CTNN: A Convolutional Tensor-Train Neural Network for Multi-Task Brainprint Recognition
Brainprint is a new type of biometric in the form of EEG, directly linking to intrinsic identity. Currently, most methods for brainprint recognition are based on traditional machine learning and only focus on a single brain cognition task. Due to the ability to extract high-level features and latent...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on neural systems and rehabilitation engineering 2021, Vol.29, p.103-112 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 112 |
---|---|
container_issue | |
container_start_page | 103 |
container_title | IEEE transactions on neural systems and rehabilitation engineering |
container_volume | 29 |
creator | Jin, Xuanyu Tang, Jiajia Kong, Xianghao Peng, Yong Cao, Jianting Zhao, Qibin Kong, Wanzeng |
description | Brainprint is a new type of biometric in the form of EEG, directly linking to intrinsic identity. Currently, most methods for brainprint recognition are based on traditional machine learning and only focus on a single brain cognition task. Due to the ability to extract high-level features and latent dependencies, deep learning can effectively overcome the limitation of specific tasks, but numerous samples are required for model training. Therefore, brainprint recognition in realistic scenes with multiple individuals and small amounts of samples in each class is challenging for deep learning. This article proposes a Convolutional Tensor-Train Neural Network (CTNN) for the multi-task brainprint recognition with small number of training samples. Firstly, local temporal and spatial features of the brainprint are extracted by the convolutional neural network (CNN) with depthwise separable convolution mechanism. Afterwards, we implement the TensorNet (TN) via low-rank representation to capture the multilinear intercorrelations, which integrates the local information into a global one with very limited parameters. The experimental results indicate that CTNN has high recognition accuracy over 99% on all four datasets, and it exploits brainprint under multi-task efficiently and scales well on training samples. Additionally, our method can also provide an interpretable biomarker, which shows specific seven channels are dominated for the recognition tasks. |
doi_str_mv | 10.1109/TNSRE.2020.3035786 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2457970574</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9248036</ieee_id><sourcerecordid>2494377808</sourcerecordid><originalsourceid>FETCH-LOGICAL-c461t-3e397e8547ba30344e9f7df54bf61bf7306b991504697e0011984d2c24d50d643</originalsourceid><addsrcrecordid>eNpdkMtKw0AUhgdRrFZfQEECbtyknrllMu5qqReoEWrEZchlImnTTJ1JFN_eia1duDrDme_88H8InWEYYQzyOo5e5tMRAQIjCpSLMNhDR5jz0AeCYb9_U-YzSmCAjq1dAGARcHGIBpRiJjDjR-htEkfRjTf2Jrr51HXXVrpJay9WjdXGj01aNV6kOuN2kWq_tFl6pTbeU1e3lR-ndund9szaVE3rzVWu35uqzzhBB2VaW3W6nUP0ejeNJw_-7Pn-cTKe-TkLcOtTRaVQIWciS10HxpQsRVFylpUBzkpBIcikxBxY4DhXAMuQFSQnrOBQBIwO0dUmd230R6dsm6wqm6u6ThulO5sQxoUUwEWPXv5DF7ozrm1PSUaFCCF0FNlQudHWGlUmrtsqNd8JhqTXnvxqT3rtyVa7O7rYRnfZShW7kz_PDjjfAJVSavctCQuBBvQHH5mEUA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2494377808</pqid></control><display><type>article</type><title>CTNN: A Convolutional Tensor-Train Neural Network for Multi-Task Brainprint Recognition</title><source>DOAJ Directory of Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Jin, Xuanyu ; Tang, Jiajia ; Kong, Xianghao ; Peng, Yong ; Cao, Jianting ; Zhao, Qibin ; Kong, Wanzeng</creator><creatorcontrib>Jin, Xuanyu ; Tang, Jiajia ; Kong, Xianghao ; Peng, Yong ; Cao, Jianting ; Zhao, Qibin ; Kong, Wanzeng</creatorcontrib><description>Brainprint is a new type of biometric in the form of EEG, directly linking to intrinsic identity. Currently, most methods for brainprint recognition are based on traditional machine learning and only focus on a single brain cognition task. Due to the ability to extract high-level features and latent dependencies, deep learning can effectively overcome the limitation of specific tasks, but numerous samples are required for model training. Therefore, brainprint recognition in realistic scenes with multiple individuals and small amounts of samples in each class is challenging for deep learning. This article proposes a Convolutional Tensor-Train Neural Network (CTNN) for the multi-task brainprint recognition with small number of training samples. Firstly, local temporal and spatial features of the brainprint are extracted by the convolutional neural network (CNN) with depthwise separable convolution mechanism. Afterwards, we implement the TensorNet (TN) via low-rank representation to capture the multilinear intercorrelations, which integrates the local information into a global one with very limited parameters. The experimental results indicate that CTNN has high recognition accuracy over 99% on all four datasets, and it exploits brainprint under multi-task efficiently and scales well on training samples. Additionally, our method can also provide an interpretable biomarker, which shows specific seven channels are dominated for the recognition tasks.</description><identifier>ISSN: 1534-4320</identifier><identifier>EISSN: 1558-0210</identifier><identifier>DOI: 10.1109/TNSRE.2020.3035786</identifier><identifier>PMID: 33147145</identifier><identifier>CODEN: ITNSB3</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Artificial neural networks ; Biological neural networks ; Biomarkers ; Brain modeling ; Cognition ; Convolution ; convolutional neural network ; Deep learning ; EEG ; Electroencephalography ; Feature extraction ; Learning algorithms ; Machine learning ; multi-task brainprint recognition ; Neural networks ; Recognition ; Task analysis ; tensor train ; TensorNet ; Tensors ; Training</subject><ispartof>IEEE transactions on neural systems and rehabilitation engineering, 2021, Vol.29, p.103-112</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c461t-3e397e8547ba30344e9f7df54bf61bf7306b991504697e0011984d2c24d50d643</citedby><cites>FETCH-LOGICAL-c461t-3e397e8547ba30344e9f7df54bf61bf7306b991504697e0011984d2c24d50d643</cites><orcidid>0000-0002-0113-6968 ; 0000-0001-5542-3340 ; 0000-0002-4442-3182</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,4009,27902,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33147145$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jin, Xuanyu</creatorcontrib><creatorcontrib>Tang, Jiajia</creatorcontrib><creatorcontrib>Kong, Xianghao</creatorcontrib><creatorcontrib>Peng, Yong</creatorcontrib><creatorcontrib>Cao, Jianting</creatorcontrib><creatorcontrib>Zhao, Qibin</creatorcontrib><creatorcontrib>Kong, Wanzeng</creatorcontrib><title>CTNN: A Convolutional Tensor-Train Neural Network for Multi-Task Brainprint Recognition</title><title>IEEE transactions on neural systems and rehabilitation engineering</title><addtitle>TNSRE</addtitle><addtitle>IEEE Trans Neural Syst Rehabil Eng</addtitle><description>Brainprint is a new type of biometric in the form of EEG, directly linking to intrinsic identity. Currently, most methods for brainprint recognition are based on traditional machine learning and only focus on a single brain cognition task. Due to the ability to extract high-level features and latent dependencies, deep learning can effectively overcome the limitation of specific tasks, but numerous samples are required for model training. Therefore, brainprint recognition in realistic scenes with multiple individuals and small amounts of samples in each class is challenging for deep learning. This article proposes a Convolutional Tensor-Train Neural Network (CTNN) for the multi-task brainprint recognition with small number of training samples. Firstly, local temporal and spatial features of the brainprint are extracted by the convolutional neural network (CNN) with depthwise separable convolution mechanism. Afterwards, we implement the TensorNet (TN) via low-rank representation to capture the multilinear intercorrelations, which integrates the local information into a global one with very limited parameters. The experimental results indicate that CTNN has high recognition accuracy over 99% on all four datasets, and it exploits brainprint under multi-task efficiently and scales well on training samples. Additionally, our method can also provide an interpretable biomarker, which shows specific seven channels are dominated for the recognition tasks.</description><subject>Artificial neural networks</subject><subject>Biological neural networks</subject><subject>Biomarkers</subject><subject>Brain modeling</subject><subject>Cognition</subject><subject>Convolution</subject><subject>convolutional neural network</subject><subject>Deep learning</subject><subject>EEG</subject><subject>Electroencephalography</subject><subject>Feature extraction</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>multi-task brainprint recognition</subject><subject>Neural networks</subject><subject>Recognition</subject><subject>Task analysis</subject><subject>tensor train</subject><subject>TensorNet</subject><subject>Tensors</subject><subject>Training</subject><issn>1534-4320</issn><issn>1558-0210</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpdkMtKw0AUhgdRrFZfQEECbtyknrllMu5qqReoEWrEZchlImnTTJ1JFN_eia1duDrDme_88H8InWEYYQzyOo5e5tMRAQIjCpSLMNhDR5jz0AeCYb9_U-YzSmCAjq1dAGARcHGIBpRiJjDjR-htEkfRjTf2Jrr51HXXVrpJay9WjdXGj01aNV6kOuN2kWq_tFl6pTbeU1e3lR-ndund9szaVE3rzVWu35uqzzhBB2VaW3W6nUP0ejeNJw_-7Pn-cTKe-TkLcOtTRaVQIWciS10HxpQsRVFylpUBzkpBIcikxBxY4DhXAMuQFSQnrOBQBIwO0dUmd230R6dsm6wqm6u6ThulO5sQxoUUwEWPXv5DF7ozrm1PSUaFCCF0FNlQudHWGlUmrtsqNd8JhqTXnvxqT3rtyVa7O7rYRnfZShW7kz_PDjjfAJVSavctCQuBBvQHH5mEUA</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Jin, Xuanyu</creator><creator>Tang, Jiajia</creator><creator>Kong, Xianghao</creator><creator>Peng, Yong</creator><creator>Cao, Jianting</creator><creator>Zhao, Qibin</creator><creator>Kong, Wanzeng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0113-6968</orcidid><orcidid>https://orcid.org/0000-0001-5542-3340</orcidid><orcidid>https://orcid.org/0000-0002-4442-3182</orcidid></search><sort><creationdate>2021</creationdate><title>CTNN: A Convolutional Tensor-Train Neural Network for Multi-Task Brainprint Recognition</title><author>Jin, Xuanyu ; Tang, Jiajia ; Kong, Xianghao ; Peng, Yong ; Cao, Jianting ; Zhao, Qibin ; Kong, Wanzeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c461t-3e397e8547ba30344e9f7df54bf61bf7306b991504697e0011984d2c24d50d643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial neural networks</topic><topic>Biological neural networks</topic><topic>Biomarkers</topic><topic>Brain modeling</topic><topic>Cognition</topic><topic>Convolution</topic><topic>convolutional neural network</topic><topic>Deep learning</topic><topic>EEG</topic><topic>Electroencephalography</topic><topic>Feature extraction</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>multi-task brainprint recognition</topic><topic>Neural networks</topic><topic>Recognition</topic><topic>Task analysis</topic><topic>tensor train</topic><topic>TensorNet</topic><topic>Tensors</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jin, Xuanyu</creatorcontrib><creatorcontrib>Tang, Jiajia</creatorcontrib><creatorcontrib>Kong, Xianghao</creatorcontrib><creatorcontrib>Peng, Yong</creatorcontrib><creatorcontrib>Cao, Jianting</creatorcontrib><creatorcontrib>Zhao, Qibin</creatorcontrib><creatorcontrib>Kong, Wanzeng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on neural systems and rehabilitation engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jin, Xuanyu</au><au>Tang, Jiajia</au><au>Kong, Xianghao</au><au>Peng, Yong</au><au>Cao, Jianting</au><au>Zhao, Qibin</au><au>Kong, Wanzeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CTNN: A Convolutional Tensor-Train Neural Network for Multi-Task Brainprint Recognition</atitle><jtitle>IEEE transactions on neural systems and rehabilitation engineering</jtitle><stitle>TNSRE</stitle><addtitle>IEEE Trans Neural Syst Rehabil Eng</addtitle><date>2021</date><risdate>2021</risdate><volume>29</volume><spage>103</spage><epage>112</epage><pages>103-112</pages><issn>1534-4320</issn><eissn>1558-0210</eissn><coden>ITNSB3</coden><abstract>Brainprint is a new type of biometric in the form of EEG, directly linking to intrinsic identity. Currently, most methods for brainprint recognition are based on traditional machine learning and only focus on a single brain cognition task. Due to the ability to extract high-level features and latent dependencies, deep learning can effectively overcome the limitation of specific tasks, but numerous samples are required for model training. Therefore, brainprint recognition in realistic scenes with multiple individuals and small amounts of samples in each class is challenging for deep learning. This article proposes a Convolutional Tensor-Train Neural Network (CTNN) for the multi-task brainprint recognition with small number of training samples. Firstly, local temporal and spatial features of the brainprint are extracted by the convolutional neural network (CNN) with depthwise separable convolution mechanism. Afterwards, we implement the TensorNet (TN) via low-rank representation to capture the multilinear intercorrelations, which integrates the local information into a global one with very limited parameters. The experimental results indicate that CTNN has high recognition accuracy over 99% on all four datasets, and it exploits brainprint under multi-task efficiently and scales well on training samples. Additionally, our method can also provide an interpretable biomarker, which shows specific seven channels are dominated for the recognition tasks.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>33147145</pmid><doi>10.1109/TNSRE.2020.3035786</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0113-6968</orcidid><orcidid>https://orcid.org/0000-0001-5542-3340</orcidid><orcidid>https://orcid.org/0000-0002-4442-3182</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1534-4320 |
ispartof | IEEE transactions on neural systems and rehabilitation engineering, 2021, Vol.29, p.103-112 |
issn | 1534-4320 1558-0210 |
language | eng |
recordid | cdi_proquest_miscellaneous_2457970574 |
source | DOAJ Directory of Open Access Journals; EZB Electronic Journals Library |
subjects | Artificial neural networks Biological neural networks Biomarkers Brain modeling Cognition Convolution convolutional neural network Deep learning EEG Electroencephalography Feature extraction Learning algorithms Machine learning multi-task brainprint recognition Neural networks Recognition Task analysis tensor train TensorNet Tensors Training |
title | CTNN: A Convolutional Tensor-Train Neural Network for Multi-Task Brainprint Recognition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T19%3A42%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CTNN:%20A%20Convolutional%20Tensor-Train%20Neural%20Network%20for%20Multi-Task%20Brainprint%20Recognition&rft.jtitle=IEEE%20transactions%20on%20neural%20systems%20and%20rehabilitation%20engineering&rft.au=Jin,%20Xuanyu&rft.date=2021&rft.volume=29&rft.spage=103&rft.epage=112&rft.pages=103-112&rft.issn=1534-4320&rft.eissn=1558-0210&rft.coden=ITNSB3&rft_id=info:doi/10.1109/TNSRE.2020.3035786&rft_dat=%3Cproquest_cross%3E2494377808%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2494377808&rft_id=info:pmid/33147145&rft_ieee_id=9248036&rfr_iscdi=true |