Efficient detection of copy‐number variations using exome data: Batch‐ and sex‐based analyses

Many algorithms to detect copy number variations (CNVs) using exome sequencing (ES) data have been reported and evaluated on their sensitivity and specificity, reproducibility, and precision. However, operational optimization of such algorithms for a better performance has not been fully addressed....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Human mutation 2021-01, Vol.42 (1), p.50-65
Hauptverfasser: Uchiyama, Yuri, Yamaguchi, Daisuke, Iwama, Kazuhiro, Miyatake, Satoko, Hamanaka, Kohei, Tsuchida, Naomi, Aoi, Hiromi, Azuma, Yoshiteru, Itai, Toshiyuki, Saida, Ken, Fukuda, Hiromi, Sekiguchi, Futoshi, Sakaguchi, Tomohiro, Lei, Ming, Ohori, Sachiko, Sakamoto, Masamune, Kato, Mitsuhiro, Koike, Takayoshi, Takahashi, Yukitoshi, Tanda, Koichi, Hyodo, Yuki, Honjo, Rachel S., Bertola, Debora Romeo, Kim, Chong Ae, Goto, Masahide, Okazaki, Tetsuya, Yamada, Hiroyuki, Maegaki, Yoshihiro, Osaka, Hitoshi, Ngu, Lock‐Hock, Siew, Ch'ng G., Teik, Keng W., Akasaka, Manami, Doi, Hiroshi, Tanaka, Fumiaki, Goto, Tomohide, Guo, Long, Ikegawa, Shiro, Haginoya, Kazuhiro, Haniffa, Muzhirah, Hiraishi, Nozomi, Hiraki, Yoko, Ikemoto, Satoru, Daida, Atsuro, Hamano, Shin‐ichiro, Miura, Masaki, Ishiyama, Akihiko, Kawano, Osamu, Kondo, Akane, Matsumoto, Hiroshi, Okamoto, Nobuhiko, Okanishi, Tohru, Oyoshi, Yukimi, Takeshita, Eri, Suzuki, Toshifumi, Ogawa, Yoshiyuki, Handa, Hiroshi, Miyazono, Yayoi, Koshimizu, Eriko, Fujita, Atsushi, Takata, Atsushi, Miyake, Noriko, Mizuguchi, Takeshi, Matsumoto, Naomichi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 65
container_issue 1
container_start_page 50
container_title Human mutation
container_volume 42
creator Uchiyama, Yuri
Yamaguchi, Daisuke
Iwama, Kazuhiro
Miyatake, Satoko
Hamanaka, Kohei
Tsuchida, Naomi
Aoi, Hiromi
Azuma, Yoshiteru
Itai, Toshiyuki
Saida, Ken
Fukuda, Hiromi
Sekiguchi, Futoshi
Sakaguchi, Tomohiro
Lei, Ming
Ohori, Sachiko
Sakamoto, Masamune
Kato, Mitsuhiro
Koike, Takayoshi
Takahashi, Yukitoshi
Tanda, Koichi
Hyodo, Yuki
Honjo, Rachel S.
Bertola, Debora Romeo
Kim, Chong Ae
Goto, Masahide
Okazaki, Tetsuya
Yamada, Hiroyuki
Maegaki, Yoshihiro
Osaka, Hitoshi
Ngu, Lock‐Hock
Siew, Ch'ng G.
Teik, Keng W.
Akasaka, Manami
Doi, Hiroshi
Tanaka, Fumiaki
Goto, Tomohide
Guo, Long
Ikegawa, Shiro
Haginoya, Kazuhiro
Haniffa, Muzhirah
Hiraishi, Nozomi
Hiraki, Yoko
Ikemoto, Satoru
Daida, Atsuro
Hamano, Shin‐ichiro
Miura, Masaki
Ishiyama, Akihiko
Kawano, Osamu
Kondo, Akane
Matsumoto, Hiroshi
Okamoto, Nobuhiko
Okanishi, Tohru
Oyoshi, Yukimi
Takeshita, Eri
Suzuki, Toshifumi
Ogawa, Yoshiyuki
Handa, Hiroshi
Miyazono, Yayoi
Koshimizu, Eriko
Fujita, Atsushi
Takata, Atsushi
Miyake, Noriko
Mizuguchi, Takeshi
Matsumoto, Naomichi
description Many algorithms to detect copy number variations (CNVs) using exome sequencing (ES) data have been reported and evaluated on their sensitivity and specificity, reproducibility, and precision. However, operational optimization of such algorithms for a better performance has not been fully addressed. ES of 1199 samples including 763 patients with different disease profiles was performed. ES data were analyzed to detect CNVs by both the eXome Hidden Markov Model (XHMM) and modified Nord's method. To efficiently detect rare CNVs, we aimed to decrease sequencing biases by analyzing, at the same time, the data of all unrelated samples sequenced in the same flow cell as a batch, and to eliminate sex effects of X‐linked CNVs by analyzing female and male sequences separately. We also applied several filtering steps for more efficient CNV selection. The average number of CNVs detected in one sample was
doi_str_mv 10.1002/humu.24129
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2456856221</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2456856221</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3939-d27c4f068d66edbe51d2c02c2d31bc0a107811693b4d7b8716ccacb5e76f95ec3</originalsourceid><addsrcrecordid>eNp90LtOwzAUBmALgWgpLDwAssSCkFJ8iXNhg6pQJBALnSPHPqGucilxAs3GI_CMPAkOLQwMTD62P_06-hE6pmRMCWEXi7Zox8ynLN5BQ0riyHPP_m4_i9gLw9gfoANrl4SQSAi-jwacU05pEA2RmmaZUQbKBmtoQDWmKnGVYVWtus_3j7ItUqjxq6yN7L8sbq0pnzGsqwKwlo28xNeyUQtnsSw1trB2YyotaHeXeWfBHqK9TOYWjrbnCM1vpk-TmXf_eHs3ubr3FI957GkWKj8jQaSDAHQKgmqmCFNMc5oqIikJI7d0zFNfh2kU0kApqVIBYZDFAhQfobNN7qquXlqwTVIYqyDPZQlVaxPmiyASAWPU0dM_dFm1tdu3VyFzjorIqfONUnVlbQ1ZsqpNIesuoSTpq0_66pPv6h0-2Ua2aQH6l_507QDdgDeTQ_dPVDKbP8w3oV-JF5HA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2472568158</pqid></control><display><type>article</type><title>Efficient detection of copy‐number variations using exome data: Batch‐ and sex‐based analyses</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Uchiyama, Yuri ; Yamaguchi, Daisuke ; Iwama, Kazuhiro ; Miyatake, Satoko ; Hamanaka, Kohei ; Tsuchida, Naomi ; Aoi, Hiromi ; Azuma, Yoshiteru ; Itai, Toshiyuki ; Saida, Ken ; Fukuda, Hiromi ; Sekiguchi, Futoshi ; Sakaguchi, Tomohiro ; Lei, Ming ; Ohori, Sachiko ; Sakamoto, Masamune ; Kato, Mitsuhiro ; Koike, Takayoshi ; Takahashi, Yukitoshi ; Tanda, Koichi ; Hyodo, Yuki ; Honjo, Rachel S. ; Bertola, Debora Romeo ; Kim, Chong Ae ; Goto, Masahide ; Okazaki, Tetsuya ; Yamada, Hiroyuki ; Maegaki, Yoshihiro ; Osaka, Hitoshi ; Ngu, Lock‐Hock ; Siew, Ch'ng G. ; Teik, Keng W. ; Akasaka, Manami ; Doi, Hiroshi ; Tanaka, Fumiaki ; Goto, Tomohide ; Guo, Long ; Ikegawa, Shiro ; Haginoya, Kazuhiro ; Haniffa, Muzhirah ; Hiraishi, Nozomi ; Hiraki, Yoko ; Ikemoto, Satoru ; Daida, Atsuro ; Hamano, Shin‐ichiro ; Miura, Masaki ; Ishiyama, Akihiko ; Kawano, Osamu ; Kondo, Akane ; Matsumoto, Hiroshi ; Okamoto, Nobuhiko ; Okanishi, Tohru ; Oyoshi, Yukimi ; Takeshita, Eri ; Suzuki, Toshifumi ; Ogawa, Yoshiyuki ; Handa, Hiroshi ; Miyazono, Yayoi ; Koshimizu, Eriko ; Fujita, Atsushi ; Takata, Atsushi ; Miyake, Noriko ; Mizuguchi, Takeshi ; Matsumoto, Naomichi</creator><creatorcontrib>Uchiyama, Yuri ; Yamaguchi, Daisuke ; Iwama, Kazuhiro ; Miyatake, Satoko ; Hamanaka, Kohei ; Tsuchida, Naomi ; Aoi, Hiromi ; Azuma, Yoshiteru ; Itai, Toshiyuki ; Saida, Ken ; Fukuda, Hiromi ; Sekiguchi, Futoshi ; Sakaguchi, Tomohiro ; Lei, Ming ; Ohori, Sachiko ; Sakamoto, Masamune ; Kato, Mitsuhiro ; Koike, Takayoshi ; Takahashi, Yukitoshi ; Tanda, Koichi ; Hyodo, Yuki ; Honjo, Rachel S. ; Bertola, Debora Romeo ; Kim, Chong Ae ; Goto, Masahide ; Okazaki, Tetsuya ; Yamada, Hiroyuki ; Maegaki, Yoshihiro ; Osaka, Hitoshi ; Ngu, Lock‐Hock ; Siew, Ch'ng G. ; Teik, Keng W. ; Akasaka, Manami ; Doi, Hiroshi ; Tanaka, Fumiaki ; Goto, Tomohide ; Guo, Long ; Ikegawa, Shiro ; Haginoya, Kazuhiro ; Haniffa, Muzhirah ; Hiraishi, Nozomi ; Hiraki, Yoko ; Ikemoto, Satoru ; Daida, Atsuro ; Hamano, Shin‐ichiro ; Miura, Masaki ; Ishiyama, Akihiko ; Kawano, Osamu ; Kondo, Akane ; Matsumoto, Hiroshi ; Okamoto, Nobuhiko ; Okanishi, Tohru ; Oyoshi, Yukimi ; Takeshita, Eri ; Suzuki, Toshifumi ; Ogawa, Yoshiyuki ; Handa, Hiroshi ; Miyazono, Yayoi ; Koshimizu, Eriko ; Fujita, Atsushi ; Takata, Atsushi ; Miyake, Noriko ; Mizuguchi, Takeshi ; Matsumoto, Naomichi</creatorcontrib><description>Many algorithms to detect copy number variations (CNVs) using exome sequencing (ES) data have been reported and evaluated on their sensitivity and specificity, reproducibility, and precision. However, operational optimization of such algorithms for a better performance has not been fully addressed. ES of 1199 samples including 763 patients with different disease profiles was performed. ES data were analyzed to detect CNVs by both the eXome Hidden Markov Model (XHMM) and modified Nord's method. To efficiently detect rare CNVs, we aimed to decrease sequencing biases by analyzing, at the same time, the data of all unrelated samples sequenced in the same flow cell as a batch, and to eliminate sex effects of X‐linked CNVs by analyzing female and male sequences separately. We also applied several filtering steps for more efficient CNV selection. The average number of CNVs detected in one sample was &lt;5. This optimization together with targeted CNV analysis by Nord's method identified pathogenic/likely pathogenic CNVs in 34 patients (4.5%, 34/763). In particular, among 142 patients with epilepsy, the current protocol detected clinically relevant CNVs in 19 (13.4%) patients, whereas the previous protocol identified them in only 14 (9.9%) patients. Thus, this batch‐based XHMM analysis efficiently selected rare pathogenic CNVs in genetic diseases. Using exome sequencing of 1199 samples including 763 from patients, we identified pathogenic/likely pathogenic copy number variations (CNVs) in 34 (4.5%, 34/763) patients using two CNV‐detection algorithms (eXome Hidden Markov Model [XHMM] and Nord's method) with the optimization by batch‐ and sex‐based analyses.</description><identifier>ISSN: 1059-7794</identifier><identifier>EISSN: 1098-1004</identifier><identifier>DOI: 10.1002/humu.24129</identifier><identifier>PMID: 33131168</identifier><language>eng</language><publisher>United States: Hindawi Limited</publisher><subject>Algorithms ; Copy number ; copy number variation ; DNA Copy Number Variations ; Epilepsy ; Exome - genetics ; exome sequencing ; Female ; High-Throughput Nucleotide Sequencing - methods ; Humans ; jNord ; Male ; Markov chains ; mendelian disorder ; Reproducibility of Results ; Sensitivity analysis ; Whole Exome Sequencing ; XHMM</subject><ispartof>Human mutation, 2021-01, Vol.42 (1), p.50-65</ispartof><rights>2020 Wiley Periodicals LLC</rights><rights>2020 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3939-d27c4f068d66edbe51d2c02c2d31bc0a107811693b4d7b8716ccacb5e76f95ec3</citedby><cites>FETCH-LOGICAL-c3939-d27c4f068d66edbe51d2c02c2d31bc0a107811693b4d7b8716ccacb5e76f95ec3</cites><orcidid>0000-0001-7595-1618 ; 0000-0003-3295-2236 ; 0000-0002-4540-5277 ; 0000-0003-3842-9294 ; 0000-0002-0166-3469 ; 0000-0001-7203-884X ; 0000-0002-9961-2693 ; 0000-0001-5415-656X ; 0000-0001-5472-5275 ; 0000-0002-1922-8967 ; 0000-0002-5363-5638 ; 0000-0002-0928-4586 ; 0000-0001-9846-6500 ; 0000-0003-0987-310X ; 0000-0003-1485-8553 ; 0000-0001-5807-2523 ; 0000-0003-3455-5285 ; 0000-0002-4701-6777 ; 0000-0003-0316-2147 ; 0000-0002-2584-9524 ; 0000-0002-5928-0233 ; 0000-0002-9223-7341 ; 0000-0001-5179-331X ; 0000-0002-1754-1300 ; 0000-0003-3753-9862 ; 0000-0002-0029-6310 ; 0000-0001-6195-0737 ; 0000-0002-9660-6941 ; 0000-0003-4998-1244 ; 0000-0002-2396-1686 ; 0000-0002-4686-6147 ; 0000-0003-4708-577X ; 0000-0002-1320-1165 ; 0000-0003-1350-7700 ; 0000-0003-0515-0481 ; 0000-0002-7630-2051 ; 0000-0002-0242-7521 ; 0000-0002-9774-0464 ; 0000-0002-6243-2269</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fhumu.24129$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fhumu.24129$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33131168$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Uchiyama, Yuri</creatorcontrib><creatorcontrib>Yamaguchi, Daisuke</creatorcontrib><creatorcontrib>Iwama, Kazuhiro</creatorcontrib><creatorcontrib>Miyatake, Satoko</creatorcontrib><creatorcontrib>Hamanaka, Kohei</creatorcontrib><creatorcontrib>Tsuchida, Naomi</creatorcontrib><creatorcontrib>Aoi, Hiromi</creatorcontrib><creatorcontrib>Azuma, Yoshiteru</creatorcontrib><creatorcontrib>Itai, Toshiyuki</creatorcontrib><creatorcontrib>Saida, Ken</creatorcontrib><creatorcontrib>Fukuda, Hiromi</creatorcontrib><creatorcontrib>Sekiguchi, Futoshi</creatorcontrib><creatorcontrib>Sakaguchi, Tomohiro</creatorcontrib><creatorcontrib>Lei, Ming</creatorcontrib><creatorcontrib>Ohori, Sachiko</creatorcontrib><creatorcontrib>Sakamoto, Masamune</creatorcontrib><creatorcontrib>Kato, Mitsuhiro</creatorcontrib><creatorcontrib>Koike, Takayoshi</creatorcontrib><creatorcontrib>Takahashi, Yukitoshi</creatorcontrib><creatorcontrib>Tanda, Koichi</creatorcontrib><creatorcontrib>Hyodo, Yuki</creatorcontrib><creatorcontrib>Honjo, Rachel S.</creatorcontrib><creatorcontrib>Bertola, Debora Romeo</creatorcontrib><creatorcontrib>Kim, Chong Ae</creatorcontrib><creatorcontrib>Goto, Masahide</creatorcontrib><creatorcontrib>Okazaki, Tetsuya</creatorcontrib><creatorcontrib>Yamada, Hiroyuki</creatorcontrib><creatorcontrib>Maegaki, Yoshihiro</creatorcontrib><creatorcontrib>Osaka, Hitoshi</creatorcontrib><creatorcontrib>Ngu, Lock‐Hock</creatorcontrib><creatorcontrib>Siew, Ch'ng G.</creatorcontrib><creatorcontrib>Teik, Keng W.</creatorcontrib><creatorcontrib>Akasaka, Manami</creatorcontrib><creatorcontrib>Doi, Hiroshi</creatorcontrib><creatorcontrib>Tanaka, Fumiaki</creatorcontrib><creatorcontrib>Goto, Tomohide</creatorcontrib><creatorcontrib>Guo, Long</creatorcontrib><creatorcontrib>Ikegawa, Shiro</creatorcontrib><creatorcontrib>Haginoya, Kazuhiro</creatorcontrib><creatorcontrib>Haniffa, Muzhirah</creatorcontrib><creatorcontrib>Hiraishi, Nozomi</creatorcontrib><creatorcontrib>Hiraki, Yoko</creatorcontrib><creatorcontrib>Ikemoto, Satoru</creatorcontrib><creatorcontrib>Daida, Atsuro</creatorcontrib><creatorcontrib>Hamano, Shin‐ichiro</creatorcontrib><creatorcontrib>Miura, Masaki</creatorcontrib><creatorcontrib>Ishiyama, Akihiko</creatorcontrib><creatorcontrib>Kawano, Osamu</creatorcontrib><creatorcontrib>Kondo, Akane</creatorcontrib><creatorcontrib>Matsumoto, Hiroshi</creatorcontrib><creatorcontrib>Okamoto, Nobuhiko</creatorcontrib><creatorcontrib>Okanishi, Tohru</creatorcontrib><creatorcontrib>Oyoshi, Yukimi</creatorcontrib><creatorcontrib>Takeshita, Eri</creatorcontrib><creatorcontrib>Suzuki, Toshifumi</creatorcontrib><creatorcontrib>Ogawa, Yoshiyuki</creatorcontrib><creatorcontrib>Handa, Hiroshi</creatorcontrib><creatorcontrib>Miyazono, Yayoi</creatorcontrib><creatorcontrib>Koshimizu, Eriko</creatorcontrib><creatorcontrib>Fujita, Atsushi</creatorcontrib><creatorcontrib>Takata, Atsushi</creatorcontrib><creatorcontrib>Miyake, Noriko</creatorcontrib><creatorcontrib>Mizuguchi, Takeshi</creatorcontrib><creatorcontrib>Matsumoto, Naomichi</creatorcontrib><title>Efficient detection of copy‐number variations using exome data: Batch‐ and sex‐based analyses</title><title>Human mutation</title><addtitle>Hum Mutat</addtitle><description>Many algorithms to detect copy number variations (CNVs) using exome sequencing (ES) data have been reported and evaluated on their sensitivity and specificity, reproducibility, and precision. However, operational optimization of such algorithms for a better performance has not been fully addressed. ES of 1199 samples including 763 patients with different disease profiles was performed. ES data were analyzed to detect CNVs by both the eXome Hidden Markov Model (XHMM) and modified Nord's method. To efficiently detect rare CNVs, we aimed to decrease sequencing biases by analyzing, at the same time, the data of all unrelated samples sequenced in the same flow cell as a batch, and to eliminate sex effects of X‐linked CNVs by analyzing female and male sequences separately. We also applied several filtering steps for more efficient CNV selection. The average number of CNVs detected in one sample was &lt;5. This optimization together with targeted CNV analysis by Nord's method identified pathogenic/likely pathogenic CNVs in 34 patients (4.5%, 34/763). In particular, among 142 patients with epilepsy, the current protocol detected clinically relevant CNVs in 19 (13.4%) patients, whereas the previous protocol identified them in only 14 (9.9%) patients. Thus, this batch‐based XHMM analysis efficiently selected rare pathogenic CNVs in genetic diseases. Using exome sequencing of 1199 samples including 763 from patients, we identified pathogenic/likely pathogenic copy number variations (CNVs) in 34 (4.5%, 34/763) patients using two CNV‐detection algorithms (eXome Hidden Markov Model [XHMM] and Nord's method) with the optimization by batch‐ and sex‐based analyses.</description><subject>Algorithms</subject><subject>Copy number</subject><subject>copy number variation</subject><subject>DNA Copy Number Variations</subject><subject>Epilepsy</subject><subject>Exome - genetics</subject><subject>exome sequencing</subject><subject>Female</subject><subject>High-Throughput Nucleotide Sequencing - methods</subject><subject>Humans</subject><subject>jNord</subject><subject>Male</subject><subject>Markov chains</subject><subject>mendelian disorder</subject><subject>Reproducibility of Results</subject><subject>Sensitivity analysis</subject><subject>Whole Exome Sequencing</subject><subject>XHMM</subject><issn>1059-7794</issn><issn>1098-1004</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90LtOwzAUBmALgWgpLDwAssSCkFJ8iXNhg6pQJBALnSPHPqGucilxAs3GI_CMPAkOLQwMTD62P_06-hE6pmRMCWEXi7Zox8ynLN5BQ0riyHPP_m4_i9gLw9gfoANrl4SQSAi-jwacU05pEA2RmmaZUQbKBmtoQDWmKnGVYVWtus_3j7ItUqjxq6yN7L8sbq0pnzGsqwKwlo28xNeyUQtnsSw1trB2YyotaHeXeWfBHqK9TOYWjrbnCM1vpk-TmXf_eHs3ubr3FI957GkWKj8jQaSDAHQKgmqmCFNMc5oqIikJI7d0zFNfh2kU0kApqVIBYZDFAhQfobNN7qquXlqwTVIYqyDPZQlVaxPmiyASAWPU0dM_dFm1tdu3VyFzjorIqfONUnVlbQ1ZsqpNIesuoSTpq0_66pPv6h0-2Ua2aQH6l_507QDdgDeTQ_dPVDKbP8w3oV-JF5HA</recordid><startdate>202101</startdate><enddate>202101</enddate><creator>Uchiyama, Yuri</creator><creator>Yamaguchi, Daisuke</creator><creator>Iwama, Kazuhiro</creator><creator>Miyatake, Satoko</creator><creator>Hamanaka, Kohei</creator><creator>Tsuchida, Naomi</creator><creator>Aoi, Hiromi</creator><creator>Azuma, Yoshiteru</creator><creator>Itai, Toshiyuki</creator><creator>Saida, Ken</creator><creator>Fukuda, Hiromi</creator><creator>Sekiguchi, Futoshi</creator><creator>Sakaguchi, Tomohiro</creator><creator>Lei, Ming</creator><creator>Ohori, Sachiko</creator><creator>Sakamoto, Masamune</creator><creator>Kato, Mitsuhiro</creator><creator>Koike, Takayoshi</creator><creator>Takahashi, Yukitoshi</creator><creator>Tanda, Koichi</creator><creator>Hyodo, Yuki</creator><creator>Honjo, Rachel S.</creator><creator>Bertola, Debora Romeo</creator><creator>Kim, Chong Ae</creator><creator>Goto, Masahide</creator><creator>Okazaki, Tetsuya</creator><creator>Yamada, Hiroyuki</creator><creator>Maegaki, Yoshihiro</creator><creator>Osaka, Hitoshi</creator><creator>Ngu, Lock‐Hock</creator><creator>Siew, Ch'ng G.</creator><creator>Teik, Keng W.</creator><creator>Akasaka, Manami</creator><creator>Doi, Hiroshi</creator><creator>Tanaka, Fumiaki</creator><creator>Goto, Tomohide</creator><creator>Guo, Long</creator><creator>Ikegawa, Shiro</creator><creator>Haginoya, Kazuhiro</creator><creator>Haniffa, Muzhirah</creator><creator>Hiraishi, Nozomi</creator><creator>Hiraki, Yoko</creator><creator>Ikemoto, Satoru</creator><creator>Daida, Atsuro</creator><creator>Hamano, Shin‐ichiro</creator><creator>Miura, Masaki</creator><creator>Ishiyama, Akihiko</creator><creator>Kawano, Osamu</creator><creator>Kondo, Akane</creator><creator>Matsumoto, Hiroshi</creator><creator>Okamoto, Nobuhiko</creator><creator>Okanishi, Tohru</creator><creator>Oyoshi, Yukimi</creator><creator>Takeshita, Eri</creator><creator>Suzuki, Toshifumi</creator><creator>Ogawa, Yoshiyuki</creator><creator>Handa, Hiroshi</creator><creator>Miyazono, Yayoi</creator><creator>Koshimizu, Eriko</creator><creator>Fujita, Atsushi</creator><creator>Takata, Atsushi</creator><creator>Miyake, Noriko</creator><creator>Mizuguchi, Takeshi</creator><creator>Matsumoto, Naomichi</creator><general>Hindawi Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7595-1618</orcidid><orcidid>https://orcid.org/0000-0003-3295-2236</orcidid><orcidid>https://orcid.org/0000-0002-4540-5277</orcidid><orcidid>https://orcid.org/0000-0003-3842-9294</orcidid><orcidid>https://orcid.org/0000-0002-0166-3469</orcidid><orcidid>https://orcid.org/0000-0001-7203-884X</orcidid><orcidid>https://orcid.org/0000-0002-9961-2693</orcidid><orcidid>https://orcid.org/0000-0001-5415-656X</orcidid><orcidid>https://orcid.org/0000-0001-5472-5275</orcidid><orcidid>https://orcid.org/0000-0002-1922-8967</orcidid><orcidid>https://orcid.org/0000-0002-5363-5638</orcidid><orcidid>https://orcid.org/0000-0002-0928-4586</orcidid><orcidid>https://orcid.org/0000-0001-9846-6500</orcidid><orcidid>https://orcid.org/0000-0003-0987-310X</orcidid><orcidid>https://orcid.org/0000-0003-1485-8553</orcidid><orcidid>https://orcid.org/0000-0001-5807-2523</orcidid><orcidid>https://orcid.org/0000-0003-3455-5285</orcidid><orcidid>https://orcid.org/0000-0002-4701-6777</orcidid><orcidid>https://orcid.org/0000-0003-0316-2147</orcidid><orcidid>https://orcid.org/0000-0002-2584-9524</orcidid><orcidid>https://orcid.org/0000-0002-5928-0233</orcidid><orcidid>https://orcid.org/0000-0002-9223-7341</orcidid><orcidid>https://orcid.org/0000-0001-5179-331X</orcidid><orcidid>https://orcid.org/0000-0002-1754-1300</orcidid><orcidid>https://orcid.org/0000-0003-3753-9862</orcidid><orcidid>https://orcid.org/0000-0002-0029-6310</orcidid><orcidid>https://orcid.org/0000-0001-6195-0737</orcidid><orcidid>https://orcid.org/0000-0002-9660-6941</orcidid><orcidid>https://orcid.org/0000-0003-4998-1244</orcidid><orcidid>https://orcid.org/0000-0002-2396-1686</orcidid><orcidid>https://orcid.org/0000-0002-4686-6147</orcidid><orcidid>https://orcid.org/0000-0003-4708-577X</orcidid><orcidid>https://orcid.org/0000-0002-1320-1165</orcidid><orcidid>https://orcid.org/0000-0003-1350-7700</orcidid><orcidid>https://orcid.org/0000-0003-0515-0481</orcidid><orcidid>https://orcid.org/0000-0002-7630-2051</orcidid><orcidid>https://orcid.org/0000-0002-0242-7521</orcidid><orcidid>https://orcid.org/0000-0002-9774-0464</orcidid><orcidid>https://orcid.org/0000-0002-6243-2269</orcidid></search><sort><creationdate>202101</creationdate><title>Efficient detection of copy‐number variations using exome data: Batch‐ and sex‐based analyses</title><author>Uchiyama, Yuri ; Yamaguchi, Daisuke ; Iwama, Kazuhiro ; Miyatake, Satoko ; Hamanaka, Kohei ; Tsuchida, Naomi ; Aoi, Hiromi ; Azuma, Yoshiteru ; Itai, Toshiyuki ; Saida, Ken ; Fukuda, Hiromi ; Sekiguchi, Futoshi ; Sakaguchi, Tomohiro ; Lei, Ming ; Ohori, Sachiko ; Sakamoto, Masamune ; Kato, Mitsuhiro ; Koike, Takayoshi ; Takahashi, Yukitoshi ; Tanda, Koichi ; Hyodo, Yuki ; Honjo, Rachel S. ; Bertola, Debora Romeo ; Kim, Chong Ae ; Goto, Masahide ; Okazaki, Tetsuya ; Yamada, Hiroyuki ; Maegaki, Yoshihiro ; Osaka, Hitoshi ; Ngu, Lock‐Hock ; Siew, Ch'ng G. ; Teik, Keng W. ; Akasaka, Manami ; Doi, Hiroshi ; Tanaka, Fumiaki ; Goto, Tomohide ; Guo, Long ; Ikegawa, Shiro ; Haginoya, Kazuhiro ; Haniffa, Muzhirah ; Hiraishi, Nozomi ; Hiraki, Yoko ; Ikemoto, Satoru ; Daida, Atsuro ; Hamano, Shin‐ichiro ; Miura, Masaki ; Ishiyama, Akihiko ; Kawano, Osamu ; Kondo, Akane ; Matsumoto, Hiroshi ; Okamoto, Nobuhiko ; Okanishi, Tohru ; Oyoshi, Yukimi ; Takeshita, Eri ; Suzuki, Toshifumi ; Ogawa, Yoshiyuki ; Handa, Hiroshi ; Miyazono, Yayoi ; Koshimizu, Eriko ; Fujita, Atsushi ; Takata, Atsushi ; Miyake, Noriko ; Mizuguchi, Takeshi ; Matsumoto, Naomichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3939-d27c4f068d66edbe51d2c02c2d31bc0a107811693b4d7b8716ccacb5e76f95ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Copy number</topic><topic>copy number variation</topic><topic>DNA Copy Number Variations</topic><topic>Epilepsy</topic><topic>Exome - genetics</topic><topic>exome sequencing</topic><topic>Female</topic><topic>High-Throughput Nucleotide Sequencing - methods</topic><topic>Humans</topic><topic>jNord</topic><topic>Male</topic><topic>Markov chains</topic><topic>mendelian disorder</topic><topic>Reproducibility of Results</topic><topic>Sensitivity analysis</topic><topic>Whole Exome Sequencing</topic><topic>XHMM</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Uchiyama, Yuri</creatorcontrib><creatorcontrib>Yamaguchi, Daisuke</creatorcontrib><creatorcontrib>Iwama, Kazuhiro</creatorcontrib><creatorcontrib>Miyatake, Satoko</creatorcontrib><creatorcontrib>Hamanaka, Kohei</creatorcontrib><creatorcontrib>Tsuchida, Naomi</creatorcontrib><creatorcontrib>Aoi, Hiromi</creatorcontrib><creatorcontrib>Azuma, Yoshiteru</creatorcontrib><creatorcontrib>Itai, Toshiyuki</creatorcontrib><creatorcontrib>Saida, Ken</creatorcontrib><creatorcontrib>Fukuda, Hiromi</creatorcontrib><creatorcontrib>Sekiguchi, Futoshi</creatorcontrib><creatorcontrib>Sakaguchi, Tomohiro</creatorcontrib><creatorcontrib>Lei, Ming</creatorcontrib><creatorcontrib>Ohori, Sachiko</creatorcontrib><creatorcontrib>Sakamoto, Masamune</creatorcontrib><creatorcontrib>Kato, Mitsuhiro</creatorcontrib><creatorcontrib>Koike, Takayoshi</creatorcontrib><creatorcontrib>Takahashi, Yukitoshi</creatorcontrib><creatorcontrib>Tanda, Koichi</creatorcontrib><creatorcontrib>Hyodo, Yuki</creatorcontrib><creatorcontrib>Honjo, Rachel S.</creatorcontrib><creatorcontrib>Bertola, Debora Romeo</creatorcontrib><creatorcontrib>Kim, Chong Ae</creatorcontrib><creatorcontrib>Goto, Masahide</creatorcontrib><creatorcontrib>Okazaki, Tetsuya</creatorcontrib><creatorcontrib>Yamada, Hiroyuki</creatorcontrib><creatorcontrib>Maegaki, Yoshihiro</creatorcontrib><creatorcontrib>Osaka, Hitoshi</creatorcontrib><creatorcontrib>Ngu, Lock‐Hock</creatorcontrib><creatorcontrib>Siew, Ch'ng G.</creatorcontrib><creatorcontrib>Teik, Keng W.</creatorcontrib><creatorcontrib>Akasaka, Manami</creatorcontrib><creatorcontrib>Doi, Hiroshi</creatorcontrib><creatorcontrib>Tanaka, Fumiaki</creatorcontrib><creatorcontrib>Goto, Tomohide</creatorcontrib><creatorcontrib>Guo, Long</creatorcontrib><creatorcontrib>Ikegawa, Shiro</creatorcontrib><creatorcontrib>Haginoya, Kazuhiro</creatorcontrib><creatorcontrib>Haniffa, Muzhirah</creatorcontrib><creatorcontrib>Hiraishi, Nozomi</creatorcontrib><creatorcontrib>Hiraki, Yoko</creatorcontrib><creatorcontrib>Ikemoto, Satoru</creatorcontrib><creatorcontrib>Daida, Atsuro</creatorcontrib><creatorcontrib>Hamano, Shin‐ichiro</creatorcontrib><creatorcontrib>Miura, Masaki</creatorcontrib><creatorcontrib>Ishiyama, Akihiko</creatorcontrib><creatorcontrib>Kawano, Osamu</creatorcontrib><creatorcontrib>Kondo, Akane</creatorcontrib><creatorcontrib>Matsumoto, Hiroshi</creatorcontrib><creatorcontrib>Okamoto, Nobuhiko</creatorcontrib><creatorcontrib>Okanishi, Tohru</creatorcontrib><creatorcontrib>Oyoshi, Yukimi</creatorcontrib><creatorcontrib>Takeshita, Eri</creatorcontrib><creatorcontrib>Suzuki, Toshifumi</creatorcontrib><creatorcontrib>Ogawa, Yoshiyuki</creatorcontrib><creatorcontrib>Handa, Hiroshi</creatorcontrib><creatorcontrib>Miyazono, Yayoi</creatorcontrib><creatorcontrib>Koshimizu, Eriko</creatorcontrib><creatorcontrib>Fujita, Atsushi</creatorcontrib><creatorcontrib>Takata, Atsushi</creatorcontrib><creatorcontrib>Miyake, Noriko</creatorcontrib><creatorcontrib>Mizuguchi, Takeshi</creatorcontrib><creatorcontrib>Matsumoto, Naomichi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Human mutation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Uchiyama, Yuri</au><au>Yamaguchi, Daisuke</au><au>Iwama, Kazuhiro</au><au>Miyatake, Satoko</au><au>Hamanaka, Kohei</au><au>Tsuchida, Naomi</au><au>Aoi, Hiromi</au><au>Azuma, Yoshiteru</au><au>Itai, Toshiyuki</au><au>Saida, Ken</au><au>Fukuda, Hiromi</au><au>Sekiguchi, Futoshi</au><au>Sakaguchi, Tomohiro</au><au>Lei, Ming</au><au>Ohori, Sachiko</au><au>Sakamoto, Masamune</au><au>Kato, Mitsuhiro</au><au>Koike, Takayoshi</au><au>Takahashi, Yukitoshi</au><au>Tanda, Koichi</au><au>Hyodo, Yuki</au><au>Honjo, Rachel S.</au><au>Bertola, Debora Romeo</au><au>Kim, Chong Ae</au><au>Goto, Masahide</au><au>Okazaki, Tetsuya</au><au>Yamada, Hiroyuki</au><au>Maegaki, Yoshihiro</au><au>Osaka, Hitoshi</au><au>Ngu, Lock‐Hock</au><au>Siew, Ch'ng G.</au><au>Teik, Keng W.</au><au>Akasaka, Manami</au><au>Doi, Hiroshi</au><au>Tanaka, Fumiaki</au><au>Goto, Tomohide</au><au>Guo, Long</au><au>Ikegawa, Shiro</au><au>Haginoya, Kazuhiro</au><au>Haniffa, Muzhirah</au><au>Hiraishi, Nozomi</au><au>Hiraki, Yoko</au><au>Ikemoto, Satoru</au><au>Daida, Atsuro</au><au>Hamano, Shin‐ichiro</au><au>Miura, Masaki</au><au>Ishiyama, Akihiko</au><au>Kawano, Osamu</au><au>Kondo, Akane</au><au>Matsumoto, Hiroshi</au><au>Okamoto, Nobuhiko</au><au>Okanishi, Tohru</au><au>Oyoshi, Yukimi</au><au>Takeshita, Eri</au><au>Suzuki, Toshifumi</au><au>Ogawa, Yoshiyuki</au><au>Handa, Hiroshi</au><au>Miyazono, Yayoi</au><au>Koshimizu, Eriko</au><au>Fujita, Atsushi</au><au>Takata, Atsushi</au><au>Miyake, Noriko</au><au>Mizuguchi, Takeshi</au><au>Matsumoto, Naomichi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient detection of copy‐number variations using exome data: Batch‐ and sex‐based analyses</atitle><jtitle>Human mutation</jtitle><addtitle>Hum Mutat</addtitle><date>2021-01</date><risdate>2021</risdate><volume>42</volume><issue>1</issue><spage>50</spage><epage>65</epage><pages>50-65</pages><issn>1059-7794</issn><eissn>1098-1004</eissn><abstract>Many algorithms to detect copy number variations (CNVs) using exome sequencing (ES) data have been reported and evaluated on their sensitivity and specificity, reproducibility, and precision. However, operational optimization of such algorithms for a better performance has not been fully addressed. ES of 1199 samples including 763 patients with different disease profiles was performed. ES data were analyzed to detect CNVs by both the eXome Hidden Markov Model (XHMM) and modified Nord's method. To efficiently detect rare CNVs, we aimed to decrease sequencing biases by analyzing, at the same time, the data of all unrelated samples sequenced in the same flow cell as a batch, and to eliminate sex effects of X‐linked CNVs by analyzing female and male sequences separately. We also applied several filtering steps for more efficient CNV selection. The average number of CNVs detected in one sample was &lt;5. This optimization together with targeted CNV analysis by Nord's method identified pathogenic/likely pathogenic CNVs in 34 patients (4.5%, 34/763). In particular, among 142 patients with epilepsy, the current protocol detected clinically relevant CNVs in 19 (13.4%) patients, whereas the previous protocol identified them in only 14 (9.9%) patients. Thus, this batch‐based XHMM analysis efficiently selected rare pathogenic CNVs in genetic diseases. Using exome sequencing of 1199 samples including 763 from patients, we identified pathogenic/likely pathogenic copy number variations (CNVs) in 34 (4.5%, 34/763) patients using two CNV‐detection algorithms (eXome Hidden Markov Model [XHMM] and Nord's method) with the optimization by batch‐ and sex‐based analyses.</abstract><cop>United States</cop><pub>Hindawi Limited</pub><pmid>33131168</pmid><doi>10.1002/humu.24129</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-7595-1618</orcidid><orcidid>https://orcid.org/0000-0003-3295-2236</orcidid><orcidid>https://orcid.org/0000-0002-4540-5277</orcidid><orcidid>https://orcid.org/0000-0003-3842-9294</orcidid><orcidid>https://orcid.org/0000-0002-0166-3469</orcidid><orcidid>https://orcid.org/0000-0001-7203-884X</orcidid><orcidid>https://orcid.org/0000-0002-9961-2693</orcidid><orcidid>https://orcid.org/0000-0001-5415-656X</orcidid><orcidid>https://orcid.org/0000-0001-5472-5275</orcidid><orcidid>https://orcid.org/0000-0002-1922-8967</orcidid><orcidid>https://orcid.org/0000-0002-5363-5638</orcidid><orcidid>https://orcid.org/0000-0002-0928-4586</orcidid><orcidid>https://orcid.org/0000-0001-9846-6500</orcidid><orcidid>https://orcid.org/0000-0003-0987-310X</orcidid><orcidid>https://orcid.org/0000-0003-1485-8553</orcidid><orcidid>https://orcid.org/0000-0001-5807-2523</orcidid><orcidid>https://orcid.org/0000-0003-3455-5285</orcidid><orcidid>https://orcid.org/0000-0002-4701-6777</orcidid><orcidid>https://orcid.org/0000-0003-0316-2147</orcidid><orcidid>https://orcid.org/0000-0002-2584-9524</orcidid><orcidid>https://orcid.org/0000-0002-5928-0233</orcidid><orcidid>https://orcid.org/0000-0002-9223-7341</orcidid><orcidid>https://orcid.org/0000-0001-5179-331X</orcidid><orcidid>https://orcid.org/0000-0002-1754-1300</orcidid><orcidid>https://orcid.org/0000-0003-3753-9862</orcidid><orcidid>https://orcid.org/0000-0002-0029-6310</orcidid><orcidid>https://orcid.org/0000-0001-6195-0737</orcidid><orcidid>https://orcid.org/0000-0002-9660-6941</orcidid><orcidid>https://orcid.org/0000-0003-4998-1244</orcidid><orcidid>https://orcid.org/0000-0002-2396-1686</orcidid><orcidid>https://orcid.org/0000-0002-4686-6147</orcidid><orcidid>https://orcid.org/0000-0003-4708-577X</orcidid><orcidid>https://orcid.org/0000-0002-1320-1165</orcidid><orcidid>https://orcid.org/0000-0003-1350-7700</orcidid><orcidid>https://orcid.org/0000-0003-0515-0481</orcidid><orcidid>https://orcid.org/0000-0002-7630-2051</orcidid><orcidid>https://orcid.org/0000-0002-0242-7521</orcidid><orcidid>https://orcid.org/0000-0002-9774-0464</orcidid><orcidid>https://orcid.org/0000-0002-6243-2269</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1059-7794
ispartof Human mutation, 2021-01, Vol.42 (1), p.50-65
issn 1059-7794
1098-1004
language eng
recordid cdi_proquest_miscellaneous_2456856221
source MEDLINE; Access via Wiley Online Library
subjects Algorithms
Copy number
copy number variation
DNA Copy Number Variations
Epilepsy
Exome - genetics
exome sequencing
Female
High-Throughput Nucleotide Sequencing - methods
Humans
jNord
Male
Markov chains
mendelian disorder
Reproducibility of Results
Sensitivity analysis
Whole Exome Sequencing
XHMM
title Efficient detection of copy‐number variations using exome data: Batch‐ and sex‐based analyses
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T22%3A01%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20detection%20of%20copy%E2%80%90number%20variations%20using%20exome%20data:%20Batch%E2%80%90%20and%20sex%E2%80%90based%20analyses&rft.jtitle=Human%20mutation&rft.au=Uchiyama,%20Yuri&rft.date=2021-01&rft.volume=42&rft.issue=1&rft.spage=50&rft.epage=65&rft.pages=50-65&rft.issn=1059-7794&rft.eissn=1098-1004&rft_id=info:doi/10.1002/humu.24129&rft_dat=%3Cproquest_cross%3E2456856221%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2472568158&rft_id=info:pmid/33131168&rfr_iscdi=true