (mathematics)</subject><subject>Simulation</subject><subject>Spine</subject><subject>Spine (lumbar)</subject><subject>Susceptibility</subject><issn>0740-3194</issn><issn>1522-2594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNp1kctu1TAQhi1ERQ-FBS-ALLEpi7Tj20m8RBWXSq0qIVhHvkyKq9xqJwdl10foM_Ik-DQHFkhs7Bnr06cZ_4S8YXDGAPh5F7szXimmnpENU5wXXGn5nGyglFAIpuUxeZnSHQBoXcoX5FgIptgW5IY8XHZjHHboqR38Qu9n009hMlPYIU1zcjhOwYY2TAvtzDiG_pbahc5pXxi6MzEY2-Kvh8fWLBjp_v2p7UKfTzdP9Daa8cehboZIm4Ct3xOr7hU5akyb8PXhPiHfP338dvGluLr5fHnx4apwoqpUIVme3DgO0rpK-AosOmW0aEBwtK4svUPwVkEjuHRGSEB0XOtKeywlenFCTldvXvd-xjTVXcjrta3pcZhTzaUqdcmg2mb03T_o3TDHPk-Xqe1WlPlfRaber5SLQ0oRm3qMoTNxqRnU-1jqHEv9FEtm3x6Ms-3Q_yX_5JCB8xX4GVpc_m-qr79er8rfFrqeVw</recordid><startdate>202103</startdate><enddate>202103</enddate><creator>Boehm, Christof</creator><creator>Diefenbach, Maximilian N.</creator><creator>Makowski, Marcus R.</creator><creator>Karampinos, Dimitrios C.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7Z</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5581-885X</orcidid><orcidid>https://orcid.org/0000-0003-1321-5804</orcidid></search><sort><creationdate>202103</creationdate><title>Improved body quantitative susceptibility mapping by using a variable‐layer single‐min‐cut graph‐cut for field‐mapping</title><author>Boehm, Christof ; Diefenbach, Maximilian N. ; Makowski, Marcus R. ; Karampinos, Dimitrios C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3885-41974ac204bc83d80bec5a93f032ebc77dce0db50f324ca340eec29989de74ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Air bubbles</topic><topic>Algorithms</topic><topic>Body water</topic><topic>chemical shift encoding‐based water–fat separation</topic><topic>Computer Simulation</topic><topic>Construction</topic><topic>Dixon imaging</topic><topic>Field of view</topic><topic>field‐mapping</topic><topic>graph‐cuts</topic><topic>Image Processing, Computer-Assisted</topic><topic>In vivo methods and tests</topic><topic>Iterative methods</topic><topic>Magnetic Resonance Imaging</topic><topic>Mapping</topic><topic>Mathematical analysis</topic><topic>Phantoms, Imaging</topic><topic>quantitative susceptibility mapping</topic><topic>Robustness (mathematics)</topic><topic>Simulation</topic><topic>Spine</topic><topic>Spine (lumbar)</topic><topic>Susceptibility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boehm, Christof</creatorcontrib><creatorcontrib>Diefenbach, Maximilian N.</creatorcontrib><creatorcontrib>Makowski, Marcus R.</creatorcontrib><creatorcontrib>Karampinos, Dimitrios C.</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Magnetic resonance in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boehm, Christof</au><au>Diefenbach, Maximilian N.</au><au>Makowski, Marcus R.</au><au>Karampinos, Dimitrios C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved body quantitative susceptibility mapping by using a variable‐layer single‐min‐cut graph‐cut for field‐mapping</atitle><jtitle>Magnetic resonance in medicine</jtitle><addtitle>Magn Reson Med</addtitle><date>2021-03</date><risdate>2021</risdate><volume>85</volume><issue>3</issue><spage>1697</spage><epage>1712</epage><pages>1697-1712</pages><issn>0740-3194</issn><eissn>1522-2594</eissn><abstract>Purpose To develop a robust algorithm for field‐mapping in the presence of water–fat components, large B0 field inhomogeneities and MR signal voids and to apply the developed method in body applications of quantitative susceptibility mapping (QSM). Methods A framework solving the cost‐function of the water–fat separation problem in a single‐min‐cut graph‐cut based on the variable‐layer graph construction concept was developed. The developed framework was applied to a numerical phantom enclosing an MR signal void, an air bubble experimental phantom, 14 large field of view (FOV) head/neck region in vivo scans and to 6 lumbar spine in vivo scans. Field‐mapping and subsequent QSM results using the proposed algorithm were compared to results using an iterative graph‐cut algorithm and a formerly proposed single‐min‐cut graph‐cut. Results The proposed method was shown to yield accurate field‐map and susceptibility values in all simulation and in vivo datasets when compared to reference values (simulation) or literature values (in vivo). The proposed method showed improved field‐map and susceptibility results compared to iterative graph‐cut field‐mapping especially in regions with low SNR, strong field‐map variations and high R2∗ values. Conclusions A single‐min‐cut graph‐cut field‐mapping method with a variable‐layer construction was developed for field‐mapping in body water–fat regions, improving quantitative susceptibility mapping particularly in areas close to MR signal voids.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>33151604</pmid><doi>10.1002/mrm.28515</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-5581-885X</orcidid><orcidid>https://orcid.org/0000-0003-1321-5804</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0740-3194
ispartof Magnetic resonance in medicine, 2021-03, Vol.85 (3), p.1697-1712
issn 0740-3194
1522-2594
language eng
recordid cdi_proquest_miscellaneous_2457971086
source Access via Wiley Online Library; MEDLINE
subjects Air bubbles
Algorithms
Body water
chemical shift encoding‐based water–fat separation
Computer Simulation
Construction
Dixon imaging
Field of view
field‐mapping
graph‐cuts
Image Processing, Computer-Assisted
In vivo methods and tests
Iterative methods
Magnetic Resonance Imaging
Mapping
Mathematical analysis
Phantoms, Imaging
quantitative susceptibility mapping
Robustness (mathematics)
Simulation
Spine
Spine (lumbar)
Susceptibility
title Improved body quantitative susceptibility mapping by using a variable‐layer single‐min‐cut graph‐cut for field‐mapping
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T03%3A32%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20body%20quantitative%20susceptibility%20mapping%20by%20using%20a%20variable%E2%80%90layer%20single%E2%80%90min%E2%80%90cut%20graph%E2%80%90cut%20for%20field%E2%80%90mapping&rft.jtitle=Magnetic%20resonance%20in%20medicine&rft.au=Boehm,%20Christof&rft.date=2021-03&rft.volume=85&rft.issue=3&rft.spage=1697&rft.epage=1712&rft.pages=1697-1712&rft.issn=0740-3194&rft.eissn=1522-2594&rft_id=info:doi/10.1002/mrm.28515&rft_dat=%3Cproquest_cross%3E2457971086%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2466370743&rft_id=info:pmid/33151604&rfr_iscdi=true