Biosynthesis of low-molecular-weight mannan using metabolically engineered Bacillus subtilis 168

•The De novo biosynthesis of mannan was achieved by engineering Bacillus subtilis.•The committed enzymes towards mannan were identified in Bacillus subtilis.•Mannan yield was significantly increased with glucose-repressed promoter for EMP (12.6 g/L).•Low-molecular-weight mannan was produced with man...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Carbohydrate polymers 2021-01, Vol.251, p.117115-117115, Article 117115
Hauptverfasser: Jin, Peng, Liang, Zhengang, Li, Hua, Chen, Chunxiao, Xue, Yang, Du, Qizhen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 117115
container_issue
container_start_page 117115
container_title Carbohydrate polymers
container_volume 251
creator Jin, Peng
Liang, Zhengang
Li, Hua
Chen, Chunxiao
Xue, Yang
Du, Qizhen
description •The De novo biosynthesis of mannan was achieved by engineering Bacillus subtilis.•The committed enzymes towards mannan were identified in Bacillus subtilis.•Mannan yield was significantly increased with glucose-repressed promoter for EMP (12.6 g/L).•Low-molecular-weight mannan was produced with mannosidase expression (6370 Da). Mannans are functional polysaccharides with unique biological activities that have been employed widely in food, medicine and pharmaceutics. Recent breakthroughs in plant polysaccharide metabolism identified numerous genes involved in the biosynthesis of mannans. However, constructing highly efficient low-cost microbial cell factories to produce low-molecular-weight (LMW) mannans remains challenging. In this work, we designed a de novo mannan synthetic pathway in food-grade Bacillus subtilis, resulting in mannan accumulation of 0.97 g/L. By co-expressing the identified committed genes (manC, manB, manA and pgi), mannan production was significantly increased to 2.5 g/L. Furthermore, by redirecting the carbon flux using a glucose-repressed promoter to control pfkA expression, mannan production was substantially increased to 4.1 g/L. Production was further enhanced to 12.6 g/L (average MW 6370 Da) in 3-L fed-batch fermentation. This work provides alternative synthetic pathways for metabolic engineering of LMW mannans in B. subtilis, and a useful, optimisable approach to enhance mannans production.
doi_str_mv 10.1016/j.carbpol.2020.117115
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2457653544</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0144861720312881</els_id><sourcerecordid>2457653544</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-40056372d59d193e8695529a51938f835047f57c8e226c3d4da27825aa18ed6e3</originalsourceid><addsrcrecordid>eNqFkM1u2zAQhIkiRe2kfYQEOvYil_-iTkFttEkAA720Z5YiVw4NinRIKYHfPgrs9pq9LHYxs4P9ELomeEUwkd_2K2tyd0hhRTGdd6QhRHxAS6KatiaM8wu0xITzWknSLNBlKXs8lyT4E1owRjiVAi_R37VP5RjHRyi-VKmvQnqphxTATsHk-gX87nGsBhOjidVUfNxVA4ymS8FbE8KxgrjzESCDq9bG-hCmUpWpG32Y7xGpPqOPvQkFvpz7Ffrz88fvzX29_XX3sPm-rS2TYqw5xkKyhjrROtIyULIVgrZGzIPqFROYN71orAJKpWWOO0MbRYUxRIGTwK7Q19PdQ05PE5RRD75YCMFESFPRlItGCiY4n6XiJLU5lZKh14fsB5OPmmD9Blfv9RmufoOrT3Bn3805YuoGcP9d_2jOgtuTAOZHnz1kXayHaMH5DHbULvl3Il4BdoSNGA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2457653544</pqid></control><display><type>article</type><title>Biosynthesis of low-molecular-weight mannan using metabolically engineered Bacillus subtilis 168</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Jin, Peng ; Liang, Zhengang ; Li, Hua ; Chen, Chunxiao ; Xue, Yang ; Du, Qizhen</creator><creatorcontrib>Jin, Peng ; Liang, Zhengang ; Li, Hua ; Chen, Chunxiao ; Xue, Yang ; Du, Qizhen</creatorcontrib><description>•The De novo biosynthesis of mannan was achieved by engineering Bacillus subtilis.•The committed enzymes towards mannan were identified in Bacillus subtilis.•Mannan yield was significantly increased with glucose-repressed promoter for EMP (12.6 g/L).•Low-molecular-weight mannan was produced with mannosidase expression (6370 Da). Mannans are functional polysaccharides with unique biological activities that have been employed widely in food, medicine and pharmaceutics. Recent breakthroughs in plant polysaccharide metabolism identified numerous genes involved in the biosynthesis of mannans. However, constructing highly efficient low-cost microbial cell factories to produce low-molecular-weight (LMW) mannans remains challenging. In this work, we designed a de novo mannan synthetic pathway in food-grade Bacillus subtilis, resulting in mannan accumulation of 0.97 g/L. By co-expressing the identified committed genes (manC, manB, manA and pgi), mannan production was significantly increased to 2.5 g/L. Furthermore, by redirecting the carbon flux using a glucose-repressed promoter to control pfkA expression, mannan production was substantially increased to 4.1 g/L. Production was further enhanced to 12.6 g/L (average MW 6370 Da) in 3-L fed-batch fermentation. This work provides alternative synthetic pathways for metabolic engineering of LMW mannans in B. subtilis, and a useful, optimisable approach to enhance mannans production.</description><identifier>ISSN: 0144-8617</identifier><identifier>EISSN: 1879-1344</identifier><identifier>DOI: 10.1016/j.carbpol.2020.117115</identifier><identifier>PMID: 33142650</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Bacillus subtilis ; Bacillus subtilis - genetics ; Bacillus subtilis - metabolism ; Bacterial Proteins - metabolism ; De novosynthetic pathway ; Fermentation ; Functional polysaccharide ; Glucose - metabolism ; Low-molecular-weight mannan ; Mannans - biosynthesis ; Mannans - isolation &amp; purification ; Metabolic engineering ; Metabolic Engineering - methods ; Molecular Weight ; Redirecting carbon flux</subject><ispartof>Carbohydrate polymers, 2021-01, Vol.251, p.117115-117115, Article 117115</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright © 2020 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-40056372d59d193e8695529a51938f835047f57c8e226c3d4da27825aa18ed6e3</citedby><cites>FETCH-LOGICAL-c365t-40056372d59d193e8695529a51938f835047f57c8e226c3d4da27825aa18ed6e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0144861720312881$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33142650$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jin, Peng</creatorcontrib><creatorcontrib>Liang, Zhengang</creatorcontrib><creatorcontrib>Li, Hua</creatorcontrib><creatorcontrib>Chen, Chunxiao</creatorcontrib><creatorcontrib>Xue, Yang</creatorcontrib><creatorcontrib>Du, Qizhen</creatorcontrib><title>Biosynthesis of low-molecular-weight mannan using metabolically engineered Bacillus subtilis 168</title><title>Carbohydrate polymers</title><addtitle>Carbohydr Polym</addtitle><description>•The De novo biosynthesis of mannan was achieved by engineering Bacillus subtilis.•The committed enzymes towards mannan were identified in Bacillus subtilis.•Mannan yield was significantly increased with glucose-repressed promoter for EMP (12.6 g/L).•Low-molecular-weight mannan was produced with mannosidase expression (6370 Da). Mannans are functional polysaccharides with unique biological activities that have been employed widely in food, medicine and pharmaceutics. Recent breakthroughs in plant polysaccharide metabolism identified numerous genes involved in the biosynthesis of mannans. However, constructing highly efficient low-cost microbial cell factories to produce low-molecular-weight (LMW) mannans remains challenging. In this work, we designed a de novo mannan synthetic pathway in food-grade Bacillus subtilis, resulting in mannan accumulation of 0.97 g/L. By co-expressing the identified committed genes (manC, manB, manA and pgi), mannan production was significantly increased to 2.5 g/L. Furthermore, by redirecting the carbon flux using a glucose-repressed promoter to control pfkA expression, mannan production was substantially increased to 4.1 g/L. Production was further enhanced to 12.6 g/L (average MW 6370 Da) in 3-L fed-batch fermentation. This work provides alternative synthetic pathways for metabolic engineering of LMW mannans in B. subtilis, and a useful, optimisable approach to enhance mannans production.</description><subject>Bacillus subtilis</subject><subject>Bacillus subtilis - genetics</subject><subject>Bacillus subtilis - metabolism</subject><subject>Bacterial Proteins - metabolism</subject><subject>De novosynthetic pathway</subject><subject>Fermentation</subject><subject>Functional polysaccharide</subject><subject>Glucose - metabolism</subject><subject>Low-molecular-weight mannan</subject><subject>Mannans - biosynthesis</subject><subject>Mannans - isolation &amp; purification</subject><subject>Metabolic engineering</subject><subject>Metabolic Engineering - methods</subject><subject>Molecular Weight</subject><subject>Redirecting carbon flux</subject><issn>0144-8617</issn><issn>1879-1344</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkM1u2zAQhIkiRe2kfYQEOvYil_-iTkFttEkAA720Z5YiVw4NinRIKYHfPgrs9pq9LHYxs4P9ELomeEUwkd_2K2tyd0hhRTGdd6QhRHxAS6KatiaM8wu0xITzWknSLNBlKXs8lyT4E1owRjiVAi_R37VP5RjHRyi-VKmvQnqphxTATsHk-gX87nGsBhOjidVUfNxVA4ymS8FbE8KxgrjzESCDq9bG-hCmUpWpG32Y7xGpPqOPvQkFvpz7Ffrz88fvzX29_XX3sPm-rS2TYqw5xkKyhjrROtIyULIVgrZGzIPqFROYN71orAJKpWWOO0MbRYUxRIGTwK7Q19PdQ05PE5RRD75YCMFESFPRlItGCiY4n6XiJLU5lZKh14fsB5OPmmD9Blfv9RmufoOrT3Bn3805YuoGcP9d_2jOgtuTAOZHnz1kXayHaMH5DHbULvl3Il4BdoSNGA</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Jin, Peng</creator><creator>Liang, Zhengang</creator><creator>Li, Hua</creator><creator>Chen, Chunxiao</creator><creator>Xue, Yang</creator><creator>Du, Qizhen</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20210101</creationdate><title>Biosynthesis of low-molecular-weight mannan using metabolically engineered Bacillus subtilis 168</title><author>Jin, Peng ; Liang, Zhengang ; Li, Hua ; Chen, Chunxiao ; Xue, Yang ; Du, Qizhen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-40056372d59d193e8695529a51938f835047f57c8e226c3d4da27825aa18ed6e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bacillus subtilis</topic><topic>Bacillus subtilis - genetics</topic><topic>Bacillus subtilis - metabolism</topic><topic>Bacterial Proteins - metabolism</topic><topic>De novosynthetic pathway</topic><topic>Fermentation</topic><topic>Functional polysaccharide</topic><topic>Glucose - metabolism</topic><topic>Low-molecular-weight mannan</topic><topic>Mannans - biosynthesis</topic><topic>Mannans - isolation &amp; purification</topic><topic>Metabolic engineering</topic><topic>Metabolic Engineering - methods</topic><topic>Molecular Weight</topic><topic>Redirecting carbon flux</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jin, Peng</creatorcontrib><creatorcontrib>Liang, Zhengang</creatorcontrib><creatorcontrib>Li, Hua</creatorcontrib><creatorcontrib>Chen, Chunxiao</creatorcontrib><creatorcontrib>Xue, Yang</creatorcontrib><creatorcontrib>Du, Qizhen</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Carbohydrate polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jin, Peng</au><au>Liang, Zhengang</au><au>Li, Hua</au><au>Chen, Chunxiao</au><au>Xue, Yang</au><au>Du, Qizhen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biosynthesis of low-molecular-weight mannan using metabolically engineered Bacillus subtilis 168</atitle><jtitle>Carbohydrate polymers</jtitle><addtitle>Carbohydr Polym</addtitle><date>2021-01-01</date><risdate>2021</risdate><volume>251</volume><spage>117115</spage><epage>117115</epage><pages>117115-117115</pages><artnum>117115</artnum><issn>0144-8617</issn><eissn>1879-1344</eissn><abstract>•The De novo biosynthesis of mannan was achieved by engineering Bacillus subtilis.•The committed enzymes towards mannan were identified in Bacillus subtilis.•Mannan yield was significantly increased with glucose-repressed promoter for EMP (12.6 g/L).•Low-molecular-weight mannan was produced with mannosidase expression (6370 Da). Mannans are functional polysaccharides with unique biological activities that have been employed widely in food, medicine and pharmaceutics. Recent breakthroughs in plant polysaccharide metabolism identified numerous genes involved in the biosynthesis of mannans. However, constructing highly efficient low-cost microbial cell factories to produce low-molecular-weight (LMW) mannans remains challenging. In this work, we designed a de novo mannan synthetic pathway in food-grade Bacillus subtilis, resulting in mannan accumulation of 0.97 g/L. By co-expressing the identified committed genes (manC, manB, manA and pgi), mannan production was significantly increased to 2.5 g/L. Furthermore, by redirecting the carbon flux using a glucose-repressed promoter to control pfkA expression, mannan production was substantially increased to 4.1 g/L. Production was further enhanced to 12.6 g/L (average MW 6370 Da) in 3-L fed-batch fermentation. This work provides alternative synthetic pathways for metabolic engineering of LMW mannans in B. subtilis, and a useful, optimisable approach to enhance mannans production.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>33142650</pmid><doi>10.1016/j.carbpol.2020.117115</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0144-8617
ispartof Carbohydrate polymers, 2021-01, Vol.251, p.117115-117115, Article 117115
issn 0144-8617
1879-1344
language eng
recordid cdi_proquest_miscellaneous_2457653544
source MEDLINE; Elsevier ScienceDirect Journals
subjects Bacillus subtilis
Bacillus subtilis - genetics
Bacillus subtilis - metabolism
Bacterial Proteins - metabolism
De novosynthetic pathway
Fermentation
Functional polysaccharide
Glucose - metabolism
Low-molecular-weight mannan
Mannans - biosynthesis
Mannans - isolation & purification
Metabolic engineering
Metabolic Engineering - methods
Molecular Weight
Redirecting carbon flux
title Biosynthesis of low-molecular-weight mannan using metabolically engineered Bacillus subtilis 168
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T15%3A49%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biosynthesis%20of%20low-molecular-weight%20mannan%20using%20metabolically%20engineered%20Bacillus%20subtilis%20168&rft.jtitle=Carbohydrate%20polymers&rft.au=Jin,%20Peng&rft.date=2021-01-01&rft.volume=251&rft.spage=117115&rft.epage=117115&rft.pages=117115-117115&rft.artnum=117115&rft.issn=0144-8617&rft.eissn=1879-1344&rft_id=info:doi/10.1016/j.carbpol.2020.117115&rft_dat=%3Cproquest_cross%3E2457653544%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2457653544&rft_id=info:pmid/33142650&rft_els_id=S0144861720312881&rfr_iscdi=true