Insight into the Transition‐Metal Hydroxide Cover Layer for Enhancing Photoelectrochemical Water Oxidation

Depositing a transition‐metal hydroxide (TMH) layer on a photoanode has been demonstrated to enhance photoelectrochemical (PEC) water oxidation. However, the controversial understanding for the improvement origin remains a key challenge to unlock the PEC performance. Herein, by taking BiVO4/iron‐nic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2021-02, Vol.60 (7), p.3504-3509
Hauptverfasser: Ning, Xingming, Du, Peiyao, Han, Zhengang, Chen, Jing, Lu, Xiaoquan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3509
container_issue 7
container_start_page 3504
container_title Angewandte Chemie International Edition
container_volume 60
creator Ning, Xingming
Du, Peiyao
Han, Zhengang
Chen, Jing
Lu, Xiaoquan
description Depositing a transition‐metal hydroxide (TMH) layer on a photoanode has been demonstrated to enhance photoelectrochemical (PEC) water oxidation. However, the controversial understanding for the improvement origin remains a key challenge to unlock the PEC performance. Herein, by taking BiVO4/iron‐nickel hydroxide (BVO/FxN4−x‐H) as a prototype, we decoupled the PEC process into two processes including charge transfer and surface catalytic reaction. The kinetic information at the BVO/FxN4−x‐H and FxN4−x‐H/electrolyte interfaces was systematically evaluated by employing scanning photoelectrochemical microscopy (SPECM), intensity modulated photocurrent spectroscopy (IMPS) and oxygen evolution reaction (OER) model. It was found that FxN4−x‐H acts as a charge transporter rather than a sole electrocatalyst. PEC performance improvement is mainly ascribed to the efficient suppression of charge recombination by fast hole transfer kinetics at BVO/FxN4−x‐H interface. By taking BVO/FxN4−x‐H as a model, we directly track the behavior of hole transfer. Through a system dynamics analysis of the key charge transfer and surface catalytic reaction at the different interfaces, we clarify that FxN4−x‐H here acts as an interfacial charge transporter. PEC performance is mainly enhanced by efficiently suppressing BVO/FxN4−x‐H interface charge recombination.
doi_str_mv 10.1002/anie.202013014
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2454654008</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2454654008</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4104-5d22f743e0899c9904dbe6f31175bcb2cca1d2194da3ba5247a03aa2d34358d53</originalsourceid><addsrcrecordid>eNqFkc1OGzEURq2KqlDKlmU1Ehs2E67_MjNLFIUSKYUuqFiOPPYdxmhiU9sBsusj9Bn7JHUUClI33fhaV-c7svwRckxhQgHYmXIWJwwYUA5UvCMHVDJa8qrie_kuOC-rWtJ98jHG-8zXNUw_kH3OKUiYigMyLly0d0MqrEu-SAMWN0HlVbLe_f756ysmNRaXGxP8szVYzPwjhmKpNvnsfSjmblBOW3dXfBt88jiiTsHrAVdW5-CtShm8zlG1FX4i73s1Rjx6mYfk-8X8ZnZZLq-_LGbny1ILCqKUhrG-EhyhbhrdNCBMh9OeU1rJTndMa0UNo40windKMlEp4EoxwwWXtZH8kJzuvA_B_1hjTO3KRo3jqBz6dWyZkGIqBUCd0ZN_0Hu_Di6_LlN1RSsQosnUZEfp4GMM2LcPwa5U2LQU2m0P7baH9rWHHPj8ol13KzSv-N-Pz0CzA57siJv_6Nrzq8X8Tf4H6Q6Vbw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2487170449</pqid></control><display><type>article</type><title>Insight into the Transition‐Metal Hydroxide Cover Layer for Enhancing Photoelectrochemical Water Oxidation</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ning, Xingming ; Du, Peiyao ; Han, Zhengang ; Chen, Jing ; Lu, Xiaoquan</creator><creatorcontrib>Ning, Xingming ; Du, Peiyao ; Han, Zhengang ; Chen, Jing ; Lu, Xiaoquan</creatorcontrib><description>Depositing a transition‐metal hydroxide (TMH) layer on a photoanode has been demonstrated to enhance photoelectrochemical (PEC) water oxidation. However, the controversial understanding for the improvement origin remains a key challenge to unlock the PEC performance. Herein, by taking BiVO4/iron‐nickel hydroxide (BVO/FxN4−x‐H) as a prototype, we decoupled the PEC process into two processes including charge transfer and surface catalytic reaction. The kinetic information at the BVO/FxN4−x‐H and FxN4−x‐H/electrolyte interfaces was systematically evaluated by employing scanning photoelectrochemical microscopy (SPECM), intensity modulated photocurrent spectroscopy (IMPS) and oxygen evolution reaction (OER) model. It was found that FxN4−x‐H acts as a charge transporter rather than a sole electrocatalyst. PEC performance improvement is mainly ascribed to the efficient suppression of charge recombination by fast hole transfer kinetics at BVO/FxN4−x‐H interface. By taking BVO/FxN4−x‐H as a model, we directly track the behavior of hole transfer. Through a system dynamics analysis of the key charge transfer and surface catalytic reaction at the different interfaces, we clarify that FxN4−x‐H here acts as an interfacial charge transporter. PEC performance is mainly enhanced by efficiently suppressing BVO/FxN4−x‐H interface charge recombination.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202013014</identifier><identifier>PMID: 33105064</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Charge transfer ; Electrocatalysts ; Interfaces ; Metal hydroxides ; Nickel ; Oxidation ; Oxygen evolution reactions ; Photoelectric effect ; Photoelectric emission ; photoelectrochemistry ; Recombination ; Spectroscopy ; surface catalysis ; Surface charge ; transition-metal hydroxides</subject><ispartof>Angewandte Chemie International Edition, 2021-02, Vol.60 (7), p.3504-3509</ispartof><rights>2020 Wiley‐VCH GmbH</rights><rights>2020 Wiley-VCH GmbH.</rights><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4104-5d22f743e0899c9904dbe6f31175bcb2cca1d2194da3ba5247a03aa2d34358d53</citedby><cites>FETCH-LOGICAL-c4104-5d22f743e0899c9904dbe6f31175bcb2cca1d2194da3ba5247a03aa2d34358d53</cites><orcidid>0000-0003-2375-668X ; 0000-0002-0976-0829</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202013014$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202013014$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33105064$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ning, Xingming</creatorcontrib><creatorcontrib>Du, Peiyao</creatorcontrib><creatorcontrib>Han, Zhengang</creatorcontrib><creatorcontrib>Chen, Jing</creatorcontrib><creatorcontrib>Lu, Xiaoquan</creatorcontrib><title>Insight into the Transition‐Metal Hydroxide Cover Layer for Enhancing Photoelectrochemical Water Oxidation</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>Depositing a transition‐metal hydroxide (TMH) layer on a photoanode has been demonstrated to enhance photoelectrochemical (PEC) water oxidation. However, the controversial understanding for the improvement origin remains a key challenge to unlock the PEC performance. Herein, by taking BiVO4/iron‐nickel hydroxide (BVO/FxN4−x‐H) as a prototype, we decoupled the PEC process into two processes including charge transfer and surface catalytic reaction. The kinetic information at the BVO/FxN4−x‐H and FxN4−x‐H/electrolyte interfaces was systematically evaluated by employing scanning photoelectrochemical microscopy (SPECM), intensity modulated photocurrent spectroscopy (IMPS) and oxygen evolution reaction (OER) model. It was found that FxN4−x‐H acts as a charge transporter rather than a sole electrocatalyst. PEC performance improvement is mainly ascribed to the efficient suppression of charge recombination by fast hole transfer kinetics at BVO/FxN4−x‐H interface. By taking BVO/FxN4−x‐H as a model, we directly track the behavior of hole transfer. Through a system dynamics analysis of the key charge transfer and surface catalytic reaction at the different interfaces, we clarify that FxN4−x‐H here acts as an interfacial charge transporter. PEC performance is mainly enhanced by efficiently suppressing BVO/FxN4−x‐H interface charge recombination.</description><subject>Charge transfer</subject><subject>Electrocatalysts</subject><subject>Interfaces</subject><subject>Metal hydroxides</subject><subject>Nickel</subject><subject>Oxidation</subject><subject>Oxygen evolution reactions</subject><subject>Photoelectric effect</subject><subject>Photoelectric emission</subject><subject>photoelectrochemistry</subject><subject>Recombination</subject><subject>Spectroscopy</subject><subject>surface catalysis</subject><subject>Surface charge</subject><subject>transition-metal hydroxides</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkc1OGzEURq2KqlDKlmU1Ehs2E67_MjNLFIUSKYUuqFiOPPYdxmhiU9sBsusj9Bn7JHUUClI33fhaV-c7svwRckxhQgHYmXIWJwwYUA5UvCMHVDJa8qrie_kuOC-rWtJ98jHG-8zXNUw_kH3OKUiYigMyLly0d0MqrEu-SAMWN0HlVbLe_f756ysmNRaXGxP8szVYzPwjhmKpNvnsfSjmblBOW3dXfBt88jiiTsHrAVdW5-CtShm8zlG1FX4i73s1Rjx6mYfk-8X8ZnZZLq-_LGbny1ILCqKUhrG-EhyhbhrdNCBMh9OeU1rJTndMa0UNo40windKMlEp4EoxwwWXtZH8kJzuvA_B_1hjTO3KRo3jqBz6dWyZkGIqBUCd0ZN_0Hu_Di6_LlN1RSsQosnUZEfp4GMM2LcPwa5U2LQU2m0P7baH9rWHHPj8ol13KzSv-N-Pz0CzA57siJv_6Nrzq8X8Tf4H6Q6Vbw</recordid><startdate>20210215</startdate><enddate>20210215</enddate><creator>Ning, Xingming</creator><creator>Du, Peiyao</creator><creator>Han, Zhengang</creator><creator>Chen, Jing</creator><creator>Lu, Xiaoquan</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2375-668X</orcidid><orcidid>https://orcid.org/0000-0002-0976-0829</orcidid></search><sort><creationdate>20210215</creationdate><title>Insight into the Transition‐Metal Hydroxide Cover Layer for Enhancing Photoelectrochemical Water Oxidation</title><author>Ning, Xingming ; Du, Peiyao ; Han, Zhengang ; Chen, Jing ; Lu, Xiaoquan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4104-5d22f743e0899c9904dbe6f31175bcb2cca1d2194da3ba5247a03aa2d34358d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Charge transfer</topic><topic>Electrocatalysts</topic><topic>Interfaces</topic><topic>Metal hydroxides</topic><topic>Nickel</topic><topic>Oxidation</topic><topic>Oxygen evolution reactions</topic><topic>Photoelectric effect</topic><topic>Photoelectric emission</topic><topic>photoelectrochemistry</topic><topic>Recombination</topic><topic>Spectroscopy</topic><topic>surface catalysis</topic><topic>Surface charge</topic><topic>transition-metal hydroxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ning, Xingming</creatorcontrib><creatorcontrib>Du, Peiyao</creatorcontrib><creatorcontrib>Han, Zhengang</creatorcontrib><creatorcontrib>Chen, Jing</creatorcontrib><creatorcontrib>Lu, Xiaoquan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ning, Xingming</au><au>Du, Peiyao</au><au>Han, Zhengang</au><au>Chen, Jing</au><au>Lu, Xiaoquan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Insight into the Transition‐Metal Hydroxide Cover Layer for Enhancing Photoelectrochemical Water Oxidation</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2021-02-15</date><risdate>2021</risdate><volume>60</volume><issue>7</issue><spage>3504</spage><epage>3509</epage><pages>3504-3509</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>Depositing a transition‐metal hydroxide (TMH) layer on a photoanode has been demonstrated to enhance photoelectrochemical (PEC) water oxidation. However, the controversial understanding for the improvement origin remains a key challenge to unlock the PEC performance. Herein, by taking BiVO4/iron‐nickel hydroxide (BVO/FxN4−x‐H) as a prototype, we decoupled the PEC process into two processes including charge transfer and surface catalytic reaction. The kinetic information at the BVO/FxN4−x‐H and FxN4−x‐H/electrolyte interfaces was systematically evaluated by employing scanning photoelectrochemical microscopy (SPECM), intensity modulated photocurrent spectroscopy (IMPS) and oxygen evolution reaction (OER) model. It was found that FxN4−x‐H acts as a charge transporter rather than a sole electrocatalyst. PEC performance improvement is mainly ascribed to the efficient suppression of charge recombination by fast hole transfer kinetics at BVO/FxN4−x‐H interface. By taking BVO/FxN4−x‐H as a model, we directly track the behavior of hole transfer. Through a system dynamics analysis of the key charge transfer and surface catalytic reaction at the different interfaces, we clarify that FxN4−x‐H here acts as an interfacial charge transporter. PEC performance is mainly enhanced by efficiently suppressing BVO/FxN4−x‐H interface charge recombination.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>33105064</pmid><doi>10.1002/anie.202013014</doi><tpages>6</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0003-2375-668X</orcidid><orcidid>https://orcid.org/0000-0002-0976-0829</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2021-02, Vol.60 (7), p.3504-3509
issn 1433-7851
1521-3773
language eng
recordid cdi_proquest_miscellaneous_2454654008
source Wiley Online Library Journals Frontfile Complete
subjects Charge transfer
Electrocatalysts
Interfaces
Metal hydroxides
Nickel
Oxidation
Oxygen evolution reactions
Photoelectric effect
Photoelectric emission
photoelectrochemistry
Recombination
Spectroscopy
surface catalysis
Surface charge
transition-metal hydroxides
title Insight into the Transition‐Metal Hydroxide Cover Layer for Enhancing Photoelectrochemical Water Oxidation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T21%3A47%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Insight%20into%20the%20Transition%E2%80%90Metal%20Hydroxide%20Cover%20Layer%20for%20Enhancing%20Photoelectrochemical%20Water%20Oxidation&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Ning,%20Xingming&rft.date=2021-02-15&rft.volume=60&rft.issue=7&rft.spage=3504&rft.epage=3509&rft.pages=3504-3509&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202013014&rft_dat=%3Cproquest_cross%3E2454654008%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2487170449&rft_id=info:pmid/33105064&rfr_iscdi=true