Geometric constraints and optimization in externally driven propulsion

Micro/nanomachines capable of propulsion through fluidic environments provide diverse opportunities in important biomedical applications. In this paper, we present a theoretical study on micromotors steered through liquid by an external rotating magnetic field. A purely geometric tight upper bound o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science robotics 2018-04, Vol.3 (17)
Hauptverfasser: Mirzae, Yoni, Dubrovski, Oles, Kenneth, Oded, Morozov, Konstantin I, Leshansky, Alexander M
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 17
container_start_page
container_title Science robotics
container_volume 3
creator Mirzae, Yoni
Dubrovski, Oles
Kenneth, Oded
Morozov, Konstantin I
Leshansky, Alexander M
description Micro/nanomachines capable of propulsion through fluidic environments provide diverse opportunities in important biomedical applications. In this paper, we present a theoretical study on micromotors steered through liquid by an external rotating magnetic field. A purely geometric tight upper bound on the propulsion speed normalized with field frequency, known as propulsion efficiency, δ, for an arbitrarily shaped object is derived. Using this bound, we estimate the maximum propulsion efficiency of previously reported random magnetic aggregates. We introduce a complementary definition of the propulsion efficiency, δ*, that ranks propellers according to their maximal speed in body lengths per unit time and that appears to be preferable over the standard definition in a search for fastest machines. Using a bead-based hydrodynamic model combined with genetic algorithms, we determine that δ*-optimal propeller deviates strongly from the bioinspired slim helix and has a surprising chubby skew-symmetric shape. It is also shown that optimized propellers with preprogrammed shape are substantially more efficient than random magnetic aggregates. We anticipate that the results of the present study will provide guidance toward prospective experimental design of more efficient magnetic micro/nanomachines.
doi_str_mv 10.1126/scirobotics.aas8713
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2457653965</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2457653965</sourcerecordid><originalsourceid>FETCH-LOGICAL-c305t-6e277dfdf321d6643927b3084c02fe9d16c63f3071f68e3bbd1fa7e320f973d23</originalsourceid><addsrcrecordid>eNpNkEFLAzEQhYMottT-AkH26GVrktkm3aMUW4WCFz0v2WQCkd1kTVKx_npXrNLD8AZm3nvwEXLN6IIxLu6SdjG0ITudFkqllWRwRqa8krSsKynOT_YJmaf0RillUoCo-CWZALCKSainZLPF0GOOThc6-JSjcj6nQnlThCG73n2p7IIvnC_wM2P0qusOhYnuA30xxDDsuzTer8iFVV3C-VFn5HXz8LJ-LHfP26f1_a7UQJe5FMilNNZY4MwIUUHNZQt0VWnKLdaGCS3AApXMihVC2xpmlUTg1NYSDIcZuf3NHavf95hy07ukseuUx7BPDa-WUiyhHmdG4PdVx5BSRNsM0fUqHhpGmx-GzQnD5shwdN0cC_Ztj-bf80cMvgFgJXJv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2457653965</pqid></control><display><type>article</type><title>Geometric constraints and optimization in externally driven propulsion</title><source>American Association for the Advancement of Science</source><creator>Mirzae, Yoni ; Dubrovski, Oles ; Kenneth, Oded ; Morozov, Konstantin I ; Leshansky, Alexander M</creator><creatorcontrib>Mirzae, Yoni ; Dubrovski, Oles ; Kenneth, Oded ; Morozov, Konstantin I ; Leshansky, Alexander M</creatorcontrib><description>Micro/nanomachines capable of propulsion through fluidic environments provide diverse opportunities in important biomedical applications. In this paper, we present a theoretical study on micromotors steered through liquid by an external rotating magnetic field. A purely geometric tight upper bound on the propulsion speed normalized with field frequency, known as propulsion efficiency, δ, for an arbitrarily shaped object is derived. Using this bound, we estimate the maximum propulsion efficiency of previously reported random magnetic aggregates. We introduce a complementary definition of the propulsion efficiency, δ*, that ranks propellers according to their maximal speed in body lengths per unit time and that appears to be preferable over the standard definition in a search for fastest machines. Using a bead-based hydrodynamic model combined with genetic algorithms, we determine that δ*-optimal propeller deviates strongly from the bioinspired slim helix and has a surprising chubby skew-symmetric shape. It is also shown that optimized propellers with preprogrammed shape are substantially more efficient than random magnetic aggregates. We anticipate that the results of the present study will provide guidance toward prospective experimental design of more efficient magnetic micro/nanomachines.</description><identifier>ISSN: 2470-9476</identifier><identifier>EISSN: 2470-9476</identifier><identifier>DOI: 10.1126/scirobotics.aas8713</identifier><identifier>PMID: 33141739</identifier><language>eng</language><publisher>United States</publisher><ispartof>Science robotics, 2018-04, Vol.3 (17)</ispartof><rights>Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c305t-6e277dfdf321d6643927b3084c02fe9d16c63f3071f68e3bbd1fa7e320f973d23</citedby><cites>FETCH-LOGICAL-c305t-6e277dfdf321d6643927b3084c02fe9d16c63f3071f68e3bbd1fa7e320f973d23</cites><orcidid>0000-0001-9272-8987 ; 0000-0001-8598-910X ; 0000-0003-4517-9545</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2871,2872,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33141739$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mirzae, Yoni</creatorcontrib><creatorcontrib>Dubrovski, Oles</creatorcontrib><creatorcontrib>Kenneth, Oded</creatorcontrib><creatorcontrib>Morozov, Konstantin I</creatorcontrib><creatorcontrib>Leshansky, Alexander M</creatorcontrib><title>Geometric constraints and optimization in externally driven propulsion</title><title>Science robotics</title><addtitle>Sci Robot</addtitle><description>Micro/nanomachines capable of propulsion through fluidic environments provide diverse opportunities in important biomedical applications. In this paper, we present a theoretical study on micromotors steered through liquid by an external rotating magnetic field. A purely geometric tight upper bound on the propulsion speed normalized with field frequency, known as propulsion efficiency, δ, for an arbitrarily shaped object is derived. Using this bound, we estimate the maximum propulsion efficiency of previously reported random magnetic aggregates. We introduce a complementary definition of the propulsion efficiency, δ*, that ranks propellers according to their maximal speed in body lengths per unit time and that appears to be preferable over the standard definition in a search for fastest machines. Using a bead-based hydrodynamic model combined with genetic algorithms, we determine that δ*-optimal propeller deviates strongly from the bioinspired slim helix and has a surprising chubby skew-symmetric shape. It is also shown that optimized propellers with preprogrammed shape are substantially more efficient than random magnetic aggregates. We anticipate that the results of the present study will provide guidance toward prospective experimental design of more efficient magnetic micro/nanomachines.</description><issn>2470-9476</issn><issn>2470-9476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpNkEFLAzEQhYMottT-AkH26GVrktkm3aMUW4WCFz0v2WQCkd1kTVKx_npXrNLD8AZm3nvwEXLN6IIxLu6SdjG0ITudFkqllWRwRqa8krSsKynOT_YJmaf0RillUoCo-CWZALCKSainZLPF0GOOThc6-JSjcj6nQnlThCG73n2p7IIvnC_wM2P0qusOhYnuA30xxDDsuzTer8iFVV3C-VFn5HXz8LJ-LHfP26f1_a7UQJe5FMilNNZY4MwIUUHNZQt0VWnKLdaGCS3AApXMihVC2xpmlUTg1NYSDIcZuf3NHavf95hy07ukseuUx7BPDa-WUiyhHmdG4PdVx5BSRNsM0fUqHhpGmx-GzQnD5shwdN0cC_Ztj-bf80cMvgFgJXJv</recordid><startdate>20180418</startdate><enddate>20180418</enddate><creator>Mirzae, Yoni</creator><creator>Dubrovski, Oles</creator><creator>Kenneth, Oded</creator><creator>Morozov, Konstantin I</creator><creator>Leshansky, Alexander M</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9272-8987</orcidid><orcidid>https://orcid.org/0000-0001-8598-910X</orcidid><orcidid>https://orcid.org/0000-0003-4517-9545</orcidid></search><sort><creationdate>20180418</creationdate><title>Geometric constraints and optimization in externally driven propulsion</title><author>Mirzae, Yoni ; Dubrovski, Oles ; Kenneth, Oded ; Morozov, Konstantin I ; Leshansky, Alexander M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c305t-6e277dfdf321d6643927b3084c02fe9d16c63f3071f68e3bbd1fa7e320f973d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mirzae, Yoni</creatorcontrib><creatorcontrib>Dubrovski, Oles</creatorcontrib><creatorcontrib>Kenneth, Oded</creatorcontrib><creatorcontrib>Morozov, Konstantin I</creatorcontrib><creatorcontrib>Leshansky, Alexander M</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Science robotics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mirzae, Yoni</au><au>Dubrovski, Oles</au><au>Kenneth, Oded</au><au>Morozov, Konstantin I</au><au>Leshansky, Alexander M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geometric constraints and optimization in externally driven propulsion</atitle><jtitle>Science robotics</jtitle><addtitle>Sci Robot</addtitle><date>2018-04-18</date><risdate>2018</risdate><volume>3</volume><issue>17</issue><issn>2470-9476</issn><eissn>2470-9476</eissn><abstract>Micro/nanomachines capable of propulsion through fluidic environments provide diverse opportunities in important biomedical applications. In this paper, we present a theoretical study on micromotors steered through liquid by an external rotating magnetic field. A purely geometric tight upper bound on the propulsion speed normalized with field frequency, known as propulsion efficiency, δ, for an arbitrarily shaped object is derived. Using this bound, we estimate the maximum propulsion efficiency of previously reported random magnetic aggregates. We introduce a complementary definition of the propulsion efficiency, δ*, that ranks propellers according to their maximal speed in body lengths per unit time and that appears to be preferable over the standard definition in a search for fastest machines. Using a bead-based hydrodynamic model combined with genetic algorithms, we determine that δ*-optimal propeller deviates strongly from the bioinspired slim helix and has a surprising chubby skew-symmetric shape. It is also shown that optimized propellers with preprogrammed shape are substantially more efficient than random magnetic aggregates. We anticipate that the results of the present study will provide guidance toward prospective experimental design of more efficient magnetic micro/nanomachines.</abstract><cop>United States</cop><pmid>33141739</pmid><doi>10.1126/scirobotics.aas8713</doi><orcidid>https://orcid.org/0000-0001-9272-8987</orcidid><orcidid>https://orcid.org/0000-0001-8598-910X</orcidid><orcidid>https://orcid.org/0000-0003-4517-9545</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2470-9476
ispartof Science robotics, 2018-04, Vol.3 (17)
issn 2470-9476
2470-9476
language eng
recordid cdi_proquest_miscellaneous_2457653965
source American Association for the Advancement of Science
title Geometric constraints and optimization in externally driven propulsion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T14%3A12%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geometric%20constraints%20and%20optimization%20in%20externally%20driven%20propulsion&rft.jtitle=Science%20robotics&rft.au=Mirzae,%20Yoni&rft.date=2018-04-18&rft.volume=3&rft.issue=17&rft.issn=2470-9476&rft.eissn=2470-9476&rft_id=info:doi/10.1126/scirobotics.aas8713&rft_dat=%3Cproquest_cross%3E2457653965%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2457653965&rft_id=info:pmid/33141739&rfr_iscdi=true