Efficient interfacial charge transfer of 2D/2D porous carbon nitride/bismuth oxychloride step-scheme heterojunction for boosted solar-driven CO2 reduction

[Display omitted] Heterostructured photocatalysts are promising candidates in the photocatalysis field, and the heterojunction plays a vital role in the separation of spatial charge carriers. Here, a heterojunction was fabricated by the in situ growth of ultrathin Bi12O17Cl2 (BOC) nanosheets (NSs) o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of colloid and interface science 2021-03, Vol.585, p.684-693
Hauptverfasser: Huo, Yao, Zhang, Jinfeng, Wang, Zhongliao, Dai, Kai, Pan, Chengsi, Liang, Changhao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 693
container_issue
container_start_page 684
container_title Journal of colloid and interface science
container_volume 585
creator Huo, Yao
Zhang, Jinfeng
Wang, Zhongliao
Dai, Kai
Pan, Chengsi
Liang, Changhao
description [Display omitted] Heterostructured photocatalysts are promising candidates in the photocatalysis field, and the heterojunction plays a vital role in the separation of spatial charge carriers. Here, a heterojunction was fabricated by the in situ growth of ultrathin Bi12O17Cl2 (BOC) nanosheets (NSs) onto porous g-C3N4 (PGCN) NSs. The NSs’ nanostructure can effectively shorten the diffusion path of charge carriers and thus promote interfacial charge migration, which can improve the surface photocatalytic activity. The X-ray photoelectron spectroscopy spectra and the experimental measured Fermi level (EF) indicate that electrons transfer from PGCN to BOC, which leads to the formation of the built-in electric field with the orientation from PGCN to BOC. Driven by the built-in electric field, the charge carriers transfer through a step-like pathway. This step-scheme porous g-C3N4/Bi12O17Cl2 (PGCN/BOC) heterostructured nanocomposite displays an enhanced photocatalytic performance compared with pure BOC and PGCN. This work provides new insight into the novel construction of a step-scheme heterojunction toward photocatalytic CO2 reduction.
doi_str_mv 10.1016/j.jcis.2020.10.048
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2456412352</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021979720313710</els_id><sourcerecordid>2456412352</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-c6e2eaa5013d3672711684d211e2c67e035ff44868385e087bb333649a373bfe3</originalsourceid><addsrcrecordid>eNp9kc1u2zAQhIkiBeqkeYGceMxFNn_0C_RS2E5bwIAv7ZmgqGVEQRadJWXUr9KnDVX33NMCg_kGmB1Cnjhbc8bLzbAejAtrwcQirFlefyArzpoiqziTd2TFmOBZUzXVJ3IfwsAY50XRrMifvbXOOJgidVMEtNo4PVLTa3wFGlFPwQJSb6nYbcSOnj36OVCjsfUTnVxE18GmdeE0x57631fTj37RaIhwzoLp4QS0hxTth3ky0SXMeqSt98nR0eBHjVmH7gIT3R4FRejmv7bP5KPVY4DHf_eB_HrZ_9x-zw7Hbz-2Xw-ZkVLGzJQgQOuCcdnJshIV52Wdd4JzEKasgMnC2jyvy1rWBbC6atvElXmjZSVbC_KBPN9yz-jfZghRnVwwMI56gtRVibwocy5kIZJV3KwGfQgIVp3RnTReFWdqGUINahlCLUMsWhoiQV9uEKQSFweowvJwA51DMFF13v0PfwfdnJQQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2456412352</pqid></control><display><type>article</type><title>Efficient interfacial charge transfer of 2D/2D porous carbon nitride/bismuth oxychloride step-scheme heterojunction for boosted solar-driven CO2 reduction</title><source>Elsevier ScienceDirect Journals</source><creator>Huo, Yao ; Zhang, Jinfeng ; Wang, Zhongliao ; Dai, Kai ; Pan, Chengsi ; Liang, Changhao</creator><creatorcontrib>Huo, Yao ; Zhang, Jinfeng ; Wang, Zhongliao ; Dai, Kai ; Pan, Chengsi ; Liang, Changhao</creatorcontrib><description>[Display omitted] Heterostructured photocatalysts are promising candidates in the photocatalysis field, and the heterojunction plays a vital role in the separation of spatial charge carriers. Here, a heterojunction was fabricated by the in situ growth of ultrathin Bi12O17Cl2 (BOC) nanosheets (NSs) onto porous g-C3N4 (PGCN) NSs. The NSs’ nanostructure can effectively shorten the diffusion path of charge carriers and thus promote interfacial charge migration, which can improve the surface photocatalytic activity. The X-ray photoelectron spectroscopy spectra and the experimental measured Fermi level (EF) indicate that electrons transfer from PGCN to BOC, which leads to the formation of the built-in electric field with the orientation from PGCN to BOC. Driven by the built-in electric field, the charge carriers transfer through a step-like pathway. This step-scheme porous g-C3N4/Bi12O17Cl2 (PGCN/BOC) heterostructured nanocomposite displays an enhanced photocatalytic performance compared with pure BOC and PGCN. This work provides new insight into the novel construction of a step-scheme heterojunction toward photocatalytic CO2 reduction.</description><identifier>ISSN: 0021-9797</identifier><identifier>EISSN: 1095-7103</identifier><identifier>DOI: 10.1016/j.jcis.2020.10.048</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Bi12O17Cl2 ; Build-in electric field ; g-C3N4 ; Photocatalytic CO2 reduction ; Step-scheme heterojunction</subject><ispartof>Journal of colloid and interface science, 2021-03, Vol.585, p.684-693</ispartof><rights>2020 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-c6e2eaa5013d3672711684d211e2c67e035ff44868385e087bb333649a373bfe3</citedby><cites>FETCH-LOGICAL-c333t-c6e2eaa5013d3672711684d211e2c67e035ff44868385e087bb333649a373bfe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcis.2020.10.048$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27907,27908,45978</link.rule.ids></links><search><creatorcontrib>Huo, Yao</creatorcontrib><creatorcontrib>Zhang, Jinfeng</creatorcontrib><creatorcontrib>Wang, Zhongliao</creatorcontrib><creatorcontrib>Dai, Kai</creatorcontrib><creatorcontrib>Pan, Chengsi</creatorcontrib><creatorcontrib>Liang, Changhao</creatorcontrib><title>Efficient interfacial charge transfer of 2D/2D porous carbon nitride/bismuth oxychloride step-scheme heterojunction for boosted solar-driven CO2 reduction</title><title>Journal of colloid and interface science</title><description>[Display omitted] Heterostructured photocatalysts are promising candidates in the photocatalysis field, and the heterojunction plays a vital role in the separation of spatial charge carriers. Here, a heterojunction was fabricated by the in situ growth of ultrathin Bi12O17Cl2 (BOC) nanosheets (NSs) onto porous g-C3N4 (PGCN) NSs. The NSs’ nanostructure can effectively shorten the diffusion path of charge carriers and thus promote interfacial charge migration, which can improve the surface photocatalytic activity. The X-ray photoelectron spectroscopy spectra and the experimental measured Fermi level (EF) indicate that electrons transfer from PGCN to BOC, which leads to the formation of the built-in electric field with the orientation from PGCN to BOC. Driven by the built-in electric field, the charge carriers transfer through a step-like pathway. This step-scheme porous g-C3N4/Bi12O17Cl2 (PGCN/BOC) heterostructured nanocomposite displays an enhanced photocatalytic performance compared with pure BOC and PGCN. This work provides new insight into the novel construction of a step-scheme heterojunction toward photocatalytic CO2 reduction.</description><subject>Bi12O17Cl2</subject><subject>Build-in electric field</subject><subject>g-C3N4</subject><subject>Photocatalytic CO2 reduction</subject><subject>Step-scheme heterojunction</subject><issn>0021-9797</issn><issn>1095-7103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kc1u2zAQhIkiBeqkeYGceMxFNn_0C_RS2E5bwIAv7ZmgqGVEQRadJWXUr9KnDVX33NMCg_kGmB1Cnjhbc8bLzbAejAtrwcQirFlefyArzpoiqziTd2TFmOBZUzXVJ3IfwsAY50XRrMifvbXOOJgidVMEtNo4PVLTa3wFGlFPwQJSb6nYbcSOnj36OVCjsfUTnVxE18GmdeE0x57631fTj37RaIhwzoLp4QS0hxTth3ky0SXMeqSt98nR0eBHjVmH7gIT3R4FRejmv7bP5KPVY4DHf_eB_HrZ_9x-zw7Hbz-2Xw-ZkVLGzJQgQOuCcdnJshIV52Wdd4JzEKasgMnC2jyvy1rWBbC6atvElXmjZSVbC_KBPN9yz-jfZghRnVwwMI56gtRVibwocy5kIZJV3KwGfQgIVp3RnTReFWdqGUINahlCLUMsWhoiQV9uEKQSFweowvJwA51DMFF13v0PfwfdnJQQ</recordid><startdate>202103</startdate><enddate>202103</enddate><creator>Huo, Yao</creator><creator>Zhang, Jinfeng</creator><creator>Wang, Zhongliao</creator><creator>Dai, Kai</creator><creator>Pan, Chengsi</creator><creator>Liang, Changhao</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202103</creationdate><title>Efficient interfacial charge transfer of 2D/2D porous carbon nitride/bismuth oxychloride step-scheme heterojunction for boosted solar-driven CO2 reduction</title><author>Huo, Yao ; Zhang, Jinfeng ; Wang, Zhongliao ; Dai, Kai ; Pan, Chengsi ; Liang, Changhao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-c6e2eaa5013d3672711684d211e2c67e035ff44868385e087bb333649a373bfe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bi12O17Cl2</topic><topic>Build-in electric field</topic><topic>g-C3N4</topic><topic>Photocatalytic CO2 reduction</topic><topic>Step-scheme heterojunction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huo, Yao</creatorcontrib><creatorcontrib>Zhang, Jinfeng</creatorcontrib><creatorcontrib>Wang, Zhongliao</creatorcontrib><creatorcontrib>Dai, Kai</creatorcontrib><creatorcontrib>Pan, Chengsi</creatorcontrib><creatorcontrib>Liang, Changhao</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of colloid and interface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huo, Yao</au><au>Zhang, Jinfeng</au><au>Wang, Zhongliao</au><au>Dai, Kai</au><au>Pan, Chengsi</au><au>Liang, Changhao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient interfacial charge transfer of 2D/2D porous carbon nitride/bismuth oxychloride step-scheme heterojunction for boosted solar-driven CO2 reduction</atitle><jtitle>Journal of colloid and interface science</jtitle><date>2021-03</date><risdate>2021</risdate><volume>585</volume><spage>684</spage><epage>693</epage><pages>684-693</pages><issn>0021-9797</issn><eissn>1095-7103</eissn><abstract>[Display omitted] Heterostructured photocatalysts are promising candidates in the photocatalysis field, and the heterojunction plays a vital role in the separation of spatial charge carriers. Here, a heterojunction was fabricated by the in situ growth of ultrathin Bi12O17Cl2 (BOC) nanosheets (NSs) onto porous g-C3N4 (PGCN) NSs. The NSs’ nanostructure can effectively shorten the diffusion path of charge carriers and thus promote interfacial charge migration, which can improve the surface photocatalytic activity. The X-ray photoelectron spectroscopy spectra and the experimental measured Fermi level (EF) indicate that electrons transfer from PGCN to BOC, which leads to the formation of the built-in electric field with the orientation from PGCN to BOC. Driven by the built-in electric field, the charge carriers transfer through a step-like pathway. This step-scheme porous g-C3N4/Bi12O17Cl2 (PGCN/BOC) heterostructured nanocomposite displays an enhanced photocatalytic performance compared with pure BOC and PGCN. This work provides new insight into the novel construction of a step-scheme heterojunction toward photocatalytic CO2 reduction.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jcis.2020.10.048</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9797
ispartof Journal of colloid and interface science, 2021-03, Vol.585, p.684-693
issn 0021-9797
1095-7103
language eng
recordid cdi_proquest_miscellaneous_2456412352
source Elsevier ScienceDirect Journals
subjects Bi12O17Cl2
Build-in electric field
g-C3N4
Photocatalytic CO2 reduction
Step-scheme heterojunction
title Efficient interfacial charge transfer of 2D/2D porous carbon nitride/bismuth oxychloride step-scheme heterojunction for boosted solar-driven CO2 reduction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T08%3A40%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20interfacial%20charge%20transfer%20of%202D/2D%20porous%20carbon%20nitride/bismuth%20oxychloride%20step-scheme%20heterojunction%20for%20boosted%20solar-driven%20CO2%20reduction&rft.jtitle=Journal%20of%20colloid%20and%20interface%20science&rft.au=Huo,%20Yao&rft.date=2021-03&rft.volume=585&rft.spage=684&rft.epage=693&rft.pages=684-693&rft.issn=0021-9797&rft.eissn=1095-7103&rft_id=info:doi/10.1016/j.jcis.2020.10.048&rft_dat=%3Cproquest_cross%3E2456412352%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2456412352&rft_id=info:pmid/&rft_els_id=S0021979720313710&rfr_iscdi=true