In situ electrochemistry inside a TEM with controlled mass transport

The field of electrochemistry promises solutions for the future energy crisis and environmental deterioration by developing optimized batteries, fuel-cells and catalysts. Combined with in situ transmission electron microscopy (TEM), it can reveal functional and structural changes. A drawback of this...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2020-11, Vol.12 (43), p.22192-22201
Hauptverfasser: Beker, Anne France, Sun, Hongyu, Lemang, Mathilde, van Omme, J. Tijn, Spruit, Ronald G., Bremmer, Marien, Basak, Shibabrata, Pérez Garza, H. Hugo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 22201
container_issue 43
container_start_page 22192
container_title Nanoscale
container_volume 12
creator Beker, Anne France
Sun, Hongyu
Lemang, Mathilde
van Omme, J. Tijn
Spruit, Ronald G.
Bremmer, Marien
Basak, Shibabrata
Pérez Garza, H. Hugo
description The field of electrochemistry promises solutions for the future energy crisis and environmental deterioration by developing optimized batteries, fuel-cells and catalysts. Combined with in situ transmission electron microscopy (TEM), it can reveal functional and structural changes. A drawback of this relatively young field is lack of reproducibility in controlling the liquid environment while retaining the imaging and analytical capabilities. Here, a platform for in situ electrochemical studies inside a TEM with a pressure-driven flow is presented, with the capability to control the flow direction and to ensure the liquid will always pass through the region of interest. As a result, the system offers the opportunity to define the mass transport and control the electric potential, giving access to the full kinetics of the redox reaction. In order to show the benefits of the system, copper dendrites are electrodeposited and show reliable electric potential control. Next, their morphology is changed by tuning the mass transport conditions. Finally, at a liquid thickness of approximately 100 nm, the diffraction pattern revealed the 〈1,1,1〉 planes of the copper crystals, indicating an atomic resolution down to 2.15 Å. Such control of the liquid thickness enabled elemental mapping, allowing us to distinguish the spatial distribution of different elements in liquid.
doi_str_mv 10.1039/d0nr04961a
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2456861892</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2459602494</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-553a2c4152487385fefbdb6ed0065966cbc01d2796df5186dae8f4ab6b1b75223</originalsourceid><addsrcrecordid>eNpd0M9LwzAUwPEgCs7pxb8g4EWEan63OY5t6mAqyDyXNElZR5fUJEX239s68eDpvcOHx5cHwDVG9xhR-WCQC4hJgdUJmBDEUEZpTk7_dsHOwUWMO4SEpIJOwGLlYGxSD21rdQpeb-2-iSkcYONiYyxUcLN8gV9N2kLt3SDa1hq4VzHCFJSLnQ_pEpzVqo326ndOwcfjcjN_ztZvT6v5bJ3pISJlnFNFNMOcsCKnBa9tXZlKWDPUcCmErjTChuRSmJrjQhhli5qpSlS4yjkhdApuj3e74D97G1M5tGrbtspZ38eSMC4KgQs50pt_dOf74Ia6UUmBCJNsUHdHpYOPMdi67EKzV-FQYlSODy0X6PX956Ez-g3uPWd-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2459602494</pqid></control><display><type>article</type><title>In situ electrochemistry inside a TEM with controlled mass transport</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Beker, Anne France ; Sun, Hongyu ; Lemang, Mathilde ; van Omme, J. Tijn ; Spruit, Ronald G. ; Bremmer, Marien ; Basak, Shibabrata ; Pérez Garza, H. Hugo</creator><creatorcontrib>Beker, Anne France ; Sun, Hongyu ; Lemang, Mathilde ; van Omme, J. Tijn ; Spruit, Ronald G. ; Bremmer, Marien ; Basak, Shibabrata ; Pérez Garza, H. Hugo</creatorcontrib><description>The field of electrochemistry promises solutions for the future energy crisis and environmental deterioration by developing optimized batteries, fuel-cells and catalysts. Combined with in situ transmission electron microscopy (TEM), it can reveal functional and structural changes. A drawback of this relatively young field is lack of reproducibility in controlling the liquid environment while retaining the imaging and analytical capabilities. Here, a platform for in situ electrochemical studies inside a TEM with a pressure-driven flow is presented, with the capability to control the flow direction and to ensure the liquid will always pass through the region of interest. As a result, the system offers the opportunity to define the mass transport and control the electric potential, giving access to the full kinetics of the redox reaction. In order to show the benefits of the system, copper dendrites are electrodeposited and show reliable electric potential control. Next, their morphology is changed by tuning the mass transport conditions. Finally, at a liquid thickness of approximately 100 nm, the diffraction pattern revealed the 〈1,1,1〉 planes of the copper crystals, indicating an atomic resolution down to 2.15 Å. Such control of the liquid thickness enabled elemental mapping, allowing us to distinguish the spatial distribution of different elements in liquid.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/d0nr04961a</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Copper ; Diffraction patterns ; Electric potential ; Electrochemistry ; Mass transport ; Morphology ; Redox reactions ; Spatial distribution ; Thickness ; Transmission electron microscopy</subject><ispartof>Nanoscale, 2020-11, Vol.12 (43), p.22192-22201</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-553a2c4152487385fefbdb6ed0065966cbc01d2796df5186dae8f4ab6b1b75223</citedby><cites>FETCH-LOGICAL-c372t-553a2c4152487385fefbdb6ed0065966cbc01d2796df5186dae8f4ab6b1b75223</cites><orcidid>0000-0002-9166-3410 ; 0000-0002-5597-7914 ; 0000-0002-6438-7094 ; 0000-0003-2826-2670 ; 0000-0003-1577-3279</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Beker, Anne France</creatorcontrib><creatorcontrib>Sun, Hongyu</creatorcontrib><creatorcontrib>Lemang, Mathilde</creatorcontrib><creatorcontrib>van Omme, J. Tijn</creatorcontrib><creatorcontrib>Spruit, Ronald G.</creatorcontrib><creatorcontrib>Bremmer, Marien</creatorcontrib><creatorcontrib>Basak, Shibabrata</creatorcontrib><creatorcontrib>Pérez Garza, H. Hugo</creatorcontrib><title>In situ electrochemistry inside a TEM with controlled mass transport</title><title>Nanoscale</title><description>The field of electrochemistry promises solutions for the future energy crisis and environmental deterioration by developing optimized batteries, fuel-cells and catalysts. Combined with in situ transmission electron microscopy (TEM), it can reveal functional and structural changes. A drawback of this relatively young field is lack of reproducibility in controlling the liquid environment while retaining the imaging and analytical capabilities. Here, a platform for in situ electrochemical studies inside a TEM with a pressure-driven flow is presented, with the capability to control the flow direction and to ensure the liquid will always pass through the region of interest. As a result, the system offers the opportunity to define the mass transport and control the electric potential, giving access to the full kinetics of the redox reaction. In order to show the benefits of the system, copper dendrites are electrodeposited and show reliable electric potential control. Next, their morphology is changed by tuning the mass transport conditions. Finally, at a liquid thickness of approximately 100 nm, the diffraction pattern revealed the 〈1,1,1〉 planes of the copper crystals, indicating an atomic resolution down to 2.15 Å. Such control of the liquid thickness enabled elemental mapping, allowing us to distinguish the spatial distribution of different elements in liquid.</description><subject>Copper</subject><subject>Diffraction patterns</subject><subject>Electric potential</subject><subject>Electrochemistry</subject><subject>Mass transport</subject><subject>Morphology</subject><subject>Redox reactions</subject><subject>Spatial distribution</subject><subject>Thickness</subject><subject>Transmission electron microscopy</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpd0M9LwzAUwPEgCs7pxb8g4EWEan63OY5t6mAqyDyXNElZR5fUJEX239s68eDpvcOHx5cHwDVG9xhR-WCQC4hJgdUJmBDEUEZpTk7_dsHOwUWMO4SEpIJOwGLlYGxSD21rdQpeb-2-iSkcYONiYyxUcLN8gV9N2kLt3SDa1hq4VzHCFJSLnQ_pEpzVqo326ndOwcfjcjN_ztZvT6v5bJ3pISJlnFNFNMOcsCKnBa9tXZlKWDPUcCmErjTChuRSmJrjQhhli5qpSlS4yjkhdApuj3e74D97G1M5tGrbtspZ38eSMC4KgQs50pt_dOf74Ia6UUmBCJNsUHdHpYOPMdi67EKzV-FQYlSODy0X6PX956Ez-g3uPWd-</recordid><startdate>20201121</startdate><enddate>20201121</enddate><creator>Beker, Anne France</creator><creator>Sun, Hongyu</creator><creator>Lemang, Mathilde</creator><creator>van Omme, J. Tijn</creator><creator>Spruit, Ronald G.</creator><creator>Bremmer, Marien</creator><creator>Basak, Shibabrata</creator><creator>Pérez Garza, H. Hugo</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9166-3410</orcidid><orcidid>https://orcid.org/0000-0002-5597-7914</orcidid><orcidid>https://orcid.org/0000-0002-6438-7094</orcidid><orcidid>https://orcid.org/0000-0003-2826-2670</orcidid><orcidid>https://orcid.org/0000-0003-1577-3279</orcidid></search><sort><creationdate>20201121</creationdate><title>In situ electrochemistry inside a TEM with controlled mass transport</title><author>Beker, Anne France ; Sun, Hongyu ; Lemang, Mathilde ; van Omme, J. Tijn ; Spruit, Ronald G. ; Bremmer, Marien ; Basak, Shibabrata ; Pérez Garza, H. Hugo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-553a2c4152487385fefbdb6ed0065966cbc01d2796df5186dae8f4ab6b1b75223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Copper</topic><topic>Diffraction patterns</topic><topic>Electric potential</topic><topic>Electrochemistry</topic><topic>Mass transport</topic><topic>Morphology</topic><topic>Redox reactions</topic><topic>Spatial distribution</topic><topic>Thickness</topic><topic>Transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beker, Anne France</creatorcontrib><creatorcontrib>Sun, Hongyu</creatorcontrib><creatorcontrib>Lemang, Mathilde</creatorcontrib><creatorcontrib>van Omme, J. Tijn</creatorcontrib><creatorcontrib>Spruit, Ronald G.</creatorcontrib><creatorcontrib>Bremmer, Marien</creatorcontrib><creatorcontrib>Basak, Shibabrata</creatorcontrib><creatorcontrib>Pérez Garza, H. Hugo</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beker, Anne France</au><au>Sun, Hongyu</au><au>Lemang, Mathilde</au><au>van Omme, J. Tijn</au><au>Spruit, Ronald G.</au><au>Bremmer, Marien</au><au>Basak, Shibabrata</au><au>Pérez Garza, H. Hugo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In situ electrochemistry inside a TEM with controlled mass transport</atitle><jtitle>Nanoscale</jtitle><date>2020-11-21</date><risdate>2020</risdate><volume>12</volume><issue>43</issue><spage>22192</spage><epage>22201</epage><pages>22192-22201</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>The field of electrochemistry promises solutions for the future energy crisis and environmental deterioration by developing optimized batteries, fuel-cells and catalysts. Combined with in situ transmission electron microscopy (TEM), it can reveal functional and structural changes. A drawback of this relatively young field is lack of reproducibility in controlling the liquid environment while retaining the imaging and analytical capabilities. Here, a platform for in situ electrochemical studies inside a TEM with a pressure-driven flow is presented, with the capability to control the flow direction and to ensure the liquid will always pass through the region of interest. As a result, the system offers the opportunity to define the mass transport and control the electric potential, giving access to the full kinetics of the redox reaction. In order to show the benefits of the system, copper dendrites are electrodeposited and show reliable electric potential control. Next, their morphology is changed by tuning the mass transport conditions. Finally, at a liquid thickness of approximately 100 nm, the diffraction pattern revealed the 〈1,1,1〉 planes of the copper crystals, indicating an atomic resolution down to 2.15 Å. Such control of the liquid thickness enabled elemental mapping, allowing us to distinguish the spatial distribution of different elements in liquid.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d0nr04961a</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-9166-3410</orcidid><orcidid>https://orcid.org/0000-0002-5597-7914</orcidid><orcidid>https://orcid.org/0000-0002-6438-7094</orcidid><orcidid>https://orcid.org/0000-0003-2826-2670</orcidid><orcidid>https://orcid.org/0000-0003-1577-3279</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2040-3364
ispartof Nanoscale, 2020-11, Vol.12 (43), p.22192-22201
issn 2040-3364
2040-3372
language eng
recordid cdi_proquest_miscellaneous_2456861892
source Royal Society Of Chemistry Journals 2008-
subjects Copper
Diffraction patterns
Electric potential
Electrochemistry
Mass transport
Morphology
Redox reactions
Spatial distribution
Thickness
Transmission electron microscopy
title In situ electrochemistry inside a TEM with controlled mass transport
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T18%3A11%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20situ%20electrochemistry%20inside%20a%20TEM%20with%20controlled%20mass%20transport&rft.jtitle=Nanoscale&rft.au=Beker,%20Anne%20France&rft.date=2020-11-21&rft.volume=12&rft.issue=43&rft.spage=22192&rft.epage=22201&rft.pages=22192-22201&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/d0nr04961a&rft_dat=%3Cproquest_cross%3E2459602494%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2459602494&rft_id=info:pmid/&rfr_iscdi=true