In situ electrochemistry inside a TEM with controlled mass transport
The field of electrochemistry promises solutions for the future energy crisis and environmental deterioration by developing optimized batteries, fuel-cells and catalysts. Combined with in situ transmission electron microscopy (TEM), it can reveal functional and structural changes. A drawback of this...
Gespeichert in:
Veröffentlicht in: | Nanoscale 2020-11, Vol.12 (43), p.22192-22201 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 22201 |
---|---|
container_issue | 43 |
container_start_page | 22192 |
container_title | Nanoscale |
container_volume | 12 |
creator | Beker, Anne France Sun, Hongyu Lemang, Mathilde van Omme, J. Tijn Spruit, Ronald G. Bremmer, Marien Basak, Shibabrata Pérez Garza, H. Hugo |
description | The field of electrochemistry promises solutions for the future energy crisis and environmental deterioration by developing optimized batteries, fuel-cells and catalysts. Combined with
in situ
transmission electron microscopy (TEM), it can reveal functional and structural changes. A drawback of this relatively young field is lack of reproducibility in controlling the liquid environment while retaining the imaging and analytical capabilities. Here, a platform for
in situ
electrochemical studies inside a TEM with a pressure-driven flow is presented, with the capability to control the flow direction and to ensure the liquid will always pass through the region of interest. As a result, the system offers the opportunity to define the mass transport and control the electric potential, giving access to the full kinetics of the redox reaction. In order to show the benefits of the system, copper dendrites are electrodeposited and show reliable electric potential control. Next, their morphology is changed by tuning the mass transport conditions. Finally, at a liquid thickness of approximately 100 nm, the diffraction pattern revealed the 〈1,1,1〉 planes of the copper crystals, indicating an atomic resolution down to 2.15 Å. Such control of the liquid thickness enabled elemental mapping, allowing us to distinguish the spatial distribution of different elements in liquid. |
doi_str_mv | 10.1039/d0nr04961a |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2456861892</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2459602494</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-553a2c4152487385fefbdb6ed0065966cbc01d2796df5186dae8f4ab6b1b75223</originalsourceid><addsrcrecordid>eNpd0M9LwzAUwPEgCs7pxb8g4EWEan63OY5t6mAqyDyXNElZR5fUJEX239s68eDpvcOHx5cHwDVG9xhR-WCQC4hJgdUJmBDEUEZpTk7_dsHOwUWMO4SEpIJOwGLlYGxSD21rdQpeb-2-iSkcYONiYyxUcLN8gV9N2kLt3SDa1hq4VzHCFJSLnQ_pEpzVqo326ndOwcfjcjN_ztZvT6v5bJ3pISJlnFNFNMOcsCKnBa9tXZlKWDPUcCmErjTChuRSmJrjQhhli5qpSlS4yjkhdApuj3e74D97G1M5tGrbtspZ38eSMC4KgQs50pt_dOf74Ia6UUmBCJNsUHdHpYOPMdi67EKzV-FQYlSODy0X6PX956Ez-g3uPWd-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2459602494</pqid></control><display><type>article</type><title>In situ electrochemistry inside a TEM with controlled mass transport</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Beker, Anne France ; Sun, Hongyu ; Lemang, Mathilde ; van Omme, J. Tijn ; Spruit, Ronald G. ; Bremmer, Marien ; Basak, Shibabrata ; Pérez Garza, H. Hugo</creator><creatorcontrib>Beker, Anne France ; Sun, Hongyu ; Lemang, Mathilde ; van Omme, J. Tijn ; Spruit, Ronald G. ; Bremmer, Marien ; Basak, Shibabrata ; Pérez Garza, H. Hugo</creatorcontrib><description>The field of electrochemistry promises solutions for the future energy crisis and environmental deterioration by developing optimized batteries, fuel-cells and catalysts. Combined with
in situ
transmission electron microscopy (TEM), it can reveal functional and structural changes. A drawback of this relatively young field is lack of reproducibility in controlling the liquid environment while retaining the imaging and analytical capabilities. Here, a platform for
in situ
electrochemical studies inside a TEM with a pressure-driven flow is presented, with the capability to control the flow direction and to ensure the liquid will always pass through the region of interest. As a result, the system offers the opportunity to define the mass transport and control the electric potential, giving access to the full kinetics of the redox reaction. In order to show the benefits of the system, copper dendrites are electrodeposited and show reliable electric potential control. Next, their morphology is changed by tuning the mass transport conditions. Finally, at a liquid thickness of approximately 100 nm, the diffraction pattern revealed the 〈1,1,1〉 planes of the copper crystals, indicating an atomic resolution down to 2.15 Å. Such control of the liquid thickness enabled elemental mapping, allowing us to distinguish the spatial distribution of different elements in liquid.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/d0nr04961a</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Copper ; Diffraction patterns ; Electric potential ; Electrochemistry ; Mass transport ; Morphology ; Redox reactions ; Spatial distribution ; Thickness ; Transmission electron microscopy</subject><ispartof>Nanoscale, 2020-11, Vol.12 (43), p.22192-22201</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-553a2c4152487385fefbdb6ed0065966cbc01d2796df5186dae8f4ab6b1b75223</citedby><cites>FETCH-LOGICAL-c372t-553a2c4152487385fefbdb6ed0065966cbc01d2796df5186dae8f4ab6b1b75223</cites><orcidid>0000-0002-9166-3410 ; 0000-0002-5597-7914 ; 0000-0002-6438-7094 ; 0000-0003-2826-2670 ; 0000-0003-1577-3279</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Beker, Anne France</creatorcontrib><creatorcontrib>Sun, Hongyu</creatorcontrib><creatorcontrib>Lemang, Mathilde</creatorcontrib><creatorcontrib>van Omme, J. Tijn</creatorcontrib><creatorcontrib>Spruit, Ronald G.</creatorcontrib><creatorcontrib>Bremmer, Marien</creatorcontrib><creatorcontrib>Basak, Shibabrata</creatorcontrib><creatorcontrib>Pérez Garza, H. Hugo</creatorcontrib><title>In situ electrochemistry inside a TEM with controlled mass transport</title><title>Nanoscale</title><description>The field of electrochemistry promises solutions for the future energy crisis and environmental deterioration by developing optimized batteries, fuel-cells and catalysts. Combined with
in situ
transmission electron microscopy (TEM), it can reveal functional and structural changes. A drawback of this relatively young field is lack of reproducibility in controlling the liquid environment while retaining the imaging and analytical capabilities. Here, a platform for
in situ
electrochemical studies inside a TEM with a pressure-driven flow is presented, with the capability to control the flow direction and to ensure the liquid will always pass through the region of interest. As a result, the system offers the opportunity to define the mass transport and control the electric potential, giving access to the full kinetics of the redox reaction. In order to show the benefits of the system, copper dendrites are electrodeposited and show reliable electric potential control. Next, their morphology is changed by tuning the mass transport conditions. Finally, at a liquid thickness of approximately 100 nm, the diffraction pattern revealed the 〈1,1,1〉 planes of the copper crystals, indicating an atomic resolution down to 2.15 Å. Such control of the liquid thickness enabled elemental mapping, allowing us to distinguish the spatial distribution of different elements in liquid.</description><subject>Copper</subject><subject>Diffraction patterns</subject><subject>Electric potential</subject><subject>Electrochemistry</subject><subject>Mass transport</subject><subject>Morphology</subject><subject>Redox reactions</subject><subject>Spatial distribution</subject><subject>Thickness</subject><subject>Transmission electron microscopy</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpd0M9LwzAUwPEgCs7pxb8g4EWEan63OY5t6mAqyDyXNElZR5fUJEX239s68eDpvcOHx5cHwDVG9xhR-WCQC4hJgdUJmBDEUEZpTk7_dsHOwUWMO4SEpIJOwGLlYGxSD21rdQpeb-2-iSkcYONiYyxUcLN8gV9N2kLt3SDa1hq4VzHCFJSLnQ_pEpzVqo326ndOwcfjcjN_ztZvT6v5bJ3pISJlnFNFNMOcsCKnBa9tXZlKWDPUcCmErjTChuRSmJrjQhhli5qpSlS4yjkhdApuj3e74D97G1M5tGrbtspZ38eSMC4KgQs50pt_dOf74Ia6UUmBCJNsUHdHpYOPMdi67EKzV-FQYlSODy0X6PX956Ez-g3uPWd-</recordid><startdate>20201121</startdate><enddate>20201121</enddate><creator>Beker, Anne France</creator><creator>Sun, Hongyu</creator><creator>Lemang, Mathilde</creator><creator>van Omme, J. Tijn</creator><creator>Spruit, Ronald G.</creator><creator>Bremmer, Marien</creator><creator>Basak, Shibabrata</creator><creator>Pérez Garza, H. Hugo</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9166-3410</orcidid><orcidid>https://orcid.org/0000-0002-5597-7914</orcidid><orcidid>https://orcid.org/0000-0002-6438-7094</orcidid><orcidid>https://orcid.org/0000-0003-2826-2670</orcidid><orcidid>https://orcid.org/0000-0003-1577-3279</orcidid></search><sort><creationdate>20201121</creationdate><title>In situ electrochemistry inside a TEM with controlled mass transport</title><author>Beker, Anne France ; Sun, Hongyu ; Lemang, Mathilde ; van Omme, J. Tijn ; Spruit, Ronald G. ; Bremmer, Marien ; Basak, Shibabrata ; Pérez Garza, H. Hugo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-553a2c4152487385fefbdb6ed0065966cbc01d2796df5186dae8f4ab6b1b75223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Copper</topic><topic>Diffraction patterns</topic><topic>Electric potential</topic><topic>Electrochemistry</topic><topic>Mass transport</topic><topic>Morphology</topic><topic>Redox reactions</topic><topic>Spatial distribution</topic><topic>Thickness</topic><topic>Transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beker, Anne France</creatorcontrib><creatorcontrib>Sun, Hongyu</creatorcontrib><creatorcontrib>Lemang, Mathilde</creatorcontrib><creatorcontrib>van Omme, J. Tijn</creatorcontrib><creatorcontrib>Spruit, Ronald G.</creatorcontrib><creatorcontrib>Bremmer, Marien</creatorcontrib><creatorcontrib>Basak, Shibabrata</creatorcontrib><creatorcontrib>Pérez Garza, H. Hugo</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beker, Anne France</au><au>Sun, Hongyu</au><au>Lemang, Mathilde</au><au>van Omme, J. Tijn</au><au>Spruit, Ronald G.</au><au>Bremmer, Marien</au><au>Basak, Shibabrata</au><au>Pérez Garza, H. Hugo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In situ electrochemistry inside a TEM with controlled mass transport</atitle><jtitle>Nanoscale</jtitle><date>2020-11-21</date><risdate>2020</risdate><volume>12</volume><issue>43</issue><spage>22192</spage><epage>22201</epage><pages>22192-22201</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>The field of electrochemistry promises solutions for the future energy crisis and environmental deterioration by developing optimized batteries, fuel-cells and catalysts. Combined with
in situ
transmission electron microscopy (TEM), it can reveal functional and structural changes. A drawback of this relatively young field is lack of reproducibility in controlling the liquid environment while retaining the imaging and analytical capabilities. Here, a platform for
in situ
electrochemical studies inside a TEM with a pressure-driven flow is presented, with the capability to control the flow direction and to ensure the liquid will always pass through the region of interest. As a result, the system offers the opportunity to define the mass transport and control the electric potential, giving access to the full kinetics of the redox reaction. In order to show the benefits of the system, copper dendrites are electrodeposited and show reliable electric potential control. Next, their morphology is changed by tuning the mass transport conditions. Finally, at a liquid thickness of approximately 100 nm, the diffraction pattern revealed the 〈1,1,1〉 planes of the copper crystals, indicating an atomic resolution down to 2.15 Å. Such control of the liquid thickness enabled elemental mapping, allowing us to distinguish the spatial distribution of different elements in liquid.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d0nr04961a</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-9166-3410</orcidid><orcidid>https://orcid.org/0000-0002-5597-7914</orcidid><orcidid>https://orcid.org/0000-0002-6438-7094</orcidid><orcidid>https://orcid.org/0000-0003-2826-2670</orcidid><orcidid>https://orcid.org/0000-0003-1577-3279</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2040-3364 |
ispartof | Nanoscale, 2020-11, Vol.12 (43), p.22192-22201 |
issn | 2040-3364 2040-3372 |
language | eng |
recordid | cdi_proquest_miscellaneous_2456861892 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Copper Diffraction patterns Electric potential Electrochemistry Mass transport Morphology Redox reactions Spatial distribution Thickness Transmission electron microscopy |
title | In situ electrochemistry inside a TEM with controlled mass transport |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T18%3A11%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20situ%20electrochemistry%20inside%20a%20TEM%20with%20controlled%20mass%20transport&rft.jtitle=Nanoscale&rft.au=Beker,%20Anne%20France&rft.date=2020-11-21&rft.volume=12&rft.issue=43&rft.spage=22192&rft.epage=22201&rft.pages=22192-22201&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/d0nr04961a&rft_dat=%3Cproquest_cross%3E2459602494%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2459602494&rft_id=info:pmid/&rfr_iscdi=true |