CTNN: A Convolutional Tensor-Train Neural Network for Multi-Task Brainprint Recognition

Brainprint is a new type of biometric in the form of EEG, directly linking to intrinsic identity. Currently, most methods for brainprint recognition are based on traditional machine learning and only focus on a single brain cognition task. Due to the ability to extract high-level features and latent...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on neural systems and rehabilitation engineering 2021, Vol.29, p.103-112
Hauptverfasser: Jin, Xuanyu, Tang, Jiajia, Kong, Xianghao, Peng, Yong, Cao, Jianting, Zhao, Qibin, Kong, Wanzeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 112
container_issue
container_start_page 103
container_title IEEE transactions on neural systems and rehabilitation engineering
container_volume 29
creator Jin, Xuanyu
Tang, Jiajia
Kong, Xianghao
Peng, Yong
Cao, Jianting
Zhao, Qibin
Kong, Wanzeng
description Brainprint is a new type of biometric in the form of EEG, directly linking to intrinsic identity. Currently, most methods for brainprint recognition are based on traditional machine learning and only focus on a single brain cognition task. Due to the ability to extract high-level features and latent dependencies, deep learning can effectively overcome the limitation of specific tasks, but numerous samples are required for model training. Therefore, brainprint recognition in realistic scenes with multiple individuals and small amounts of samples in each class is challenging for deep learning. This article proposes a Convolutional Tensor-Train Neural Network (CTNN) for the multi-task brainprint recognition with small number of training samples. Firstly, local temporal and spatial features of the brainprint are extracted by the convolutional neural network (CNN) with depthwise separable convolution mechanism. Afterwards, we implement the TensorNet (TN) via low-rank representation to capture the multilinear intercorrelations, which integrates the local information into a global one with very limited parameters. The experimental results indicate that CTNN has high recognition accuracy over 99% on all four datasets, and it exploits brainprint under multi-task efficiently and scales well on training samples. Additionally, our method can also provide an interpretable biomarker, which shows specific seven channels are dominated for the recognition tasks.
doi_str_mv 10.1109/TNSRE.2020.3035786
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2457970574</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9248036</ieee_id><sourcerecordid>2494377808</sourcerecordid><originalsourceid>FETCH-LOGICAL-c461t-3e397e8547ba30344e9f7df54bf61bf7306b991504697e0011984d2c24d50d643</originalsourceid><addsrcrecordid>eNpdkMtKw0AUhgdRrFZfQEECbtyknrllMu5qqReoEWrEZchlImnTTJ1JFN_eia1duDrDme_88H8InWEYYQzyOo5e5tMRAQIjCpSLMNhDR5jz0AeCYb9_U-YzSmCAjq1dAGARcHGIBpRiJjDjR-htEkfRjTf2Jrr51HXXVrpJay9WjdXGj01aNV6kOuN2kWq_tFl6pTbeU1e3lR-ndund9szaVE3rzVWu35uqzzhBB2VaW3W6nUP0ejeNJw_-7Pn-cTKe-TkLcOtTRaVQIWciS10HxpQsRVFylpUBzkpBIcikxBxY4DhXAMuQFSQnrOBQBIwO0dUmd230R6dsm6wqm6u6ThulO5sQxoUUwEWPXv5DF7ozrm1PSUaFCCF0FNlQudHWGlUmrtsqNd8JhqTXnvxqT3rtyVa7O7rYRnfZShW7kz_PDjjfAJVSavctCQuBBvQHH5mEUA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2494377808</pqid></control><display><type>article</type><title>CTNN: A Convolutional Tensor-Train Neural Network for Multi-Task Brainprint Recognition</title><source>DOAJ Directory of Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Jin, Xuanyu ; Tang, Jiajia ; Kong, Xianghao ; Peng, Yong ; Cao, Jianting ; Zhao, Qibin ; Kong, Wanzeng</creator><creatorcontrib>Jin, Xuanyu ; Tang, Jiajia ; Kong, Xianghao ; Peng, Yong ; Cao, Jianting ; Zhao, Qibin ; Kong, Wanzeng</creatorcontrib><description>Brainprint is a new type of biometric in the form of EEG, directly linking to intrinsic identity. Currently, most methods for brainprint recognition are based on traditional machine learning and only focus on a single brain cognition task. Due to the ability to extract high-level features and latent dependencies, deep learning can effectively overcome the limitation of specific tasks, but numerous samples are required for model training. Therefore, brainprint recognition in realistic scenes with multiple individuals and small amounts of samples in each class is challenging for deep learning. This article proposes a Convolutional Tensor-Train Neural Network (CTNN) for the multi-task brainprint recognition with small number of training samples. Firstly, local temporal and spatial features of the brainprint are extracted by the convolutional neural network (CNN) with depthwise separable convolution mechanism. Afterwards, we implement the TensorNet (TN) via low-rank representation to capture the multilinear intercorrelations, which integrates the local information into a global one with very limited parameters. The experimental results indicate that CTNN has high recognition accuracy over 99% on all four datasets, and it exploits brainprint under multi-task efficiently and scales well on training samples. Additionally, our method can also provide an interpretable biomarker, which shows specific seven channels are dominated for the recognition tasks.</description><identifier>ISSN: 1534-4320</identifier><identifier>EISSN: 1558-0210</identifier><identifier>DOI: 10.1109/TNSRE.2020.3035786</identifier><identifier>PMID: 33147145</identifier><identifier>CODEN: ITNSB3</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Artificial neural networks ; Biological neural networks ; Biomarkers ; Brain modeling ; Cognition ; Convolution ; convolutional neural network ; Deep learning ; EEG ; Electroencephalography ; Feature extraction ; Learning algorithms ; Machine learning ; multi-task brainprint recognition ; Neural networks ; Recognition ; Task analysis ; tensor train ; TensorNet ; Tensors ; Training</subject><ispartof>IEEE transactions on neural systems and rehabilitation engineering, 2021, Vol.29, p.103-112</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c461t-3e397e8547ba30344e9f7df54bf61bf7306b991504697e0011984d2c24d50d643</citedby><cites>FETCH-LOGICAL-c461t-3e397e8547ba30344e9f7df54bf61bf7306b991504697e0011984d2c24d50d643</cites><orcidid>0000-0002-0113-6968 ; 0000-0001-5542-3340 ; 0000-0002-4442-3182</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,4009,27902,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33147145$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jin, Xuanyu</creatorcontrib><creatorcontrib>Tang, Jiajia</creatorcontrib><creatorcontrib>Kong, Xianghao</creatorcontrib><creatorcontrib>Peng, Yong</creatorcontrib><creatorcontrib>Cao, Jianting</creatorcontrib><creatorcontrib>Zhao, Qibin</creatorcontrib><creatorcontrib>Kong, Wanzeng</creatorcontrib><title>CTNN: A Convolutional Tensor-Train Neural Network for Multi-Task Brainprint Recognition</title><title>IEEE transactions on neural systems and rehabilitation engineering</title><addtitle>TNSRE</addtitle><addtitle>IEEE Trans Neural Syst Rehabil Eng</addtitle><description>Brainprint is a new type of biometric in the form of EEG, directly linking to intrinsic identity. Currently, most methods for brainprint recognition are based on traditional machine learning and only focus on a single brain cognition task. Due to the ability to extract high-level features and latent dependencies, deep learning can effectively overcome the limitation of specific tasks, but numerous samples are required for model training. Therefore, brainprint recognition in realistic scenes with multiple individuals and small amounts of samples in each class is challenging for deep learning. This article proposes a Convolutional Tensor-Train Neural Network (CTNN) for the multi-task brainprint recognition with small number of training samples. Firstly, local temporal and spatial features of the brainprint are extracted by the convolutional neural network (CNN) with depthwise separable convolution mechanism. Afterwards, we implement the TensorNet (TN) via low-rank representation to capture the multilinear intercorrelations, which integrates the local information into a global one with very limited parameters. The experimental results indicate that CTNN has high recognition accuracy over 99% on all four datasets, and it exploits brainprint under multi-task efficiently and scales well on training samples. Additionally, our method can also provide an interpretable biomarker, which shows specific seven channels are dominated for the recognition tasks.</description><subject>Artificial neural networks</subject><subject>Biological neural networks</subject><subject>Biomarkers</subject><subject>Brain modeling</subject><subject>Cognition</subject><subject>Convolution</subject><subject>convolutional neural network</subject><subject>Deep learning</subject><subject>EEG</subject><subject>Electroencephalography</subject><subject>Feature extraction</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>multi-task brainprint recognition</subject><subject>Neural networks</subject><subject>Recognition</subject><subject>Task analysis</subject><subject>tensor train</subject><subject>TensorNet</subject><subject>Tensors</subject><subject>Training</subject><issn>1534-4320</issn><issn>1558-0210</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpdkMtKw0AUhgdRrFZfQEECbtyknrllMu5qqReoEWrEZchlImnTTJ1JFN_eia1duDrDme_88H8InWEYYQzyOo5e5tMRAQIjCpSLMNhDR5jz0AeCYb9_U-YzSmCAjq1dAGARcHGIBpRiJjDjR-htEkfRjTf2Jrr51HXXVrpJay9WjdXGj01aNV6kOuN2kWq_tFl6pTbeU1e3lR-ndund9szaVE3rzVWu35uqzzhBB2VaW3W6nUP0ejeNJw_-7Pn-cTKe-TkLcOtTRaVQIWciS10HxpQsRVFylpUBzkpBIcikxBxY4DhXAMuQFSQnrOBQBIwO0dUmd230R6dsm6wqm6u6ThulO5sQxoUUwEWPXv5DF7ozrm1PSUaFCCF0FNlQudHWGlUmrtsqNd8JhqTXnvxqT3rtyVa7O7rYRnfZShW7kz_PDjjfAJVSavctCQuBBvQHH5mEUA</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Jin, Xuanyu</creator><creator>Tang, Jiajia</creator><creator>Kong, Xianghao</creator><creator>Peng, Yong</creator><creator>Cao, Jianting</creator><creator>Zhao, Qibin</creator><creator>Kong, Wanzeng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0113-6968</orcidid><orcidid>https://orcid.org/0000-0001-5542-3340</orcidid><orcidid>https://orcid.org/0000-0002-4442-3182</orcidid></search><sort><creationdate>2021</creationdate><title>CTNN: A Convolutional Tensor-Train Neural Network for Multi-Task Brainprint Recognition</title><author>Jin, Xuanyu ; Tang, Jiajia ; Kong, Xianghao ; Peng, Yong ; Cao, Jianting ; Zhao, Qibin ; Kong, Wanzeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c461t-3e397e8547ba30344e9f7df54bf61bf7306b991504697e0011984d2c24d50d643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial neural networks</topic><topic>Biological neural networks</topic><topic>Biomarkers</topic><topic>Brain modeling</topic><topic>Cognition</topic><topic>Convolution</topic><topic>convolutional neural network</topic><topic>Deep learning</topic><topic>EEG</topic><topic>Electroencephalography</topic><topic>Feature extraction</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>multi-task brainprint recognition</topic><topic>Neural networks</topic><topic>Recognition</topic><topic>Task analysis</topic><topic>tensor train</topic><topic>TensorNet</topic><topic>Tensors</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jin, Xuanyu</creatorcontrib><creatorcontrib>Tang, Jiajia</creatorcontrib><creatorcontrib>Kong, Xianghao</creatorcontrib><creatorcontrib>Peng, Yong</creatorcontrib><creatorcontrib>Cao, Jianting</creatorcontrib><creatorcontrib>Zhao, Qibin</creatorcontrib><creatorcontrib>Kong, Wanzeng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on neural systems and rehabilitation engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jin, Xuanyu</au><au>Tang, Jiajia</au><au>Kong, Xianghao</au><au>Peng, Yong</au><au>Cao, Jianting</au><au>Zhao, Qibin</au><au>Kong, Wanzeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CTNN: A Convolutional Tensor-Train Neural Network for Multi-Task Brainprint Recognition</atitle><jtitle>IEEE transactions on neural systems and rehabilitation engineering</jtitle><stitle>TNSRE</stitle><addtitle>IEEE Trans Neural Syst Rehabil Eng</addtitle><date>2021</date><risdate>2021</risdate><volume>29</volume><spage>103</spage><epage>112</epage><pages>103-112</pages><issn>1534-4320</issn><eissn>1558-0210</eissn><coden>ITNSB3</coden><abstract>Brainprint is a new type of biometric in the form of EEG, directly linking to intrinsic identity. Currently, most methods for brainprint recognition are based on traditional machine learning and only focus on a single brain cognition task. Due to the ability to extract high-level features and latent dependencies, deep learning can effectively overcome the limitation of specific tasks, but numerous samples are required for model training. Therefore, brainprint recognition in realistic scenes with multiple individuals and small amounts of samples in each class is challenging for deep learning. This article proposes a Convolutional Tensor-Train Neural Network (CTNN) for the multi-task brainprint recognition with small number of training samples. Firstly, local temporal and spatial features of the brainprint are extracted by the convolutional neural network (CNN) with depthwise separable convolution mechanism. Afterwards, we implement the TensorNet (TN) via low-rank representation to capture the multilinear intercorrelations, which integrates the local information into a global one with very limited parameters. The experimental results indicate that CTNN has high recognition accuracy over 99% on all four datasets, and it exploits brainprint under multi-task efficiently and scales well on training samples. Additionally, our method can also provide an interpretable biomarker, which shows specific seven channels are dominated for the recognition tasks.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>33147145</pmid><doi>10.1109/TNSRE.2020.3035786</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0113-6968</orcidid><orcidid>https://orcid.org/0000-0001-5542-3340</orcidid><orcidid>https://orcid.org/0000-0002-4442-3182</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1534-4320
ispartof IEEE transactions on neural systems and rehabilitation engineering, 2021, Vol.29, p.103-112
issn 1534-4320
1558-0210
language eng
recordid cdi_proquest_miscellaneous_2457970574
source DOAJ Directory of Open Access Journals; EZB Electronic Journals Library
subjects Artificial neural networks
Biological neural networks
Biomarkers
Brain modeling
Cognition
Convolution
convolutional neural network
Deep learning
EEG
Electroencephalography
Feature extraction
Learning algorithms
Machine learning
multi-task brainprint recognition
Neural networks
Recognition
Task analysis
tensor train
TensorNet
Tensors
Training
title CTNN: A Convolutional Tensor-Train Neural Network for Multi-Task Brainprint Recognition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T19%3A42%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CTNN:%20A%20Convolutional%20Tensor-Train%20Neural%20Network%20for%20Multi-Task%20Brainprint%20Recognition&rft.jtitle=IEEE%20transactions%20on%20neural%20systems%20and%20rehabilitation%20engineering&rft.au=Jin,%20Xuanyu&rft.date=2021&rft.volume=29&rft.spage=103&rft.epage=112&rft.pages=103-112&rft.issn=1534-4320&rft.eissn=1558-0210&rft.coden=ITNSB3&rft_id=info:doi/10.1109/TNSRE.2020.3035786&rft_dat=%3Cproquest_cross%3E2494377808%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2494377808&rft_id=info:pmid/33147145&rft_ieee_id=9248036&rfr_iscdi=true