Different loci control resistance to different isolates of the same race of Colletotrichum lindemuthianum in common bean
Key message Linkage and genome-wide association analyses using high-throughput SNP genotyping revealed different loci controlling resistance to different isolates of race 65 of Colletotrichum lindemuthianum in common bean. Development of varieties with durable resistance to anthracnose is a major ch...
Gespeichert in:
Veröffentlicht in: | Theoretical and applied genetics 2021-02, Vol.134 (2), p.543-556 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 556 |
---|---|
container_issue | 2 |
container_start_page | 543 |
container_title | Theoretical and applied genetics |
container_volume | 134 |
creator | Costa, Larissa Carvalho Nalin, Rafael Storto Dias, Mariana Andrade Ferreira, Márcio Elias Song, Qijian Pastor-Corrales, Marcial A. Hurtado-Gonzales, Oscar P. de Souza, Elaine Aparecida |
description | Key message
Linkage and genome-wide association analyses using high-throughput SNP genotyping revealed different loci controlling resistance to different isolates of race 65 of
Colletotrichum lindemuthianum
in common bean.
Development of varieties with durable resistance to anthracnose is a major challenge in common bean breeding programs because of the extensive virulence diversity of
Colletotrichum lindemuthianum
fungus. We used linkage and genome-wide association analyses to tap the genomic regions associated with resistance to different isolates of race 65. Linkage mapping was done using an F
2
population derived from the cross between the Mesoamerican common beans BRS Estilo x Ouro Vermelho, inoculated with two different isolates of race 65. Association genetics relied on a diversity common bean panel containing 189 common bean accessions inoculated with five different isolates of race 65 as an attempt to validate the linkage analysis findings and, eventually, identify other genomic regions associated with resistance to race 65. The F
2
population and diversity panel were genotyped with the BARCBean6K_3 Illumina BeadChip containing 5398 SNP markers. Both linkage and genome-wide association analyses identified different loci controlling resistance to different isolates of race 65 on linkage group Pv04. Genome-wide association analysis also detected loci on Pv05, Pv10 and Pv11 associated with resistance to race 65. These findings indicate that resistance to race 65 can be overcome by the virulence diversity among different isolates of the same race and could lead to the loss of resistance after cultivar release. We identified 25 resistant common bean cultivars to all five isolates of race 65 in the diversity panel. The accessions should be useful to develop cultivars combining different resistance genes that favor durable resistance to anthracnose in common bean. |
doi_str_mv | 10.1007/s00122-020-03713-x |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2456863219</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A651473422</galeid><sourcerecordid>A651473422</sourcerecordid><originalsourceid>FETCH-LOGICAL-c476t-4338ec93ed39059b99872166999036605ec3df41a09c011faa736bd9ca724adf3</originalsourceid><addsrcrecordid>eNp9kl1rFDEUhoModq3-AS8k4I29mHryMZnNZVmtFgqCH9chmzmzmzKT1CQD239v1q0tKyK5CDl53peck5eQ1wzOGUD3PgMwzhvg0IDomGh2T8iCScEbziV_ShYAEpq2a_kJeZHzDQDwFsRzciIEE6BbuSC7D34YMGEodIzOUxdDSXGkCbPPxQaHtETaP0A-x9EWzDQOtGyRZjshTbZitbCK44glluTddp7o6EOP01y23oZ69KG6T1MMdI02vCTPBjtmfHW_n5Iflx-_rz43118-Xa0urhsnO1UaKcQSnRbYCw2tXmu97DhTSmsNQilo0Yl-kMyCdsDYYG0n1LrXznZc2n4Qp-Tdwfc2xZ8z5mImnx2Oow0Y52y4bNVSCc50Rd_-hd7EOYX6ukotuVDAoHukNnZE48NQ-7Vub2ouVMtkJyTnlTr_B1VXnYivQ8bB1_qR4OxIsP8I3JWNnXM2V9--HrP8wLoUc044mNvkJ5vuDAOzj4Y5RMPUaJjf0TC7Knpz3928nrB_kPzJQgXEAcj1KmwwPbb_H9tflZDCZQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2482360107</pqid></control><display><type>article</type><title>Different loci control resistance to different isolates of the same race of Colletotrichum lindemuthianum in common bean</title><source>MEDLINE</source><source>SpringerLink</source><creator>Costa, Larissa Carvalho ; Nalin, Rafael Storto ; Dias, Mariana Andrade ; Ferreira, Márcio Elias ; Song, Qijian ; Pastor-Corrales, Marcial A. ; Hurtado-Gonzales, Oscar P. ; de Souza, Elaine Aparecida</creator><creatorcontrib>Costa, Larissa Carvalho ; Nalin, Rafael Storto ; Dias, Mariana Andrade ; Ferreira, Márcio Elias ; Song, Qijian ; Pastor-Corrales, Marcial A. ; Hurtado-Gonzales, Oscar P. ; de Souza, Elaine Aparecida</creatorcontrib><description>Key message
Linkage and genome-wide association analyses using high-throughput SNP genotyping revealed different loci controlling resistance to different isolates of race 65 of
Colletotrichum lindemuthianum
in common bean.
Development of varieties with durable resistance to anthracnose is a major challenge in common bean breeding programs because of the extensive virulence diversity of
Colletotrichum lindemuthianum
fungus. We used linkage and genome-wide association analyses to tap the genomic regions associated with resistance to different isolates of race 65. Linkage mapping was done using an F
2
population derived from the cross between the Mesoamerican common beans BRS Estilo x Ouro Vermelho, inoculated with two different isolates of race 65. Association genetics relied on a diversity common bean panel containing 189 common bean accessions inoculated with five different isolates of race 65 as an attempt to validate the linkage analysis findings and, eventually, identify other genomic regions associated with resistance to race 65. The F
2
population and diversity panel were genotyped with the BARCBean6K_3 Illumina BeadChip containing 5398 SNP markers. Both linkage and genome-wide association analyses identified different loci controlling resistance to different isolates of race 65 on linkage group Pv04. Genome-wide association analysis also detected loci on Pv05, Pv10 and Pv11 associated with resistance to race 65. These findings indicate that resistance to race 65 can be overcome by the virulence diversity among different isolates of the same race and could lead to the loss of resistance after cultivar release. We identified 25 resistant common bean cultivars to all five isolates of race 65 in the diversity panel. The accessions should be useful to develop cultivars combining different resistance genes that favor durable resistance to anthracnose in common bean.</description><identifier>ISSN: 0040-5752</identifier><identifier>EISSN: 1432-2242</identifier><identifier>DOI: 10.1007/s00122-020-03713-x</identifier><identifier>PMID: 33130954</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Agriculture ; Anthracnose ; Ascomycota ; Association analysis ; Beans ; Biochemistry ; Biomedical and Life Sciences ; Biotechnology ; Chromosome Mapping ; Chromosomes, Plant - genetics ; Colletotrichum - isolation & purification ; Colletotrichum - pathogenicity ; Colletotrichum lindemuthianum ; Control ; Cultivars ; Disease Resistance - genetics ; Disease Resistance - immunology ; Diseases and pests ; Fungal diseases of plants ; Fungi ; Gene Expression Regulation, Plant ; Gene mapping ; Genetic aspects ; Genetic diversity ; Genetic research ; Genomes ; Genomics ; Genotyping ; Life Sciences ; Linkage analysis ; Original Article ; Phaseolus - genetics ; Phaseolus - microbiology ; Plant Biochemistry ; Plant Breeding ; Plant Breeding/Biotechnology ; Plant Diseases - genetics ; Plant Diseases - microbiology ; Plant Genetics and Genomics ; Plant immunology ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Polymorphism, Single Nucleotide ; Quantitative Trait Loci ; Single-nucleotide polymorphism ; Virulence</subject><ispartof>Theoretical and applied genetics, 2021-02, Vol.134 (2), p.543-556</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>COPYRIGHT 2021 Springer</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c476t-4338ec93ed39059b99872166999036605ec3df41a09c011faa736bd9ca724adf3</citedby><cites>FETCH-LOGICAL-c476t-4338ec93ed39059b99872166999036605ec3df41a09c011faa736bd9ca724adf3</cites><orcidid>0000-0002-6463-9976</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00122-020-03713-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00122-020-03713-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33130954$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Costa, Larissa Carvalho</creatorcontrib><creatorcontrib>Nalin, Rafael Storto</creatorcontrib><creatorcontrib>Dias, Mariana Andrade</creatorcontrib><creatorcontrib>Ferreira, Márcio Elias</creatorcontrib><creatorcontrib>Song, Qijian</creatorcontrib><creatorcontrib>Pastor-Corrales, Marcial A.</creatorcontrib><creatorcontrib>Hurtado-Gonzales, Oscar P.</creatorcontrib><creatorcontrib>de Souza, Elaine Aparecida</creatorcontrib><title>Different loci control resistance to different isolates of the same race of Colletotrichum lindemuthianum in common bean</title><title>Theoretical and applied genetics</title><addtitle>Theor Appl Genet</addtitle><addtitle>Theor Appl Genet</addtitle><description>Key message
Linkage and genome-wide association analyses using high-throughput SNP genotyping revealed different loci controlling resistance to different isolates of race 65 of
Colletotrichum lindemuthianum
in common bean.
Development of varieties with durable resistance to anthracnose is a major challenge in common bean breeding programs because of the extensive virulence diversity of
Colletotrichum lindemuthianum
fungus. We used linkage and genome-wide association analyses to tap the genomic regions associated with resistance to different isolates of race 65. Linkage mapping was done using an F
2
population derived from the cross between the Mesoamerican common beans BRS Estilo x Ouro Vermelho, inoculated with two different isolates of race 65. Association genetics relied on a diversity common bean panel containing 189 common bean accessions inoculated with five different isolates of race 65 as an attempt to validate the linkage analysis findings and, eventually, identify other genomic regions associated with resistance to race 65. The F
2
population and diversity panel were genotyped with the BARCBean6K_3 Illumina BeadChip containing 5398 SNP markers. Both linkage and genome-wide association analyses identified different loci controlling resistance to different isolates of race 65 on linkage group Pv04. Genome-wide association analysis also detected loci on Pv05, Pv10 and Pv11 associated with resistance to race 65. These findings indicate that resistance to race 65 can be overcome by the virulence diversity among different isolates of the same race and could lead to the loss of resistance after cultivar release. We identified 25 resistant common bean cultivars to all five isolates of race 65 in the diversity panel. The accessions should be useful to develop cultivars combining different resistance genes that favor durable resistance to anthracnose in common bean.</description><subject>Agriculture</subject><subject>Anthracnose</subject><subject>Ascomycota</subject><subject>Association analysis</subject><subject>Beans</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Chromosome Mapping</subject><subject>Chromosomes, Plant - genetics</subject><subject>Colletotrichum - isolation & purification</subject><subject>Colletotrichum - pathogenicity</subject><subject>Colletotrichum lindemuthianum</subject><subject>Control</subject><subject>Cultivars</subject><subject>Disease Resistance - genetics</subject><subject>Disease Resistance - immunology</subject><subject>Diseases and pests</subject><subject>Fungal diseases of plants</subject><subject>Fungi</subject><subject>Gene Expression Regulation, Plant</subject><subject>Gene mapping</subject><subject>Genetic aspects</subject><subject>Genetic diversity</subject><subject>Genetic research</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Genotyping</subject><subject>Life Sciences</subject><subject>Linkage analysis</subject><subject>Original Article</subject><subject>Phaseolus - genetics</subject><subject>Phaseolus - microbiology</subject><subject>Plant Biochemistry</subject><subject>Plant Breeding</subject><subject>Plant Breeding/Biotechnology</subject><subject>Plant Diseases - genetics</subject><subject>Plant Diseases - microbiology</subject><subject>Plant Genetics and Genomics</subject><subject>Plant immunology</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Quantitative Trait Loci</subject><subject>Single-nucleotide polymorphism</subject><subject>Virulence</subject><issn>0040-5752</issn><issn>1432-2242</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kl1rFDEUhoModq3-AS8k4I29mHryMZnNZVmtFgqCH9chmzmzmzKT1CQD239v1q0tKyK5CDl53peck5eQ1wzOGUD3PgMwzhvg0IDomGh2T8iCScEbziV_ShYAEpq2a_kJeZHzDQDwFsRzciIEE6BbuSC7D34YMGEodIzOUxdDSXGkCbPPxQaHtETaP0A-x9EWzDQOtGyRZjshTbZitbCK44glluTddp7o6EOP01y23oZ69KG6T1MMdI02vCTPBjtmfHW_n5Iflx-_rz43118-Xa0urhsnO1UaKcQSnRbYCw2tXmu97DhTSmsNQilo0Yl-kMyCdsDYYG0n1LrXznZc2n4Qp-Tdwfc2xZ8z5mImnx2Oow0Y52y4bNVSCc50Rd_-hd7EOYX6ukotuVDAoHukNnZE48NQ-7Vub2ouVMtkJyTnlTr_B1VXnYivQ8bB1_qR4OxIsP8I3JWNnXM2V9--HrP8wLoUc044mNvkJ5vuDAOzj4Y5RMPUaJjf0TC7Knpz3928nrB_kPzJQgXEAcj1KmwwPbb_H9tflZDCZQ</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Costa, Larissa Carvalho</creator><creator>Nalin, Rafael Storto</creator><creator>Dias, Mariana Andrade</creator><creator>Ferreira, Márcio Elias</creator><creator>Song, Qijian</creator><creator>Pastor-Corrales, Marcial A.</creator><creator>Hurtado-Gonzales, Oscar P.</creator><creator>de Souza, Elaine Aparecida</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7SS</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6463-9976</orcidid></search><sort><creationdate>20210201</creationdate><title>Different loci control resistance to different isolates of the same race of Colletotrichum lindemuthianum in common bean</title><author>Costa, Larissa Carvalho ; Nalin, Rafael Storto ; Dias, Mariana Andrade ; Ferreira, Márcio Elias ; Song, Qijian ; Pastor-Corrales, Marcial A. ; Hurtado-Gonzales, Oscar P. ; de Souza, Elaine Aparecida</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c476t-4338ec93ed39059b99872166999036605ec3df41a09c011faa736bd9ca724adf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Agriculture</topic><topic>Anthracnose</topic><topic>Ascomycota</topic><topic>Association analysis</topic><topic>Beans</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Chromosome Mapping</topic><topic>Chromosomes, Plant - genetics</topic><topic>Colletotrichum - isolation & purification</topic><topic>Colletotrichum - pathogenicity</topic><topic>Colletotrichum lindemuthianum</topic><topic>Control</topic><topic>Cultivars</topic><topic>Disease Resistance - genetics</topic><topic>Disease Resistance - immunology</topic><topic>Diseases and pests</topic><topic>Fungal diseases of plants</topic><topic>Fungi</topic><topic>Gene Expression Regulation, Plant</topic><topic>Gene mapping</topic><topic>Genetic aspects</topic><topic>Genetic diversity</topic><topic>Genetic research</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Genotyping</topic><topic>Life Sciences</topic><topic>Linkage analysis</topic><topic>Original Article</topic><topic>Phaseolus - genetics</topic><topic>Phaseolus - microbiology</topic><topic>Plant Biochemistry</topic><topic>Plant Breeding</topic><topic>Plant Breeding/Biotechnology</topic><topic>Plant Diseases - genetics</topic><topic>Plant Diseases - microbiology</topic><topic>Plant Genetics and Genomics</topic><topic>Plant immunology</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Quantitative Trait Loci</topic><topic>Single-nucleotide polymorphism</topic><topic>Virulence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Costa, Larissa Carvalho</creatorcontrib><creatorcontrib>Nalin, Rafael Storto</creatorcontrib><creatorcontrib>Dias, Mariana Andrade</creatorcontrib><creatorcontrib>Ferreira, Márcio Elias</creatorcontrib><creatorcontrib>Song, Qijian</creatorcontrib><creatorcontrib>Pastor-Corrales, Marcial A.</creatorcontrib><creatorcontrib>Hurtado-Gonzales, Oscar P.</creatorcontrib><creatorcontrib>de Souza, Elaine Aparecida</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Theoretical and applied genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Costa, Larissa Carvalho</au><au>Nalin, Rafael Storto</au><au>Dias, Mariana Andrade</au><au>Ferreira, Márcio Elias</au><au>Song, Qijian</au><au>Pastor-Corrales, Marcial A.</au><au>Hurtado-Gonzales, Oscar P.</au><au>de Souza, Elaine Aparecida</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Different loci control resistance to different isolates of the same race of Colletotrichum lindemuthianum in common bean</atitle><jtitle>Theoretical and applied genetics</jtitle><stitle>Theor Appl Genet</stitle><addtitle>Theor Appl Genet</addtitle><date>2021-02-01</date><risdate>2021</risdate><volume>134</volume><issue>2</issue><spage>543</spage><epage>556</epage><pages>543-556</pages><issn>0040-5752</issn><eissn>1432-2242</eissn><abstract>Key message
Linkage and genome-wide association analyses using high-throughput SNP genotyping revealed different loci controlling resistance to different isolates of race 65 of
Colletotrichum lindemuthianum
in common bean.
Development of varieties with durable resistance to anthracnose is a major challenge in common bean breeding programs because of the extensive virulence diversity of
Colletotrichum lindemuthianum
fungus. We used linkage and genome-wide association analyses to tap the genomic regions associated with resistance to different isolates of race 65. Linkage mapping was done using an F
2
population derived from the cross between the Mesoamerican common beans BRS Estilo x Ouro Vermelho, inoculated with two different isolates of race 65. Association genetics relied on a diversity common bean panel containing 189 common bean accessions inoculated with five different isolates of race 65 as an attempt to validate the linkage analysis findings and, eventually, identify other genomic regions associated with resistance to race 65. The F
2
population and diversity panel were genotyped with the BARCBean6K_3 Illumina BeadChip containing 5398 SNP markers. Both linkage and genome-wide association analyses identified different loci controlling resistance to different isolates of race 65 on linkage group Pv04. Genome-wide association analysis also detected loci on Pv05, Pv10 and Pv11 associated with resistance to race 65. These findings indicate that resistance to race 65 can be overcome by the virulence diversity among different isolates of the same race and could lead to the loss of resistance after cultivar release. We identified 25 resistant common bean cultivars to all five isolates of race 65 in the diversity panel. The accessions should be useful to develop cultivars combining different resistance genes that favor durable resistance to anthracnose in common bean.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>33130954</pmid><doi>10.1007/s00122-020-03713-x</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-6463-9976</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0040-5752 |
ispartof | Theoretical and applied genetics, 2021-02, Vol.134 (2), p.543-556 |
issn | 0040-5752 1432-2242 |
language | eng |
recordid | cdi_proquest_miscellaneous_2456863219 |
source | MEDLINE; SpringerLink |
subjects | Agriculture Anthracnose Ascomycota Association analysis Beans Biochemistry Biomedical and Life Sciences Biotechnology Chromosome Mapping Chromosomes, Plant - genetics Colletotrichum - isolation & purification Colletotrichum - pathogenicity Colletotrichum lindemuthianum Control Cultivars Disease Resistance - genetics Disease Resistance - immunology Diseases and pests Fungal diseases of plants Fungi Gene Expression Regulation, Plant Gene mapping Genetic aspects Genetic diversity Genetic research Genomes Genomics Genotyping Life Sciences Linkage analysis Original Article Phaseolus - genetics Phaseolus - microbiology Plant Biochemistry Plant Breeding Plant Breeding/Biotechnology Plant Diseases - genetics Plant Diseases - microbiology Plant Genetics and Genomics Plant immunology Plant Proteins - genetics Plant Proteins - metabolism Polymorphism, Single Nucleotide Quantitative Trait Loci Single-nucleotide polymorphism Virulence |
title | Different loci control resistance to different isolates of the same race of Colletotrichum lindemuthianum in common bean |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T11%3A46%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Different%20loci%20control%20resistance%20to%20different%20isolates%20of%20the%20same%20race%20of%20Colletotrichum%20lindemuthianum%20in%20common%20bean&rft.jtitle=Theoretical%20and%20applied%20genetics&rft.au=Costa,%20Larissa%20Carvalho&rft.date=2021-02-01&rft.volume=134&rft.issue=2&rft.spage=543&rft.epage=556&rft.pages=543-556&rft.issn=0040-5752&rft.eissn=1432-2242&rft_id=info:doi/10.1007/s00122-020-03713-x&rft_dat=%3Cgale_proqu%3EA651473422%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2482360107&rft_id=info:pmid/33130954&rft_galeid=A651473422&rfr_iscdi=true |