Deep-Learning Resources for Studying Glycan-Mediated Host-Microbe Interactions

Glycans, the most diverse biopolymer, are shaped by evolutionary pressures stemming from host-microbe interactions. Here, we present machine learning and bioinformatics methods to leverage the evolutionary information present in glycans to gain insights into how pathogens and commensals interact wit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell host & microbe 2021-01, Vol.29 (1), p.132-144.e3
Hauptverfasser: Bojar, Daniel, Powers, Rani K., Camacho, Diogo M., Collins, James J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 144.e3
container_issue 1
container_start_page 132
container_title Cell host & microbe
container_volume 29
creator Bojar, Daniel
Powers, Rani K.
Camacho, Diogo M.
Collins, James J.
description Glycans, the most diverse biopolymer, are shaped by evolutionary pressures stemming from host-microbe interactions. Here, we present machine learning and bioinformatics methods to leverage the evolutionary information present in glycans to gain insights into how pathogens and commensals interact with hosts. By using techniques from natural language processing, we develop deep-learning models for glycans that are trained on a curated dataset of 19,299 unique glycans and can be used to study and predict glycan functions. We show that these models can be utilized to predict glycan immunogenicity and the pathogenicity of bacterial strains, as well as investigate glycan-mediated immune evasion via molecular mimicry. We also develop glycan-alignment methods and use these to analyze virulence-determining glycan motifs in the capsular polysaccharides of bacterial pathogens. These resources enable one to identify and study glycan motifs involved in immunogenicity, pathogenicity, molecular mimicry, and immune evasion, expanding our understanding of host-microbe interactions. [Display omitted] •Glycan-focused language models can be used for sequence-to-function models•Information in glycans predicts immunogenicity, pathogenicity, and taxonomic origin•Glycan alignments shed light into bacterial virulence Bojar et al. present a workflow that combines machine learning and bioinformatics techniques to analyze the prominent role of glycans in host-microbe interactions. The herein developed glycan-focused language models and alignments allow for the prediction and analysis of glycan immunogenicity, association with pathogenicity, and taxonomic classification.
doi_str_mv 10.1016/j.chom.2020.10.004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2456419702</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S193131282030562X</els_id><sourcerecordid>2456419702</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-19a58f73b274079c11d0d93a349819b579887dd083dfbb84a16bff4aa662946a3</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EolD4AxxQjlwS1onzsMQFFWgrtSDxOFuOvQFXaVzsBKn_noQWjpx2NZoZ7X6EXFCIKNDsehWpD7uOYogHIQJgB-SE8oSFGWT88GenYULjYkROvV8BpCnk9JiMkl4EStkJebxD3IQLlK4xzXvwjN52TqEPKuuCl7bT20Ge1lslm3CJ2sgWdTCzvg2XRjlbYjBvWnRStcY2_owcVbL2eL6fY_L2cP86mYWLp-l8crsIFQNoQ8plWlR5UsY5g5wrSjVonsiE8YLyMs15UeRaQ5HoqiwLJmlWVhWTMstizjKZjMnVrnfj7GeHvhVr4xXWtWzQdl7ELM0Y5TnEvTXeWftrvXdYiY0za-m2goIYOIqVGDiKgeOg9Rz70OW-vyvXqP8iv-B6w83OgP2XXwad8Mpgo3pCDlUrtDX_9X8DWf2C_Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2456419702</pqid></control><display><type>article</type><title>Deep-Learning Resources for Studying Glycan-Mediated Host-Microbe Interactions</title><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Bojar, Daniel ; Powers, Rani K. ; Camacho, Diogo M. ; Collins, James J.</creator><creatorcontrib>Bojar, Daniel ; Powers, Rani K. ; Camacho, Diogo M. ; Collins, James J.</creatorcontrib><description>Glycans, the most diverse biopolymer, are shaped by evolutionary pressures stemming from host-microbe interactions. Here, we present machine learning and bioinformatics methods to leverage the evolutionary information present in glycans to gain insights into how pathogens and commensals interact with hosts. By using techniques from natural language processing, we develop deep-learning models for glycans that are trained on a curated dataset of 19,299 unique glycans and can be used to study and predict glycan functions. We show that these models can be utilized to predict glycan immunogenicity and the pathogenicity of bacterial strains, as well as investigate glycan-mediated immune evasion via molecular mimicry. We also develop glycan-alignment methods and use these to analyze virulence-determining glycan motifs in the capsular polysaccharides of bacterial pathogens. These resources enable one to identify and study glycan motifs involved in immunogenicity, pathogenicity, molecular mimicry, and immune evasion, expanding our understanding of host-microbe interactions. [Display omitted] •Glycan-focused language models can be used for sequence-to-function models•Information in glycans predicts immunogenicity, pathogenicity, and taxonomic origin•Glycan alignments shed light into bacterial virulence Bojar et al. present a workflow that combines machine learning and bioinformatics techniques to analyze the prominent role of glycans in host-microbe interactions. The herein developed glycan-focused language models and alignments allow for the prediction and analysis of glycan immunogenicity, association with pathogenicity, and taxonomic classification.</description><identifier>ISSN: 1931-3128</identifier><identifier>EISSN: 1934-6069</identifier><identifier>DOI: 10.1016/j.chom.2020.10.004</identifier><identifier>PMID: 33120114</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>bioinformatics ; deep learning ; glycans ; glycobiology ; host-microbe ; machine learning</subject><ispartof>Cell host &amp; microbe, 2021-01, Vol.29 (1), p.132-144.e3</ispartof><rights>2020 The Authors</rights><rights>Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-19a58f73b274079c11d0d93a349819b579887dd083dfbb84a16bff4aa662946a3</citedby><cites>FETCH-LOGICAL-c400t-19a58f73b274079c11d0d93a349819b579887dd083dfbb84a16bff4aa662946a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S193131282030562X$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33120114$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bojar, Daniel</creatorcontrib><creatorcontrib>Powers, Rani K.</creatorcontrib><creatorcontrib>Camacho, Diogo M.</creatorcontrib><creatorcontrib>Collins, James J.</creatorcontrib><title>Deep-Learning Resources for Studying Glycan-Mediated Host-Microbe Interactions</title><title>Cell host &amp; microbe</title><addtitle>Cell Host Microbe</addtitle><description>Glycans, the most diverse biopolymer, are shaped by evolutionary pressures stemming from host-microbe interactions. Here, we present machine learning and bioinformatics methods to leverage the evolutionary information present in glycans to gain insights into how pathogens and commensals interact with hosts. By using techniques from natural language processing, we develop deep-learning models for glycans that are trained on a curated dataset of 19,299 unique glycans and can be used to study and predict glycan functions. We show that these models can be utilized to predict glycan immunogenicity and the pathogenicity of bacterial strains, as well as investigate glycan-mediated immune evasion via molecular mimicry. We also develop glycan-alignment methods and use these to analyze virulence-determining glycan motifs in the capsular polysaccharides of bacterial pathogens. These resources enable one to identify and study glycan motifs involved in immunogenicity, pathogenicity, molecular mimicry, and immune evasion, expanding our understanding of host-microbe interactions. [Display omitted] •Glycan-focused language models can be used for sequence-to-function models•Information in glycans predicts immunogenicity, pathogenicity, and taxonomic origin•Glycan alignments shed light into bacterial virulence Bojar et al. present a workflow that combines machine learning and bioinformatics techniques to analyze the prominent role of glycans in host-microbe interactions. The herein developed glycan-focused language models and alignments allow for the prediction and analysis of glycan immunogenicity, association with pathogenicity, and taxonomic classification.</description><subject>bioinformatics</subject><subject>deep learning</subject><subject>glycans</subject><subject>glycobiology</subject><subject>host-microbe</subject><subject>machine learning</subject><issn>1931-3128</issn><issn>1934-6069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPwzAQhC0EolD4AxxQjlwS1onzsMQFFWgrtSDxOFuOvQFXaVzsBKn_noQWjpx2NZoZ7X6EXFCIKNDsehWpD7uOYogHIQJgB-SE8oSFGWT88GenYULjYkROvV8BpCnk9JiMkl4EStkJebxD3IQLlK4xzXvwjN52TqEPKuuCl7bT20Ge1lslm3CJ2sgWdTCzvg2XRjlbYjBvWnRStcY2_owcVbL2eL6fY_L2cP86mYWLp-l8crsIFQNoQ8plWlR5UsY5g5wrSjVonsiE8YLyMs15UeRaQ5HoqiwLJmlWVhWTMstizjKZjMnVrnfj7GeHvhVr4xXWtWzQdl7ELM0Y5TnEvTXeWftrvXdYiY0za-m2goIYOIqVGDiKgeOg9Rz70OW-vyvXqP8iv-B6w83OgP2XXwad8Mpgo3pCDlUrtDX_9X8DWf2C_Q</recordid><startdate>20210113</startdate><enddate>20210113</enddate><creator>Bojar, Daniel</creator><creator>Powers, Rani K.</creator><creator>Camacho, Diogo M.</creator><creator>Collins, James J.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20210113</creationdate><title>Deep-Learning Resources for Studying Glycan-Mediated Host-Microbe Interactions</title><author>Bojar, Daniel ; Powers, Rani K. ; Camacho, Diogo M. ; Collins, James J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-19a58f73b274079c11d0d93a349819b579887dd083dfbb84a16bff4aa662946a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>bioinformatics</topic><topic>deep learning</topic><topic>glycans</topic><topic>glycobiology</topic><topic>host-microbe</topic><topic>machine learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bojar, Daniel</creatorcontrib><creatorcontrib>Powers, Rani K.</creatorcontrib><creatorcontrib>Camacho, Diogo M.</creatorcontrib><creatorcontrib>Collins, James J.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Cell host &amp; microbe</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bojar, Daniel</au><au>Powers, Rani K.</au><au>Camacho, Diogo M.</au><au>Collins, James J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep-Learning Resources for Studying Glycan-Mediated Host-Microbe Interactions</atitle><jtitle>Cell host &amp; microbe</jtitle><addtitle>Cell Host Microbe</addtitle><date>2021-01-13</date><risdate>2021</risdate><volume>29</volume><issue>1</issue><spage>132</spage><epage>144.e3</epage><pages>132-144.e3</pages><issn>1931-3128</issn><eissn>1934-6069</eissn><abstract>Glycans, the most diverse biopolymer, are shaped by evolutionary pressures stemming from host-microbe interactions. Here, we present machine learning and bioinformatics methods to leverage the evolutionary information present in glycans to gain insights into how pathogens and commensals interact with hosts. By using techniques from natural language processing, we develop deep-learning models for glycans that are trained on a curated dataset of 19,299 unique glycans and can be used to study and predict glycan functions. We show that these models can be utilized to predict glycan immunogenicity and the pathogenicity of bacterial strains, as well as investigate glycan-mediated immune evasion via molecular mimicry. We also develop glycan-alignment methods and use these to analyze virulence-determining glycan motifs in the capsular polysaccharides of bacterial pathogens. These resources enable one to identify and study glycan motifs involved in immunogenicity, pathogenicity, molecular mimicry, and immune evasion, expanding our understanding of host-microbe interactions. [Display omitted] •Glycan-focused language models can be used for sequence-to-function models•Information in glycans predicts immunogenicity, pathogenicity, and taxonomic origin•Glycan alignments shed light into bacterial virulence Bojar et al. present a workflow that combines machine learning and bioinformatics techniques to analyze the prominent role of glycans in host-microbe interactions. The herein developed glycan-focused language models and alignments allow for the prediction and analysis of glycan immunogenicity, association with pathogenicity, and taxonomic classification.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>33120114</pmid><doi>10.1016/j.chom.2020.10.004</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1931-3128
ispartof Cell host & microbe, 2021-01, Vol.29 (1), p.132-144.e3
issn 1931-3128
1934-6069
language eng
recordid cdi_proquest_miscellaneous_2456419702
source Cell Press Free Archives; Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals
subjects bioinformatics
deep learning
glycans
glycobiology
host-microbe
machine learning
title Deep-Learning Resources for Studying Glycan-Mediated Host-Microbe Interactions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T21%3A34%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep-Learning%20Resources%20for%20Studying%20Glycan-Mediated%20Host-Microbe%20Interactions&rft.jtitle=Cell%20host%20&%20microbe&rft.au=Bojar,%20Daniel&rft.date=2021-01-13&rft.volume=29&rft.issue=1&rft.spage=132&rft.epage=144.e3&rft.pages=132-144.e3&rft.issn=1931-3128&rft.eissn=1934-6069&rft_id=info:doi/10.1016/j.chom.2020.10.004&rft_dat=%3Cproquest_cross%3E2456419702%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2456419702&rft_id=info:pmid/33120114&rft_els_id=S193131282030562X&rfr_iscdi=true