Impact of Zika virus on the human type I interferon osteoimmune response
•Saos-2 osteosarcoma cells are permissive to infection with Zika.•HELZ2 is upregulated by IFN, but not ZIKV, in Saos-2 cells.•KI20A, a member of a microcephaly family, is downregulated by both ZIKV and IFN. The developing field of osteoimmunology supports importance of an interferon (IFN) response p...
Gespeichert in:
Veröffentlicht in: | Cytokine (Philadelphia, Pa.) Pa.), 2021-01, Vol.137, p.155342-155342, Article 155342 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 155342 |
---|---|
container_issue | |
container_start_page | 155342 |
container_title | Cytokine (Philadelphia, Pa.) |
container_volume | 137 |
creator | Drouin, Arnaud Wallbillich, Nicholas Theberge, Marc Liu, Sharon Katz, Joshua Bellovoda, Kamela Se Yun Cheon, Scarlett Gootkind, Frederick Bierman, Emily Zavras, Jason Berberich, Matthew J. Kalocsay, Marian Guastaldi, Fernando Salvadori, Nicolas Troulis, Maria Fusco, Dahlene N. |
description | •Saos-2 osteosarcoma cells are permissive to infection with Zika.•HELZ2 is upregulated by IFN, but not ZIKV, in Saos-2 cells.•KI20A, a member of a microcephaly family, is downregulated by both ZIKV and IFN.
The developing field of osteoimmunology supports importance of an interferon (IFN) response pathway in osteoblasts. Clarifying osteoblast-IFN interactions is important because IFN is used as salvage anti-tumor therapy but systemic toxicity is high with variable clinical results. In addition, osteoblast response to systemic bursts and disruptions of IFN pathways induced by viral infection may influence bone remodeling. ZIKA virus (ZIKV) infection impacts bone development in humans and IFN response in vitro. Consistently, initial evidence of permissivity to ZIKV has been reported in human osteoblasts.
Osteoblast-like Saos-2 cells are permissive to ZIKV and responsive to IFN.
Multiple approaches were used to assess whether Saos-2 cells are permissive to ZIKV infection and exhibit IFN-mediated ZIKV suppression. Proteomic methods were used to evaluate impact of ZIKV and IFN on Saos-2 cells.
Evidence is presented confirming Saos-2 cells are permissive to ZIKV and support IFN-mediated suppression of ZIKV. ZIKV and IFN differentially impact the Saos-2 proteome, exemplified by HELZ2 protein which is upregulated by IFN but non responsive to ZIKV. Both ZIKV and IFN suppress proteins associated with microcephaly/pseudo-TORCH syndrome (BI1, KI20A and UBP18), and ZIKV induces potential entry factor PLVAP.
Transient ZIKV infection influences osteoimmune state, and IFN and ZIKV activate distinct proteomes in Saos-2 cells, which could inform therapeutic, engineered, disruptions. |
doi_str_mv | 10.1016/j.cyto.2020.155342 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2456862575</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1043466620303586</els_id><sourcerecordid>2456862575</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-7bfdf6b58d97c19a428705ce383c1d66fd6e7ba3f836955692c6ee8964a7ca5a3</originalsourceid><addsrcrecordid>eNp9kDFPwzAQhS0EoqXwBxiQR5YUx47tRGJBFdBKlVhgYbFc56K6NHGwnUr99yRKYWS6p7v3nnQfQrcpmackFQ-7uTlGN6eE9gvOWUbP0DQlhUgIoex80BlLMiHEBF2FsCOEFEzKSzRhLGWEMTlFy1XdahOxq_Cn_dL4YH0XsGtw3ALedrXu1bEFvMK2ieAr8P3NhQjO1nXXAPYQWtcEuEYXld4HuDnNGfp4eX5fLJP12-tq8bRODOMiJnJTlZXY8LwspEkLndFcEm6A5cykpRBVKUBuNKtyJgrORUGNAMgLkWlpNNdshu7H3ta77w5CVLUNBvZ73YDrgqIZF7mgXPLeSker8S4ED5Vqva21P6qUqIGg2qmBoBoIqpFgH7o79XebGsq_yC-y3vA4GqD_8mDBq2AsNAZK68FEVTr7X_8P91qB5A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2456862575</pqid></control><display><type>article</type><title>Impact of Zika virus on the human type I interferon osteoimmune response</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Drouin, Arnaud ; Wallbillich, Nicholas ; Theberge, Marc ; Liu, Sharon ; Katz, Joshua ; Bellovoda, Kamela ; Se Yun Cheon, Scarlett ; Gootkind, Frederick ; Bierman, Emily ; Zavras, Jason ; Berberich, Matthew J. ; Kalocsay, Marian ; Guastaldi, Fernando ; Salvadori, Nicolas ; Troulis, Maria ; Fusco, Dahlene N.</creator><creatorcontrib>Drouin, Arnaud ; Wallbillich, Nicholas ; Theberge, Marc ; Liu, Sharon ; Katz, Joshua ; Bellovoda, Kamela ; Se Yun Cheon, Scarlett ; Gootkind, Frederick ; Bierman, Emily ; Zavras, Jason ; Berberich, Matthew J. ; Kalocsay, Marian ; Guastaldi, Fernando ; Salvadori, Nicolas ; Troulis, Maria ; Fusco, Dahlene N.</creatorcontrib><description>•Saos-2 osteosarcoma cells are permissive to infection with Zika.•HELZ2 is upregulated by IFN, but not ZIKV, in Saos-2 cells.•KI20A, a member of a microcephaly family, is downregulated by both ZIKV and IFN.
The developing field of osteoimmunology supports importance of an interferon (IFN) response pathway in osteoblasts. Clarifying osteoblast-IFN interactions is important because IFN is used as salvage anti-tumor therapy but systemic toxicity is high with variable clinical results. In addition, osteoblast response to systemic bursts and disruptions of IFN pathways induced by viral infection may influence bone remodeling. ZIKA virus (ZIKV) infection impacts bone development in humans and IFN response in vitro. Consistently, initial evidence of permissivity to ZIKV has been reported in human osteoblasts.
Osteoblast-like Saos-2 cells are permissive to ZIKV and responsive to IFN.
Multiple approaches were used to assess whether Saos-2 cells are permissive to ZIKV infection and exhibit IFN-mediated ZIKV suppression. Proteomic methods were used to evaluate impact of ZIKV and IFN on Saos-2 cells.
Evidence is presented confirming Saos-2 cells are permissive to ZIKV and support IFN-mediated suppression of ZIKV. ZIKV and IFN differentially impact the Saos-2 proteome, exemplified by HELZ2 protein which is upregulated by IFN but non responsive to ZIKV. Both ZIKV and IFN suppress proteins associated with microcephaly/pseudo-TORCH syndrome (BI1, KI20A and UBP18), and ZIKV induces potential entry factor PLVAP.
Transient ZIKV infection influences osteoimmune state, and IFN and ZIKV activate distinct proteomes in Saos-2 cells, which could inform therapeutic, engineered, disruptions.</description><identifier>ISSN: 1043-4666</identifier><identifier>EISSN: 1096-0023</identifier><identifier>DOI: 10.1016/j.cyto.2020.155342</identifier><identifier>PMID: 33130337</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Animals ; Antiviral Agents - immunology ; Antiviral Agents - pharmacology ; Cell Line, Tumor ; Chlorocebus aethiops ; Gene Expression Regulation - drug effects ; Gene Expression Regulation - immunology ; HELZ2 ; Host-Pathogen Interactions - drug effects ; Host-Pathogen Interactions - immunology ; Humans ; Interferon ; Interferon Type I - immunology ; Interferon Type I - pharmacology ; KI20A ; KIF20A ; Mice ; Mice, Knockout ; Osteoblasts ; Osteoblasts - immunology ; Osteoblasts - metabolism ; Osteoblasts - virology ; Proteome - immunology ; Proteome - metabolism ; Proteomics ; Proteomics - methods ; Saos-2 ; Vero Cells ; Virus Replication - drug effects ; Virus Replication - immunology ; Zika ; Zika Virus - immunology ; Zika Virus - physiology ; Zika Virus Infection - immunology ; Zika Virus Infection - metabolism ; Zika Virus Infection - virology</subject><ispartof>Cytokine (Philadelphia, Pa.), 2021-01, Vol.137, p.155342-155342, Article 155342</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright © 2020 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-7bfdf6b58d97c19a428705ce383c1d66fd6e7ba3f836955692c6ee8964a7ca5a3</citedby><cites>FETCH-LOGICAL-c356t-7bfdf6b58d97c19a428705ce383c1d66fd6e7ba3f836955692c6ee8964a7ca5a3</cites><orcidid>0000-0002-0820-5305</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cyto.2020.155342$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33130337$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Drouin, Arnaud</creatorcontrib><creatorcontrib>Wallbillich, Nicholas</creatorcontrib><creatorcontrib>Theberge, Marc</creatorcontrib><creatorcontrib>Liu, Sharon</creatorcontrib><creatorcontrib>Katz, Joshua</creatorcontrib><creatorcontrib>Bellovoda, Kamela</creatorcontrib><creatorcontrib>Se Yun Cheon, Scarlett</creatorcontrib><creatorcontrib>Gootkind, Frederick</creatorcontrib><creatorcontrib>Bierman, Emily</creatorcontrib><creatorcontrib>Zavras, Jason</creatorcontrib><creatorcontrib>Berberich, Matthew J.</creatorcontrib><creatorcontrib>Kalocsay, Marian</creatorcontrib><creatorcontrib>Guastaldi, Fernando</creatorcontrib><creatorcontrib>Salvadori, Nicolas</creatorcontrib><creatorcontrib>Troulis, Maria</creatorcontrib><creatorcontrib>Fusco, Dahlene N.</creatorcontrib><title>Impact of Zika virus on the human type I interferon osteoimmune response</title><title>Cytokine (Philadelphia, Pa.)</title><addtitle>Cytokine</addtitle><description>•Saos-2 osteosarcoma cells are permissive to infection with Zika.•HELZ2 is upregulated by IFN, but not ZIKV, in Saos-2 cells.•KI20A, a member of a microcephaly family, is downregulated by both ZIKV and IFN.
The developing field of osteoimmunology supports importance of an interferon (IFN) response pathway in osteoblasts. Clarifying osteoblast-IFN interactions is important because IFN is used as salvage anti-tumor therapy but systemic toxicity is high with variable clinical results. In addition, osteoblast response to systemic bursts and disruptions of IFN pathways induced by viral infection may influence bone remodeling. ZIKA virus (ZIKV) infection impacts bone development in humans and IFN response in vitro. Consistently, initial evidence of permissivity to ZIKV has been reported in human osteoblasts.
Osteoblast-like Saos-2 cells are permissive to ZIKV and responsive to IFN.
Multiple approaches were used to assess whether Saos-2 cells are permissive to ZIKV infection and exhibit IFN-mediated ZIKV suppression. Proteomic methods were used to evaluate impact of ZIKV and IFN on Saos-2 cells.
Evidence is presented confirming Saos-2 cells are permissive to ZIKV and support IFN-mediated suppression of ZIKV. ZIKV and IFN differentially impact the Saos-2 proteome, exemplified by HELZ2 protein which is upregulated by IFN but non responsive to ZIKV. Both ZIKV and IFN suppress proteins associated with microcephaly/pseudo-TORCH syndrome (BI1, KI20A and UBP18), and ZIKV induces potential entry factor PLVAP.
Transient ZIKV infection influences osteoimmune state, and IFN and ZIKV activate distinct proteomes in Saos-2 cells, which could inform therapeutic, engineered, disruptions.</description><subject>Animals</subject><subject>Antiviral Agents - immunology</subject><subject>Antiviral Agents - pharmacology</subject><subject>Cell Line, Tumor</subject><subject>Chlorocebus aethiops</subject><subject>Gene Expression Regulation - drug effects</subject><subject>Gene Expression Regulation - immunology</subject><subject>HELZ2</subject><subject>Host-Pathogen Interactions - drug effects</subject><subject>Host-Pathogen Interactions - immunology</subject><subject>Humans</subject><subject>Interferon</subject><subject>Interferon Type I - immunology</subject><subject>Interferon Type I - pharmacology</subject><subject>KI20A</subject><subject>KIF20A</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Osteoblasts</subject><subject>Osteoblasts - immunology</subject><subject>Osteoblasts - metabolism</subject><subject>Osteoblasts - virology</subject><subject>Proteome - immunology</subject><subject>Proteome - metabolism</subject><subject>Proteomics</subject><subject>Proteomics - methods</subject><subject>Saos-2</subject><subject>Vero Cells</subject><subject>Virus Replication - drug effects</subject><subject>Virus Replication - immunology</subject><subject>Zika</subject><subject>Zika Virus - immunology</subject><subject>Zika Virus - physiology</subject><subject>Zika Virus Infection - immunology</subject><subject>Zika Virus Infection - metabolism</subject><subject>Zika Virus Infection - virology</subject><issn>1043-4666</issn><issn>1096-0023</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kDFPwzAQhS0EoqXwBxiQR5YUx47tRGJBFdBKlVhgYbFc56K6NHGwnUr99yRKYWS6p7v3nnQfQrcpmackFQ-7uTlGN6eE9gvOWUbP0DQlhUgIoex80BlLMiHEBF2FsCOEFEzKSzRhLGWEMTlFy1XdahOxq_Cn_dL4YH0XsGtw3ALedrXu1bEFvMK2ieAr8P3NhQjO1nXXAPYQWtcEuEYXld4HuDnNGfp4eX5fLJP12-tq8bRODOMiJnJTlZXY8LwspEkLndFcEm6A5cykpRBVKUBuNKtyJgrORUGNAMgLkWlpNNdshu7H3ta77w5CVLUNBvZ73YDrgqIZF7mgXPLeSker8S4ED5Vqva21P6qUqIGg2qmBoBoIqpFgH7o79XebGsq_yC-y3vA4GqD_8mDBq2AsNAZK68FEVTr7X_8P91qB5A</recordid><startdate>202101</startdate><enddate>202101</enddate><creator>Drouin, Arnaud</creator><creator>Wallbillich, Nicholas</creator><creator>Theberge, Marc</creator><creator>Liu, Sharon</creator><creator>Katz, Joshua</creator><creator>Bellovoda, Kamela</creator><creator>Se Yun Cheon, Scarlett</creator><creator>Gootkind, Frederick</creator><creator>Bierman, Emily</creator><creator>Zavras, Jason</creator><creator>Berberich, Matthew J.</creator><creator>Kalocsay, Marian</creator><creator>Guastaldi, Fernando</creator><creator>Salvadori, Nicolas</creator><creator>Troulis, Maria</creator><creator>Fusco, Dahlene N.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0820-5305</orcidid></search><sort><creationdate>202101</creationdate><title>Impact of Zika virus on the human type I interferon osteoimmune response</title><author>Drouin, Arnaud ; Wallbillich, Nicholas ; Theberge, Marc ; Liu, Sharon ; Katz, Joshua ; Bellovoda, Kamela ; Se Yun Cheon, Scarlett ; Gootkind, Frederick ; Bierman, Emily ; Zavras, Jason ; Berberich, Matthew J. ; Kalocsay, Marian ; Guastaldi, Fernando ; Salvadori, Nicolas ; Troulis, Maria ; Fusco, Dahlene N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-7bfdf6b58d97c19a428705ce383c1d66fd6e7ba3f836955692c6ee8964a7ca5a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>Antiviral Agents - immunology</topic><topic>Antiviral Agents - pharmacology</topic><topic>Cell Line, Tumor</topic><topic>Chlorocebus aethiops</topic><topic>Gene Expression Regulation - drug effects</topic><topic>Gene Expression Regulation - immunology</topic><topic>HELZ2</topic><topic>Host-Pathogen Interactions - drug effects</topic><topic>Host-Pathogen Interactions - immunology</topic><topic>Humans</topic><topic>Interferon</topic><topic>Interferon Type I - immunology</topic><topic>Interferon Type I - pharmacology</topic><topic>KI20A</topic><topic>KIF20A</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Osteoblasts</topic><topic>Osteoblasts - immunology</topic><topic>Osteoblasts - metabolism</topic><topic>Osteoblasts - virology</topic><topic>Proteome - immunology</topic><topic>Proteome - metabolism</topic><topic>Proteomics</topic><topic>Proteomics - methods</topic><topic>Saos-2</topic><topic>Vero Cells</topic><topic>Virus Replication - drug effects</topic><topic>Virus Replication - immunology</topic><topic>Zika</topic><topic>Zika Virus - immunology</topic><topic>Zika Virus - physiology</topic><topic>Zika Virus Infection - immunology</topic><topic>Zika Virus Infection - metabolism</topic><topic>Zika Virus Infection - virology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Drouin, Arnaud</creatorcontrib><creatorcontrib>Wallbillich, Nicholas</creatorcontrib><creatorcontrib>Theberge, Marc</creatorcontrib><creatorcontrib>Liu, Sharon</creatorcontrib><creatorcontrib>Katz, Joshua</creatorcontrib><creatorcontrib>Bellovoda, Kamela</creatorcontrib><creatorcontrib>Se Yun Cheon, Scarlett</creatorcontrib><creatorcontrib>Gootkind, Frederick</creatorcontrib><creatorcontrib>Bierman, Emily</creatorcontrib><creatorcontrib>Zavras, Jason</creatorcontrib><creatorcontrib>Berberich, Matthew J.</creatorcontrib><creatorcontrib>Kalocsay, Marian</creatorcontrib><creatorcontrib>Guastaldi, Fernando</creatorcontrib><creatorcontrib>Salvadori, Nicolas</creatorcontrib><creatorcontrib>Troulis, Maria</creatorcontrib><creatorcontrib>Fusco, Dahlene N.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Cytokine (Philadelphia, Pa.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Drouin, Arnaud</au><au>Wallbillich, Nicholas</au><au>Theberge, Marc</au><au>Liu, Sharon</au><au>Katz, Joshua</au><au>Bellovoda, Kamela</au><au>Se Yun Cheon, Scarlett</au><au>Gootkind, Frederick</au><au>Bierman, Emily</au><au>Zavras, Jason</au><au>Berberich, Matthew J.</au><au>Kalocsay, Marian</au><au>Guastaldi, Fernando</au><au>Salvadori, Nicolas</au><au>Troulis, Maria</au><au>Fusco, Dahlene N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact of Zika virus on the human type I interferon osteoimmune response</atitle><jtitle>Cytokine (Philadelphia, Pa.)</jtitle><addtitle>Cytokine</addtitle><date>2021-01</date><risdate>2021</risdate><volume>137</volume><spage>155342</spage><epage>155342</epage><pages>155342-155342</pages><artnum>155342</artnum><issn>1043-4666</issn><eissn>1096-0023</eissn><abstract>•Saos-2 osteosarcoma cells are permissive to infection with Zika.•HELZ2 is upregulated by IFN, but not ZIKV, in Saos-2 cells.•KI20A, a member of a microcephaly family, is downregulated by both ZIKV and IFN.
The developing field of osteoimmunology supports importance of an interferon (IFN) response pathway in osteoblasts. Clarifying osteoblast-IFN interactions is important because IFN is used as salvage anti-tumor therapy but systemic toxicity is high with variable clinical results. In addition, osteoblast response to systemic bursts and disruptions of IFN pathways induced by viral infection may influence bone remodeling. ZIKA virus (ZIKV) infection impacts bone development in humans and IFN response in vitro. Consistently, initial evidence of permissivity to ZIKV has been reported in human osteoblasts.
Osteoblast-like Saos-2 cells are permissive to ZIKV and responsive to IFN.
Multiple approaches were used to assess whether Saos-2 cells are permissive to ZIKV infection and exhibit IFN-mediated ZIKV suppression. Proteomic methods were used to evaluate impact of ZIKV and IFN on Saos-2 cells.
Evidence is presented confirming Saos-2 cells are permissive to ZIKV and support IFN-mediated suppression of ZIKV. ZIKV and IFN differentially impact the Saos-2 proteome, exemplified by HELZ2 protein which is upregulated by IFN but non responsive to ZIKV. Both ZIKV and IFN suppress proteins associated with microcephaly/pseudo-TORCH syndrome (BI1, KI20A and UBP18), and ZIKV induces potential entry factor PLVAP.
Transient ZIKV infection influences osteoimmune state, and IFN and ZIKV activate distinct proteomes in Saos-2 cells, which could inform therapeutic, engineered, disruptions.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>33130337</pmid><doi>10.1016/j.cyto.2020.155342</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-0820-5305</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1043-4666 |
ispartof | Cytokine (Philadelphia, Pa.), 2021-01, Vol.137, p.155342-155342, Article 155342 |
issn | 1043-4666 1096-0023 |
language | eng |
recordid | cdi_proquest_miscellaneous_2456862575 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | Animals Antiviral Agents - immunology Antiviral Agents - pharmacology Cell Line, Tumor Chlorocebus aethiops Gene Expression Regulation - drug effects Gene Expression Regulation - immunology HELZ2 Host-Pathogen Interactions - drug effects Host-Pathogen Interactions - immunology Humans Interferon Interferon Type I - immunology Interferon Type I - pharmacology KI20A KIF20A Mice Mice, Knockout Osteoblasts Osteoblasts - immunology Osteoblasts - metabolism Osteoblasts - virology Proteome - immunology Proteome - metabolism Proteomics Proteomics - methods Saos-2 Vero Cells Virus Replication - drug effects Virus Replication - immunology Zika Zika Virus - immunology Zika Virus - physiology Zika Virus Infection - immunology Zika Virus Infection - metabolism Zika Virus Infection - virology |
title | Impact of Zika virus on the human type I interferon osteoimmune response |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T18%3A52%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20of%20Zika%20virus%20on%20the%20human%20type%20I%20interferon%20osteoimmune%20response&rft.jtitle=Cytokine%20(Philadelphia,%20Pa.)&rft.au=Drouin,%20Arnaud&rft.date=2021-01&rft.volume=137&rft.spage=155342&rft.epage=155342&rft.pages=155342-155342&rft.artnum=155342&rft.issn=1043-4666&rft.eissn=1096-0023&rft_id=info:doi/10.1016/j.cyto.2020.155342&rft_dat=%3Cproquest_cross%3E2456862575%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2456862575&rft_id=info:pmid/33130337&rft_els_id=S1043466620303586&rfr_iscdi=true |