Two dimensional electrocatalyst engineering via heteroatom doping for electrocatalytic nitrogen reduction
The electrocatalytic N 2 reduction reaction (eNRR) – which can occur under ambient conditions with renewable energy input – became a promising synthetic pathway for ammonia (NH 3 ) and has attracted growing attention in the past few years. Some achievements have been made in the eNRR; however, there...
Gespeichert in:
Veröffentlicht in: | Chemical communications (Cambridge, England) England), 2020-11, Vol.56 (91), p.14154-14162 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14162 |
---|---|
container_issue | 91 |
container_start_page | 14154 |
container_title | Chemical communications (Cambridge, England) |
container_volume | 56 |
creator | Yang, Yuanyuan Wang, Ruguang Yang, Liujing Jiao, Yan Ling, Tao |
description | The electrocatalytic N
2
reduction reaction (eNRR) – which can occur under ambient conditions with renewable energy input – became a promising synthetic pathway for ammonia (NH
3
) and has attracted growing attention in the past few years. Some achievements have been made in the eNRR; however, there remain significant challenges to realize satisfactory NH
3
production. Therefore, the rational design of highly efficient and durable eNRR catalysts with NN bond activating and breaking ability is highly desirable. Two-dimensional (2D) materials have shown great potential in electrocatalysis for energy conversion and storage. Although most 2D materials are inactive toward the eNRR, they can be activated by various modification methods. Heteroatom doping engineering can impact the charge distribution and spin states on catalytic sites, therefore accelerating the dinitrogen adsorption and protonation process. This review summarises the recent research progress of heteroatom-doped 2D materials, including carbon, molybdenum disulfide (MoS
2
) and metal carbides (MXenes), for the eNRR. In addition, some existing opportunities and future research directions in electrocatalytic nitrogen fixation for ammonia production are discussed. |
doi_str_mv | 10.1039/d0cc05635a |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2455842025</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2455842025</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-a77493df2b60c98da7d9eb2921381a8509a992a1ba5d3723531b053a15690cbc3</originalsourceid><addsrcrecordid>eNpdkMtKxDAUhoMoOI5ufIKAGxGquTRtsxzGKwy4GcFdSdPTMUObjEmqzNubqhs9m3PhO__iQ-ickmtKuLxpidZEFFyoAzSjvMgzkVevh9MsZFbyXByjkxC2JBUV1QyZ9afDrRnABuOs6jH0oKN3WkXV70PEYDfGAnhjN_jDKPwGEbxT0Q24dbvp2jn_9ysaja1J6wYs9tCOOqbsU3TUqT7A2W-fo5f7u_XyMVs9PzwtF6tMc1HFTJVlLnnbsaYgWlatKlsJDZOM8oqqShCppGSKNkq0vGRccNoQwRUVhSS60XyOLn9yd969jxBiPZigoe-VBTeGmuVCVDkjTCT04h-6daNPFiaqSEJJspaoqx9KexeCh67eeTMov68pqSfr9S1ZLr-tL_gXVzl2QQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2461030359</pqid></control><display><type>article</type><title>Two dimensional electrocatalyst engineering via heteroatom doping for electrocatalytic nitrogen reduction</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Yang, Yuanyuan ; Wang, Ruguang ; Yang, Liujing ; Jiao, Yan ; Ling, Tao</creator><creatorcontrib>Yang, Yuanyuan ; Wang, Ruguang ; Yang, Liujing ; Jiao, Yan ; Ling, Tao</creatorcontrib><description>The electrocatalytic N
2
reduction reaction (eNRR) – which can occur under ambient conditions with renewable energy input – became a promising synthetic pathway for ammonia (NH
3
) and has attracted growing attention in the past few years. Some achievements have been made in the eNRR; however, there remain significant challenges to realize satisfactory NH
3
production. Therefore, the rational design of highly efficient and durable eNRR catalysts with NN bond activating and breaking ability is highly desirable. Two-dimensional (2D) materials have shown great potential in electrocatalysis for energy conversion and storage. Although most 2D materials are inactive toward the eNRR, they can be activated by various modification methods. Heteroatom doping engineering can impact the charge distribution and spin states on catalytic sites, therefore accelerating the dinitrogen adsorption and protonation process. This review summarises the recent research progress of heteroatom-doped 2D materials, including carbon, molybdenum disulfide (MoS
2
) and metal carbides (MXenes), for the eNRR. In addition, some existing opportunities and future research directions in electrocatalytic nitrogen fixation for ammonia production are discussed.</description><identifier>ISSN: 1359-7345</identifier><identifier>EISSN: 1364-548X</identifier><identifier>DOI: 10.1039/d0cc05635a</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Ammonia ; Charge distribution ; Chemical reduction ; Doping ; Electrocatalysts ; Energy conversion ; Energy storage ; Metal carbides ; Molybdenum disulfide ; Nitrogen ; Nitrogenation ; Protonation ; Two dimensional materials</subject><ispartof>Chemical communications (Cambridge, England), 2020-11, Vol.56 (91), p.14154-14162</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-a77493df2b60c98da7d9eb2921381a8509a992a1ba5d3723531b053a15690cbc3</citedby><cites>FETCH-LOGICAL-c358t-a77493df2b60c98da7d9eb2921381a8509a992a1ba5d3723531b053a15690cbc3</cites><orcidid>0000-0003-1329-4290 ; 0000-0002-8830-4492</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Yang, Yuanyuan</creatorcontrib><creatorcontrib>Wang, Ruguang</creatorcontrib><creatorcontrib>Yang, Liujing</creatorcontrib><creatorcontrib>Jiao, Yan</creatorcontrib><creatorcontrib>Ling, Tao</creatorcontrib><title>Two dimensional electrocatalyst engineering via heteroatom doping for electrocatalytic nitrogen reduction</title><title>Chemical communications (Cambridge, England)</title><description>The electrocatalytic N
2
reduction reaction (eNRR) – which can occur under ambient conditions with renewable energy input – became a promising synthetic pathway for ammonia (NH
3
) and has attracted growing attention in the past few years. Some achievements have been made in the eNRR; however, there remain significant challenges to realize satisfactory NH
3
production. Therefore, the rational design of highly efficient and durable eNRR catalysts with NN bond activating and breaking ability is highly desirable. Two-dimensional (2D) materials have shown great potential in electrocatalysis for energy conversion and storage. Although most 2D materials are inactive toward the eNRR, they can be activated by various modification methods. Heteroatom doping engineering can impact the charge distribution and spin states on catalytic sites, therefore accelerating the dinitrogen adsorption and protonation process. This review summarises the recent research progress of heteroatom-doped 2D materials, including carbon, molybdenum disulfide (MoS
2
) and metal carbides (MXenes), for the eNRR. In addition, some existing opportunities and future research directions in electrocatalytic nitrogen fixation for ammonia production are discussed.</description><subject>Ammonia</subject><subject>Charge distribution</subject><subject>Chemical reduction</subject><subject>Doping</subject><subject>Electrocatalysts</subject><subject>Energy conversion</subject><subject>Energy storage</subject><subject>Metal carbides</subject><subject>Molybdenum disulfide</subject><subject>Nitrogen</subject><subject>Nitrogenation</subject><subject>Protonation</subject><subject>Two dimensional materials</subject><issn>1359-7345</issn><issn>1364-548X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkMtKxDAUhoMoOI5ufIKAGxGquTRtsxzGKwy4GcFdSdPTMUObjEmqzNubqhs9m3PhO__iQ-ickmtKuLxpidZEFFyoAzSjvMgzkVevh9MsZFbyXByjkxC2JBUV1QyZ9afDrRnABuOs6jH0oKN3WkXV70PEYDfGAnhjN_jDKPwGEbxT0Q24dbvp2jn_9ysaja1J6wYs9tCOOqbsU3TUqT7A2W-fo5f7u_XyMVs9PzwtF6tMc1HFTJVlLnnbsaYgWlatKlsJDZOM8oqqShCppGSKNkq0vGRccNoQwRUVhSS60XyOLn9yd969jxBiPZigoe-VBTeGmuVCVDkjTCT04h-6daNPFiaqSEJJspaoqx9KexeCh67eeTMov68pqSfr9S1ZLr-tL_gXVzl2QQ</recordid><startdate>20201125</startdate><enddate>20201125</enddate><creator>Yang, Yuanyuan</creator><creator>Wang, Ruguang</creator><creator>Yang, Liujing</creator><creator>Jiao, Yan</creator><creator>Ling, Tao</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1329-4290</orcidid><orcidid>https://orcid.org/0000-0002-8830-4492</orcidid></search><sort><creationdate>20201125</creationdate><title>Two dimensional electrocatalyst engineering via heteroatom doping for electrocatalytic nitrogen reduction</title><author>Yang, Yuanyuan ; Wang, Ruguang ; Yang, Liujing ; Jiao, Yan ; Ling, Tao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-a77493df2b60c98da7d9eb2921381a8509a992a1ba5d3723531b053a15690cbc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Ammonia</topic><topic>Charge distribution</topic><topic>Chemical reduction</topic><topic>Doping</topic><topic>Electrocatalysts</topic><topic>Energy conversion</topic><topic>Energy storage</topic><topic>Metal carbides</topic><topic>Molybdenum disulfide</topic><topic>Nitrogen</topic><topic>Nitrogenation</topic><topic>Protonation</topic><topic>Two dimensional materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Yuanyuan</creatorcontrib><creatorcontrib>Wang, Ruguang</creatorcontrib><creatorcontrib>Yang, Liujing</creatorcontrib><creatorcontrib>Jiao, Yan</creatorcontrib><creatorcontrib>Ling, Tao</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Chemical communications (Cambridge, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Yuanyuan</au><au>Wang, Ruguang</au><au>Yang, Liujing</au><au>Jiao, Yan</au><au>Ling, Tao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two dimensional electrocatalyst engineering via heteroatom doping for electrocatalytic nitrogen reduction</atitle><jtitle>Chemical communications (Cambridge, England)</jtitle><date>2020-11-25</date><risdate>2020</risdate><volume>56</volume><issue>91</issue><spage>14154</spage><epage>14162</epage><pages>14154-14162</pages><issn>1359-7345</issn><eissn>1364-548X</eissn><abstract>The electrocatalytic N
2
reduction reaction (eNRR) – which can occur under ambient conditions with renewable energy input – became a promising synthetic pathway for ammonia (NH
3
) and has attracted growing attention in the past few years. Some achievements have been made in the eNRR; however, there remain significant challenges to realize satisfactory NH
3
production. Therefore, the rational design of highly efficient and durable eNRR catalysts with NN bond activating and breaking ability is highly desirable. Two-dimensional (2D) materials have shown great potential in electrocatalysis for energy conversion and storage. Although most 2D materials are inactive toward the eNRR, they can be activated by various modification methods. Heteroatom doping engineering can impact the charge distribution and spin states on catalytic sites, therefore accelerating the dinitrogen adsorption and protonation process. This review summarises the recent research progress of heteroatom-doped 2D materials, including carbon, molybdenum disulfide (MoS
2
) and metal carbides (MXenes), for the eNRR. In addition, some existing opportunities and future research directions in electrocatalytic nitrogen fixation for ammonia production are discussed.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d0cc05635a</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1329-4290</orcidid><orcidid>https://orcid.org/0000-0002-8830-4492</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1359-7345 |
ispartof | Chemical communications (Cambridge, England), 2020-11, Vol.56 (91), p.14154-14162 |
issn | 1359-7345 1364-548X |
language | eng |
recordid | cdi_proquest_miscellaneous_2455842025 |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Ammonia Charge distribution Chemical reduction Doping Electrocatalysts Energy conversion Energy storage Metal carbides Molybdenum disulfide Nitrogen Nitrogenation Protonation Two dimensional materials |
title | Two dimensional electrocatalyst engineering via heteroatom doping for electrocatalytic nitrogen reduction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T06%3A57%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two%20dimensional%20electrocatalyst%20engineering%20via%20heteroatom%20doping%20for%20electrocatalytic%20nitrogen%20reduction&rft.jtitle=Chemical%20communications%20(Cambridge,%20England)&rft.au=Yang,%20Yuanyuan&rft.date=2020-11-25&rft.volume=56&rft.issue=91&rft.spage=14154&rft.epage=14162&rft.pages=14154-14162&rft.issn=1359-7345&rft.eissn=1364-548X&rft_id=info:doi/10.1039/d0cc05635a&rft_dat=%3Cproquest_cross%3E2455842025%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2461030359&rft_id=info:pmid/&rfr_iscdi=true |