Chaos in Cartan foliations
Chaotic foliations generalize Devaney’s concept of chaos for dynamical systems. The property of a foliation to be chaotic is transversal, i.e, depends on the structure of the leaf space of the foliation. The transversal structure of a Cartan foliation is modeled on a Cartan manifold. The problem of...
Gespeichert in:
Veröffentlicht in: | Chaos (Woodbury, N.Y.) N.Y.), 2020-10, Vol.30 (10), p.103116-103116 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 103116 |
---|---|
container_issue | 10 |
container_start_page | 103116 |
container_title | Chaos (Woodbury, N.Y.) |
container_volume | 30 |
creator | Bazaikin, Yaroslav V. Galaev, Anton S. Zhukova, Nina I. |
description | Chaotic foliations generalize Devaney’s concept of chaos for dynamical systems. The property of a foliation to be chaotic is transversal, i.e, depends on the structure of the leaf space of the foliation. The transversal structure of a Cartan foliation is modeled on a Cartan manifold. The problem of investigating chaotic Cartan foliations is reduced to the corresponding problem for their holonomy pseudogroups of local automorphisms of transversal Cartan manifolds. For a Cartan foliation of a wide class, this problem is reduced to the corresponding problem for its global holonomy group, which is a countable discrete subgroup of the Lie automorphism group of an associated simply connected Cartan manifold. Several types of Cartan foliations that cannot be chaotic are indicated. Examples of chaotic Cartan foliations are constructed. |
doi_str_mv | 10.1063/5.0021596 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_miscellaneous_2457286021</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2457286021</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-f55ee10d02fdbab264d3b5da74241351e266b8c046c249ad5a3a041df39d40483</originalsourceid><addsrcrecordid>eNqd0E1LxDAQBuAgCq6rB6-eCl5U6DqZfDQ9SvELFrzoOaRNil26TU26gv_e1i4IHj3NHB6GeV9CzimsKEh2K1YASEUuD8iCgsrTTCo8nHbBUyoAjslJjBsAoMjEglwU78bHpOmSwoTBdEnt28YMje_iKTmqTRvd2X4uydvD_WvxlK5fHp-Lu3VaMQlDWgvhHAULWNvSlCi5ZaWwJuPIKRPUoZSlqoDLCnlurDDMAKe2ZrnlwBVbkqv5bh_8x87FQW-bWLm2NZ3zu6iRiwyVHGON9PIP3fhd6MbvJoVIlUIY1fWsquBjDK7WfWi2JnxpCnpqSQu9b2m0N7ONVTP85P4f_vThF-p-TPcN_l9x6A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2452218820</pqid></control><display><type>article</type><title>Chaos in Cartan foliations</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Bazaikin, Yaroslav V. ; Galaev, Anton S. ; Zhukova, Nina I.</creator><creatorcontrib>Bazaikin, Yaroslav V. ; Galaev, Anton S. ; Zhukova, Nina I.</creatorcontrib><description>Chaotic foliations generalize Devaney’s concept of chaos for dynamical systems. The property of a foliation to be chaotic is transversal, i.e, depends on the structure of the leaf space of the foliation. The transversal structure of a Cartan foliation is modeled on a Cartan manifold. The problem of investigating chaotic Cartan foliations is reduced to the corresponding problem for their holonomy pseudogroups of local automorphisms of transversal Cartan manifolds. For a Cartan foliation of a wide class, this problem is reduced to the corresponding problem for its global holonomy group, which is a countable discrete subgroup of the Lie automorphism group of an associated simply connected Cartan manifold. Several types of Cartan foliations that cannot be chaotic are indicated. Examples of chaotic Cartan foliations are constructed.</description><identifier>ISSN: 1054-1500</identifier><identifier>EISSN: 1089-7682</identifier><identifier>DOI: 10.1063/5.0021596</identifier><identifier>CODEN: CHAOEH</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Automorphisms ; Chaos theory ; Manifolds ; Subgroups</subject><ispartof>Chaos (Woodbury, N.Y.), 2020-10, Vol.30 (10), p.103116-103116</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-f55ee10d02fdbab264d3b5da74241351e266b8c046c249ad5a3a041df39d40483</citedby><cites>FETCH-LOGICAL-c360t-f55ee10d02fdbab264d3b5da74241351e266b8c046c249ad5a3a041df39d40483</cites><orcidid>0000-0003-3043-4224 ; 0000-0002-4553-559X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,790,4497,27903,27904</link.rule.ids></links><search><creatorcontrib>Bazaikin, Yaroslav V.</creatorcontrib><creatorcontrib>Galaev, Anton S.</creatorcontrib><creatorcontrib>Zhukova, Nina I.</creatorcontrib><title>Chaos in Cartan foliations</title><title>Chaos (Woodbury, N.Y.)</title><description>Chaotic foliations generalize Devaney’s concept of chaos for dynamical systems. The property of a foliation to be chaotic is transversal, i.e, depends on the structure of the leaf space of the foliation. The transversal structure of a Cartan foliation is modeled on a Cartan manifold. The problem of investigating chaotic Cartan foliations is reduced to the corresponding problem for their holonomy pseudogroups of local automorphisms of transversal Cartan manifolds. For a Cartan foliation of a wide class, this problem is reduced to the corresponding problem for its global holonomy group, which is a countable discrete subgroup of the Lie automorphism group of an associated simply connected Cartan manifold. Several types of Cartan foliations that cannot be chaotic are indicated. Examples of chaotic Cartan foliations are constructed.</description><subject>Automorphisms</subject><subject>Chaos theory</subject><subject>Manifolds</subject><subject>Subgroups</subject><issn>1054-1500</issn><issn>1089-7682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqd0E1LxDAQBuAgCq6rB6-eCl5U6DqZfDQ9SvELFrzoOaRNil26TU26gv_e1i4IHj3NHB6GeV9CzimsKEh2K1YASEUuD8iCgsrTTCo8nHbBUyoAjslJjBsAoMjEglwU78bHpOmSwoTBdEnt28YMje_iKTmqTRvd2X4uydvD_WvxlK5fHp-Lu3VaMQlDWgvhHAULWNvSlCi5ZaWwJuPIKRPUoZSlqoDLCnlurDDMAKe2ZrnlwBVbkqv5bh_8x87FQW-bWLm2NZ3zu6iRiwyVHGON9PIP3fhd6MbvJoVIlUIY1fWsquBjDK7WfWi2JnxpCnpqSQu9b2m0N7ONVTP85P4f_vThF-p-TPcN_l9x6A</recordid><startdate>202010</startdate><enddate>202010</enddate><creator>Bazaikin, Yaroslav V.</creator><creator>Galaev, Anton S.</creator><creator>Zhukova, Nina I.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3043-4224</orcidid><orcidid>https://orcid.org/0000-0002-4553-559X</orcidid></search><sort><creationdate>202010</creationdate><title>Chaos in Cartan foliations</title><author>Bazaikin, Yaroslav V. ; Galaev, Anton S. ; Zhukova, Nina I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-f55ee10d02fdbab264d3b5da74241351e266b8c046c249ad5a3a041df39d40483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Automorphisms</topic><topic>Chaos theory</topic><topic>Manifolds</topic><topic>Subgroups</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bazaikin, Yaroslav V.</creatorcontrib><creatorcontrib>Galaev, Anton S.</creatorcontrib><creatorcontrib>Zhukova, Nina I.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Chaos (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bazaikin, Yaroslav V.</au><au>Galaev, Anton S.</au><au>Zhukova, Nina I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chaos in Cartan foliations</atitle><jtitle>Chaos (Woodbury, N.Y.)</jtitle><date>2020-10</date><risdate>2020</risdate><volume>30</volume><issue>10</issue><spage>103116</spage><epage>103116</epage><pages>103116-103116</pages><issn>1054-1500</issn><eissn>1089-7682</eissn><coden>CHAOEH</coden><abstract>Chaotic foliations generalize Devaney’s concept of chaos for dynamical systems. The property of a foliation to be chaotic is transversal, i.e, depends on the structure of the leaf space of the foliation. The transversal structure of a Cartan foliation is modeled on a Cartan manifold. The problem of investigating chaotic Cartan foliations is reduced to the corresponding problem for their holonomy pseudogroups of local automorphisms of transversal Cartan manifolds. For a Cartan foliation of a wide class, this problem is reduced to the corresponding problem for its global holonomy group, which is a countable discrete subgroup of the Lie automorphism group of an associated simply connected Cartan manifold. Several types of Cartan foliations that cannot be chaotic are indicated. Examples of chaotic Cartan foliations are constructed.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0021596</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3043-4224</orcidid><orcidid>https://orcid.org/0000-0002-4553-559X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1054-1500 |
ispartof | Chaos (Woodbury, N.Y.), 2020-10, Vol.30 (10), p.103116-103116 |
issn | 1054-1500 1089-7682 |
language | eng |
recordid | cdi_proquest_miscellaneous_2457286021 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Automorphisms Chaos theory Manifolds Subgroups |
title | Chaos in Cartan foliations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T18%3A49%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chaos%20in%20Cartan%20foliations&rft.jtitle=Chaos%20(Woodbury,%20N.Y.)&rft.au=Bazaikin,%20Yaroslav%20V.&rft.date=2020-10&rft.volume=30&rft.issue=10&rft.spage=103116&rft.epage=103116&rft.pages=103116-103116&rft.issn=1054-1500&rft.eissn=1089-7682&rft.coden=CHAOEH&rft_id=info:doi/10.1063/5.0021596&rft_dat=%3Cproquest_scita%3E2457286021%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2452218820&rft_id=info:pmid/&rfr_iscdi=true |