Measurement of Exciton and Trion Energies in Multistacked hBN/WS2 Coupled Quantum Wells for Resonant Tunneling Diodes

Quantum confinements, especially quantum in narrow wells, have been investigated because of their controllability over electrical parameters. For example, quantum dots can emit a variety of photon wavelengths even for the same material depending on their particle size. More recently, the research in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2020-11, Vol.14 (11), p.16114-16121
Hauptverfasser: Lee, Myoung-Jae, Seo, David H, Kwon, Sung Min, Kim, Dohun, Kim, Youngwook, Yun, Won Seok, Cha, Jung-Hwa, Song, Hyeon-Kyo, Lee, Shinbuhm, Jung, MinKyung, Lee, Hyeon-Jun, Kim, June-Seo, Heo, Jae-Sang, Seo, Sunae, Park, Sung Kyu
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16121
container_issue 11
container_start_page 16114
container_title ACS nano
container_volume 14
creator Lee, Myoung-Jae
Seo, David H
Kwon, Sung Min
Kim, Dohun
Kim, Youngwook
Yun, Won Seok
Cha, Jung-Hwa
Song, Hyeon-Kyo
Lee, Shinbuhm
Jung, MinKyung
Lee, Hyeon-Jun
Kim, June-Seo
Heo, Jae-Sang
Seo, Sunae
Park, Sung Kyu
description Quantum confinements, especially quantum in narrow wells, have been investigated because of their controllability over electrical parameters. For example, quantum dots can emit a variety of photon wavelengths even for the same material depending on their particle size. More recently, the research into two-dimensional (2D) materials has shown the availability of several quantum mechanical phenomenon confined within a sheet of materials. Starting with the gapless semimetal properties of graphene, current research has begun into the excitons and their properties within 2D materials. Even for simple 2D systems, experimental results often offer surprising results, unexpected from traditional studies. We investigated a coupled quantum well system using 2D hexagonal boron nitride (hBN) barrier as well as 2D tungsten disulfide (WS2) semiconductor arranged in stacked structures to study the various 2D to 2D interactions. We determined that for hexagonal boron nitride-tungsten disulfide (hBN/WS2) quantum well stacks, the interaction between successive wells resulted in decreasing bandgap, and the effect was pronounced even over a large distance of up to four stacks. Additionally, we observed that a single layer of isolating hBN barriers significantly reduces interlayer interaction between WS2 layers, while still preserving the interwell interactions in the alternative hBN/WS2 structure. The methods we used for the study of coupled quantum wells here show a method for determining the respective exciton energy levels and trion energy levels within 2D materials and 2D materials-based structures. Renormalization energy levels are the key in understanding conductive and photonic properties of stacked 2D materials.
doi_str_mv 10.1021/acsnano.0c08133
format Article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_2457278337</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2457278337</sourcerecordid><originalsourceid>FETCH-LOGICAL-a195t-aa200f8059b3f9c535875bd1728d3816fcad6c22b5e9630cf62efec20e6596ea3</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhYMoWKtrt1kK0jYPk8kstdYHtIpaqbshzdzU1GlSJwn48x1pcXXPhcPh40PonJIhJYyOtIle-zAkhijK-QHq0ZLLAVHy4_A_C3qMTmJcEyIKVcgeyjPQMbewAZ9wsHjyY1wKHmtf43nrujTx0K4cROw8nuUmuZi0-YIaf948jRZvDI9D3jbd_5K1T3mDF9A0EdvQ4leIoWNKeJ69h8b5Fb51oYZ4io6sbiKc7W8fvd9N5uOHwfT5_nF8PR1oWoo00JoRYhUR5ZLb0gguVCGWNS2Yqrmi0hpdS8PYUkApOTFWMrBgGAEpSgma99HFbnfbhu8MMVUbF03Hpz2EHCt2JQpWKM6Lrnq5q3Yeq3XIre_AKkqqP7nVXm61l8t_ATWwb9E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2457278337</pqid></control><display><type>article</type><title>Measurement of Exciton and Trion Energies in Multistacked hBN/WS2 Coupled Quantum Wells for Resonant Tunneling Diodes</title><source>ACS Publications</source><creator>Lee, Myoung-Jae ; Seo, David H ; Kwon, Sung Min ; Kim, Dohun ; Kim, Youngwook ; Yun, Won Seok ; Cha, Jung-Hwa ; Song, Hyeon-Kyo ; Lee, Shinbuhm ; Jung, MinKyung ; Lee, Hyeon-Jun ; Kim, June-Seo ; Heo, Jae-Sang ; Seo, Sunae ; Park, Sung Kyu</creator><creatorcontrib>Lee, Myoung-Jae ; Seo, David H ; Kwon, Sung Min ; Kim, Dohun ; Kim, Youngwook ; Yun, Won Seok ; Cha, Jung-Hwa ; Song, Hyeon-Kyo ; Lee, Shinbuhm ; Jung, MinKyung ; Lee, Hyeon-Jun ; Kim, June-Seo ; Heo, Jae-Sang ; Seo, Sunae ; Park, Sung Kyu</creatorcontrib><description>Quantum confinements, especially quantum in narrow wells, have been investigated because of their controllability over electrical parameters. For example, quantum dots can emit a variety of photon wavelengths even for the same material depending on their particle size. More recently, the research into two-dimensional (2D) materials has shown the availability of several quantum mechanical phenomenon confined within a sheet of materials. Starting with the gapless semimetal properties of graphene, current research has begun into the excitons and their properties within 2D materials. Even for simple 2D systems, experimental results often offer surprising results, unexpected from traditional studies. We investigated a coupled quantum well system using 2D hexagonal boron nitride (hBN) barrier as well as 2D tungsten disulfide (WS2) semiconductor arranged in stacked structures to study the various 2D to 2D interactions. We determined that for hexagonal boron nitride-tungsten disulfide (hBN/WS2) quantum well stacks, the interaction between successive wells resulted in decreasing bandgap, and the effect was pronounced even over a large distance of up to four stacks. Additionally, we observed that a single layer of isolating hBN barriers significantly reduces interlayer interaction between WS2 layers, while still preserving the interwell interactions in the alternative hBN/WS2 structure. The methods we used for the study of coupled quantum wells here show a method for determining the respective exciton energy levels and trion energy levels within 2D materials and 2D materials-based structures. Renormalization energy levels are the key in understanding conductive and photonic properties of stacked 2D materials.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.0c08133</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS nano, 2020-11, Vol.14 (11), p.16114-16121</ispartof><rights>2020 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-5607-3327 ; 0000-0003-1515-5913 ; 0000-0003-2626-0460 ; 0000-0001-9617-2541</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.0c08133$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.0c08133$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Lee, Myoung-Jae</creatorcontrib><creatorcontrib>Seo, David H</creatorcontrib><creatorcontrib>Kwon, Sung Min</creatorcontrib><creatorcontrib>Kim, Dohun</creatorcontrib><creatorcontrib>Kim, Youngwook</creatorcontrib><creatorcontrib>Yun, Won Seok</creatorcontrib><creatorcontrib>Cha, Jung-Hwa</creatorcontrib><creatorcontrib>Song, Hyeon-Kyo</creatorcontrib><creatorcontrib>Lee, Shinbuhm</creatorcontrib><creatorcontrib>Jung, MinKyung</creatorcontrib><creatorcontrib>Lee, Hyeon-Jun</creatorcontrib><creatorcontrib>Kim, June-Seo</creatorcontrib><creatorcontrib>Heo, Jae-Sang</creatorcontrib><creatorcontrib>Seo, Sunae</creatorcontrib><creatorcontrib>Park, Sung Kyu</creatorcontrib><title>Measurement of Exciton and Trion Energies in Multistacked hBN/WS2 Coupled Quantum Wells for Resonant Tunneling Diodes</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Quantum confinements, especially quantum in narrow wells, have been investigated because of their controllability over electrical parameters. For example, quantum dots can emit a variety of photon wavelengths even for the same material depending on their particle size. More recently, the research into two-dimensional (2D) materials has shown the availability of several quantum mechanical phenomenon confined within a sheet of materials. Starting with the gapless semimetal properties of graphene, current research has begun into the excitons and their properties within 2D materials. Even for simple 2D systems, experimental results often offer surprising results, unexpected from traditional studies. We investigated a coupled quantum well system using 2D hexagonal boron nitride (hBN) barrier as well as 2D tungsten disulfide (WS2) semiconductor arranged in stacked structures to study the various 2D to 2D interactions. We determined that for hexagonal boron nitride-tungsten disulfide (hBN/WS2) quantum well stacks, the interaction between successive wells resulted in decreasing bandgap, and the effect was pronounced even over a large distance of up to four stacks. Additionally, we observed that a single layer of isolating hBN barriers significantly reduces interlayer interaction between WS2 layers, while still preserving the interwell interactions in the alternative hBN/WS2 structure. The methods we used for the study of coupled quantum wells here show a method for determining the respective exciton energy levels and trion energy levels within 2D materials and 2D materials-based structures. Renormalization energy levels are the key in understanding conductive and photonic properties of stacked 2D materials.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLAzEUhYMoWKtrt1kK0jYPk8kstdYHtIpaqbshzdzU1GlSJwn48x1pcXXPhcPh40PonJIhJYyOtIle-zAkhijK-QHq0ZLLAVHy4_A_C3qMTmJcEyIKVcgeyjPQMbewAZ9wsHjyY1wKHmtf43nrujTx0K4cROw8nuUmuZi0-YIaf948jRZvDI9D3jbd_5K1T3mDF9A0EdvQ4leIoWNKeJ69h8b5Fb51oYZ4io6sbiKc7W8fvd9N5uOHwfT5_nF8PR1oWoo00JoRYhUR5ZLb0gguVCGWNS2Yqrmi0hpdS8PYUkApOTFWMrBgGAEpSgma99HFbnfbhu8MMVUbF03Hpz2EHCt2JQpWKM6Lrnq5q3Yeq3XIre_AKkqqP7nVXm61l8t_ATWwb9E</recordid><startdate>20201124</startdate><enddate>20201124</enddate><creator>Lee, Myoung-Jae</creator><creator>Seo, David H</creator><creator>Kwon, Sung Min</creator><creator>Kim, Dohun</creator><creator>Kim, Youngwook</creator><creator>Yun, Won Seok</creator><creator>Cha, Jung-Hwa</creator><creator>Song, Hyeon-Kyo</creator><creator>Lee, Shinbuhm</creator><creator>Jung, MinKyung</creator><creator>Lee, Hyeon-Jun</creator><creator>Kim, June-Seo</creator><creator>Heo, Jae-Sang</creator><creator>Seo, Sunae</creator><creator>Park, Sung Kyu</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5607-3327</orcidid><orcidid>https://orcid.org/0000-0003-1515-5913</orcidid><orcidid>https://orcid.org/0000-0003-2626-0460</orcidid><orcidid>https://orcid.org/0000-0001-9617-2541</orcidid></search><sort><creationdate>20201124</creationdate><title>Measurement of Exciton and Trion Energies in Multistacked hBN/WS2 Coupled Quantum Wells for Resonant Tunneling Diodes</title><author>Lee, Myoung-Jae ; Seo, David H ; Kwon, Sung Min ; Kim, Dohun ; Kim, Youngwook ; Yun, Won Seok ; Cha, Jung-Hwa ; Song, Hyeon-Kyo ; Lee, Shinbuhm ; Jung, MinKyung ; Lee, Hyeon-Jun ; Kim, June-Seo ; Heo, Jae-Sang ; Seo, Sunae ; Park, Sung Kyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a195t-aa200f8059b3f9c535875bd1728d3816fcad6c22b5e9630cf62efec20e6596ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Myoung-Jae</creatorcontrib><creatorcontrib>Seo, David H</creatorcontrib><creatorcontrib>Kwon, Sung Min</creatorcontrib><creatorcontrib>Kim, Dohun</creatorcontrib><creatorcontrib>Kim, Youngwook</creatorcontrib><creatorcontrib>Yun, Won Seok</creatorcontrib><creatorcontrib>Cha, Jung-Hwa</creatorcontrib><creatorcontrib>Song, Hyeon-Kyo</creatorcontrib><creatorcontrib>Lee, Shinbuhm</creatorcontrib><creatorcontrib>Jung, MinKyung</creatorcontrib><creatorcontrib>Lee, Hyeon-Jun</creatorcontrib><creatorcontrib>Kim, June-Seo</creatorcontrib><creatorcontrib>Heo, Jae-Sang</creatorcontrib><creatorcontrib>Seo, Sunae</creatorcontrib><creatorcontrib>Park, Sung Kyu</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Myoung-Jae</au><au>Seo, David H</au><au>Kwon, Sung Min</au><au>Kim, Dohun</au><au>Kim, Youngwook</au><au>Yun, Won Seok</au><au>Cha, Jung-Hwa</au><au>Song, Hyeon-Kyo</au><au>Lee, Shinbuhm</au><au>Jung, MinKyung</au><au>Lee, Hyeon-Jun</au><au>Kim, June-Seo</au><au>Heo, Jae-Sang</au><au>Seo, Sunae</au><au>Park, Sung Kyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Measurement of Exciton and Trion Energies in Multistacked hBN/WS2 Coupled Quantum Wells for Resonant Tunneling Diodes</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2020-11-24</date><risdate>2020</risdate><volume>14</volume><issue>11</issue><spage>16114</spage><epage>16121</epage><pages>16114-16121</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Quantum confinements, especially quantum in narrow wells, have been investigated because of their controllability over electrical parameters. For example, quantum dots can emit a variety of photon wavelengths even for the same material depending on their particle size. More recently, the research into two-dimensional (2D) materials has shown the availability of several quantum mechanical phenomenon confined within a sheet of materials. Starting with the gapless semimetal properties of graphene, current research has begun into the excitons and their properties within 2D materials. Even for simple 2D systems, experimental results often offer surprising results, unexpected from traditional studies. We investigated a coupled quantum well system using 2D hexagonal boron nitride (hBN) barrier as well as 2D tungsten disulfide (WS2) semiconductor arranged in stacked structures to study the various 2D to 2D interactions. We determined that for hexagonal boron nitride-tungsten disulfide (hBN/WS2) quantum well stacks, the interaction between successive wells resulted in decreasing bandgap, and the effect was pronounced even over a large distance of up to four stacks. Additionally, we observed that a single layer of isolating hBN barriers significantly reduces interlayer interaction between WS2 layers, while still preserving the interwell interactions in the alternative hBN/WS2 structure. The methods we used for the study of coupled quantum wells here show a method for determining the respective exciton energy levels and trion energy levels within 2D materials and 2D materials-based structures. Renormalization energy levels are the key in understanding conductive and photonic properties of stacked 2D materials.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsnano.0c08133</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-5607-3327</orcidid><orcidid>https://orcid.org/0000-0003-1515-5913</orcidid><orcidid>https://orcid.org/0000-0003-2626-0460</orcidid><orcidid>https://orcid.org/0000-0001-9617-2541</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2020-11, Vol.14 (11), p.16114-16121
issn 1936-0851
1936-086X
language eng
recordid cdi_proquest_miscellaneous_2457278337
source ACS Publications
title Measurement of Exciton and Trion Energies in Multistacked hBN/WS2 Coupled Quantum Wells for Resonant Tunneling Diodes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T19%3A28%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Measurement%20of%20Exciton%20and%20Trion%20Energies%20in%20Multistacked%20hBN/WS2%20Coupled%20Quantum%20Wells%20for%20Resonant%20Tunneling%20Diodes&rft.jtitle=ACS%20nano&rft.au=Lee,%20Myoung-Jae&rft.date=2020-11-24&rft.volume=14&rft.issue=11&rft.spage=16114&rft.epage=16121&rft.pages=16114-16121&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.0c08133&rft_dat=%3Cproquest_acs_j%3E2457278337%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2457278337&rft_id=info:pmid/&rfr_iscdi=true