Insight into the Transition‐Metal Hydroxide Cover Layer for Enhancing Photoelectrochemical Water Oxidation
Depositing a transition‐metal hydroxide (TMH) layer on a photoanode has been demonstrated to enhance photoelectrochemical (PEC) water oxidation. However, the controversial understanding for the improvement origin remains a key challenge to unlock the PEC performance. Herein, by taking BiVO4/iron‐nic...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2021-02, Vol.60 (7), p.3504-3509 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3509 |
---|---|
container_issue | 7 |
container_start_page | 3504 |
container_title | Angewandte Chemie International Edition |
container_volume | 60 |
creator | Ning, Xingming Du, Peiyao Han, Zhengang Chen, Jing Lu, Xiaoquan |
description | Depositing a transition‐metal hydroxide (TMH) layer on a photoanode has been demonstrated to enhance photoelectrochemical (PEC) water oxidation. However, the controversial understanding for the improvement origin remains a key challenge to unlock the PEC performance. Herein, by taking BiVO4/iron‐nickel hydroxide (BVO/FxN4−x‐H) as a prototype, we decoupled the PEC process into two processes including charge transfer and surface catalytic reaction. The kinetic information at the BVO/FxN4−x‐H and FxN4−x‐H/electrolyte interfaces was systematically evaluated by employing scanning photoelectrochemical microscopy (SPECM), intensity modulated photocurrent spectroscopy (IMPS) and oxygen evolution reaction (OER) model. It was found that FxN4−x‐H acts as a charge transporter rather than a sole electrocatalyst. PEC performance improvement is mainly ascribed to the efficient suppression of charge recombination by fast hole transfer kinetics at BVO/FxN4−x‐H interface.
By taking BVO/FxN4−x‐H as a model, we directly track the behavior of hole transfer. Through a system dynamics analysis of the key charge transfer and surface catalytic reaction at the different interfaces, we clarify that FxN4−x‐H here acts as an interfacial charge transporter. PEC performance is mainly enhanced by efficiently suppressing BVO/FxN4−x‐H interface charge recombination. |
doi_str_mv | 10.1002/anie.202013014 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2454654008</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2454654008</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4104-5d22f743e0899c9904dbe6f31175bcb2cca1d2194da3ba5247a03aa2d34358d53</originalsourceid><addsrcrecordid>eNqFkc1OGzEURq2KqlDKlmU1Ehs2E67_MjNLFIUSKYUuqFiOPPYdxmhiU9sBsusj9Bn7JHUUClI33fhaV-c7svwRckxhQgHYmXIWJwwYUA5UvCMHVDJa8qrie_kuOC-rWtJ98jHG-8zXNUw_kH3OKUiYigMyLly0d0MqrEu-SAMWN0HlVbLe_f756ysmNRaXGxP8szVYzPwjhmKpNvnsfSjmblBOW3dXfBt88jiiTsHrAVdW5-CtShm8zlG1FX4i73s1Rjx6mYfk-8X8ZnZZLq-_LGbny1ILCqKUhrG-EhyhbhrdNCBMh9OeU1rJTndMa0UNo40windKMlEp4EoxwwWXtZH8kJzuvA_B_1hjTO3KRo3jqBz6dWyZkGIqBUCd0ZN_0Hu_Di6_LlN1RSsQosnUZEfp4GMM2LcPwa5U2LQU2m0P7baH9rWHHPj8ol13KzSv-N-Pz0CzA57siJv_6Nrzq8X8Tf4H6Q6Vbw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2487170449</pqid></control><display><type>article</type><title>Insight into the Transition‐Metal Hydroxide Cover Layer for Enhancing Photoelectrochemical Water Oxidation</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ning, Xingming ; Du, Peiyao ; Han, Zhengang ; Chen, Jing ; Lu, Xiaoquan</creator><creatorcontrib>Ning, Xingming ; Du, Peiyao ; Han, Zhengang ; Chen, Jing ; Lu, Xiaoquan</creatorcontrib><description>Depositing a transition‐metal hydroxide (TMH) layer on a photoanode has been demonstrated to enhance photoelectrochemical (PEC) water oxidation. However, the controversial understanding for the improvement origin remains a key challenge to unlock the PEC performance. Herein, by taking BiVO4/iron‐nickel hydroxide (BVO/FxN4−x‐H) as a prototype, we decoupled the PEC process into two processes including charge transfer and surface catalytic reaction. The kinetic information at the BVO/FxN4−x‐H and FxN4−x‐H/electrolyte interfaces was systematically evaluated by employing scanning photoelectrochemical microscopy (SPECM), intensity modulated photocurrent spectroscopy (IMPS) and oxygen evolution reaction (OER) model. It was found that FxN4−x‐H acts as a charge transporter rather than a sole electrocatalyst. PEC performance improvement is mainly ascribed to the efficient suppression of charge recombination by fast hole transfer kinetics at BVO/FxN4−x‐H interface.
By taking BVO/FxN4−x‐H as a model, we directly track the behavior of hole transfer. Through a system dynamics analysis of the key charge transfer and surface catalytic reaction at the different interfaces, we clarify that FxN4−x‐H here acts as an interfacial charge transporter. PEC performance is mainly enhanced by efficiently suppressing BVO/FxN4−x‐H interface charge recombination.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202013014</identifier><identifier>PMID: 33105064</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Charge transfer ; Electrocatalysts ; Interfaces ; Metal hydroxides ; Nickel ; Oxidation ; Oxygen evolution reactions ; Photoelectric effect ; Photoelectric emission ; photoelectrochemistry ; Recombination ; Spectroscopy ; surface catalysis ; Surface charge ; transition-metal hydroxides</subject><ispartof>Angewandte Chemie International Edition, 2021-02, Vol.60 (7), p.3504-3509</ispartof><rights>2020 Wiley‐VCH GmbH</rights><rights>2020 Wiley-VCH GmbH.</rights><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4104-5d22f743e0899c9904dbe6f31175bcb2cca1d2194da3ba5247a03aa2d34358d53</citedby><cites>FETCH-LOGICAL-c4104-5d22f743e0899c9904dbe6f31175bcb2cca1d2194da3ba5247a03aa2d34358d53</cites><orcidid>0000-0003-2375-668X ; 0000-0002-0976-0829</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202013014$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202013014$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33105064$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ning, Xingming</creatorcontrib><creatorcontrib>Du, Peiyao</creatorcontrib><creatorcontrib>Han, Zhengang</creatorcontrib><creatorcontrib>Chen, Jing</creatorcontrib><creatorcontrib>Lu, Xiaoquan</creatorcontrib><title>Insight into the Transition‐Metal Hydroxide Cover Layer for Enhancing Photoelectrochemical Water Oxidation</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>Depositing a transition‐metal hydroxide (TMH) layer on a photoanode has been demonstrated to enhance photoelectrochemical (PEC) water oxidation. However, the controversial understanding for the improvement origin remains a key challenge to unlock the PEC performance. Herein, by taking BiVO4/iron‐nickel hydroxide (BVO/FxN4−x‐H) as a prototype, we decoupled the PEC process into two processes including charge transfer and surface catalytic reaction. The kinetic information at the BVO/FxN4−x‐H and FxN4−x‐H/electrolyte interfaces was systematically evaluated by employing scanning photoelectrochemical microscopy (SPECM), intensity modulated photocurrent spectroscopy (IMPS) and oxygen evolution reaction (OER) model. It was found that FxN4−x‐H acts as a charge transporter rather than a sole electrocatalyst. PEC performance improvement is mainly ascribed to the efficient suppression of charge recombination by fast hole transfer kinetics at BVO/FxN4−x‐H interface.
By taking BVO/FxN4−x‐H as a model, we directly track the behavior of hole transfer. Through a system dynamics analysis of the key charge transfer and surface catalytic reaction at the different interfaces, we clarify that FxN4−x‐H here acts as an interfacial charge transporter. PEC performance is mainly enhanced by efficiently suppressing BVO/FxN4−x‐H interface charge recombination.</description><subject>Charge transfer</subject><subject>Electrocatalysts</subject><subject>Interfaces</subject><subject>Metal hydroxides</subject><subject>Nickel</subject><subject>Oxidation</subject><subject>Oxygen evolution reactions</subject><subject>Photoelectric effect</subject><subject>Photoelectric emission</subject><subject>photoelectrochemistry</subject><subject>Recombination</subject><subject>Spectroscopy</subject><subject>surface catalysis</subject><subject>Surface charge</subject><subject>transition-metal hydroxides</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkc1OGzEURq2KqlDKlmU1Ehs2E67_MjNLFIUSKYUuqFiOPPYdxmhiU9sBsusj9Bn7JHUUClI33fhaV-c7svwRckxhQgHYmXIWJwwYUA5UvCMHVDJa8qrie_kuOC-rWtJ98jHG-8zXNUw_kH3OKUiYigMyLly0d0MqrEu-SAMWN0HlVbLe_f756ysmNRaXGxP8szVYzPwjhmKpNvnsfSjmblBOW3dXfBt88jiiTsHrAVdW5-CtShm8zlG1FX4i73s1Rjx6mYfk-8X8ZnZZLq-_LGbny1ILCqKUhrG-EhyhbhrdNCBMh9OeU1rJTndMa0UNo40windKMlEp4EoxwwWXtZH8kJzuvA_B_1hjTO3KRo3jqBz6dWyZkGIqBUCd0ZN_0Hu_Di6_LlN1RSsQosnUZEfp4GMM2LcPwa5U2LQU2m0P7baH9rWHHPj8ol13KzSv-N-Pz0CzA57siJv_6Nrzq8X8Tf4H6Q6Vbw</recordid><startdate>20210215</startdate><enddate>20210215</enddate><creator>Ning, Xingming</creator><creator>Du, Peiyao</creator><creator>Han, Zhengang</creator><creator>Chen, Jing</creator><creator>Lu, Xiaoquan</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2375-668X</orcidid><orcidid>https://orcid.org/0000-0002-0976-0829</orcidid></search><sort><creationdate>20210215</creationdate><title>Insight into the Transition‐Metal Hydroxide Cover Layer for Enhancing Photoelectrochemical Water Oxidation</title><author>Ning, Xingming ; Du, Peiyao ; Han, Zhengang ; Chen, Jing ; Lu, Xiaoquan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4104-5d22f743e0899c9904dbe6f31175bcb2cca1d2194da3ba5247a03aa2d34358d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Charge transfer</topic><topic>Electrocatalysts</topic><topic>Interfaces</topic><topic>Metal hydroxides</topic><topic>Nickel</topic><topic>Oxidation</topic><topic>Oxygen evolution reactions</topic><topic>Photoelectric effect</topic><topic>Photoelectric emission</topic><topic>photoelectrochemistry</topic><topic>Recombination</topic><topic>Spectroscopy</topic><topic>surface catalysis</topic><topic>Surface charge</topic><topic>transition-metal hydroxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ning, Xingming</creatorcontrib><creatorcontrib>Du, Peiyao</creatorcontrib><creatorcontrib>Han, Zhengang</creatorcontrib><creatorcontrib>Chen, Jing</creatorcontrib><creatorcontrib>Lu, Xiaoquan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ning, Xingming</au><au>Du, Peiyao</au><au>Han, Zhengang</au><au>Chen, Jing</au><au>Lu, Xiaoquan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Insight into the Transition‐Metal Hydroxide Cover Layer for Enhancing Photoelectrochemical Water Oxidation</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2021-02-15</date><risdate>2021</risdate><volume>60</volume><issue>7</issue><spage>3504</spage><epage>3509</epage><pages>3504-3509</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>Depositing a transition‐metal hydroxide (TMH) layer on a photoanode has been demonstrated to enhance photoelectrochemical (PEC) water oxidation. However, the controversial understanding for the improvement origin remains a key challenge to unlock the PEC performance. Herein, by taking BiVO4/iron‐nickel hydroxide (BVO/FxN4−x‐H) as a prototype, we decoupled the PEC process into two processes including charge transfer and surface catalytic reaction. The kinetic information at the BVO/FxN4−x‐H and FxN4−x‐H/electrolyte interfaces was systematically evaluated by employing scanning photoelectrochemical microscopy (SPECM), intensity modulated photocurrent spectroscopy (IMPS) and oxygen evolution reaction (OER) model. It was found that FxN4−x‐H acts as a charge transporter rather than a sole electrocatalyst. PEC performance improvement is mainly ascribed to the efficient suppression of charge recombination by fast hole transfer kinetics at BVO/FxN4−x‐H interface.
By taking BVO/FxN4−x‐H as a model, we directly track the behavior of hole transfer. Through a system dynamics analysis of the key charge transfer and surface catalytic reaction at the different interfaces, we clarify that FxN4−x‐H here acts as an interfacial charge transporter. PEC performance is mainly enhanced by efficiently suppressing BVO/FxN4−x‐H interface charge recombination.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>33105064</pmid><doi>10.1002/anie.202013014</doi><tpages>6</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0003-2375-668X</orcidid><orcidid>https://orcid.org/0000-0002-0976-0829</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie International Edition, 2021-02, Vol.60 (7), p.3504-3509 |
issn | 1433-7851 1521-3773 |
language | eng |
recordid | cdi_proquest_miscellaneous_2454654008 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Charge transfer Electrocatalysts Interfaces Metal hydroxides Nickel Oxidation Oxygen evolution reactions Photoelectric effect Photoelectric emission photoelectrochemistry Recombination Spectroscopy surface catalysis Surface charge transition-metal hydroxides |
title | Insight into the Transition‐Metal Hydroxide Cover Layer for Enhancing Photoelectrochemical Water Oxidation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T21%3A47%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Insight%20into%20the%20Transition%E2%80%90Metal%20Hydroxide%20Cover%20Layer%20for%20Enhancing%20Photoelectrochemical%20Water%20Oxidation&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Ning,%20Xingming&rft.date=2021-02-15&rft.volume=60&rft.issue=7&rft.spage=3504&rft.epage=3509&rft.pages=3504-3509&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202013014&rft_dat=%3Cproquest_cross%3E2454654008%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2487170449&rft_id=info:pmid/33105064&rfr_iscdi=true |