Two homologous LHY pairs negatively control soybean drought tolerance by repressing the abscisic acid responses
• The circadian clock plays essential roles in diverse plant biological processes, such as flowering, phytohormone biosynthesis and abiotic stress responses. The manner in which circadian clock genes regulate drought stress responses in model plants has been well established, but comparatively littl...
Gespeichert in:
Veröffentlicht in: | The New phytologist 2021-03, Vol.229 (5), p.2660-2675 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2675 |
---|---|
container_issue | 5 |
container_start_page | 2660 |
container_title | The New phytologist |
container_volume | 229 |
creator | Wang, Kai Bu, Tiantian Cheng, Qun Dong, Lidong Su, Tong Chen, Zimei Kong, Fanjiang Gong, Zhizhong Liu, Baohui Li, Meina |
description | • The circadian clock plays essential roles in diverse plant biological processes, such as flowering, phytohormone biosynthesis and abiotic stress responses. The manner in which circadian clock genes regulate drought stress responses in model plants has been well established, but comparatively little is known in crop species, such as soybean, a major global crop. This paper reports that the core clock components GmLHYs, the orthologues of CCA1/LHY in Arabidopsis, negatively control drought tolerance in soybean.
• The expressions of four GmLHYs were all induced by drought, and the quadruple mutants of GmLHYs demonstrated significantly improved drought tolerance. Transcriptome profiling suggested that the abscisic acid (ABA) signaling pathway is regulated by GmLHYs to respond to drought tolerance.
• Genetic dissections showed that two homologous pairs of LHY1a and LHY1b redundantly control the drought response. Functional characterization of LHY1a and LHY1b in Arabidopsis and soybean further supported the notion that GmLHYs can maintain cellular homeostasis through the ABA signaling pathway under drought stress.
• This study improves our understanding of the underlying molecular mechanisms on soybean drought tolerance. Furthermore, the two homologues of LHY1a and LHY1b provide alternative targets for genome editing to rapidly generate mutant alleles in elite soybean cultivars to enhance their drought tolerance. |
doi_str_mv | 10.1111/nph.17019 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2454150172</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27001350</jstor_id><sourcerecordid>27001350</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4769-f368c35ef53e6ddc1438c669ada86cb2419f79a132d4d49c34949107e5ffea663</originalsourceid><addsrcrecordid>eNp1kcFu1DAQhi0EokvLoQ_QylIvcNjWjh07PlYVsEgr6KFIcIocZ7LrVdZOPUmrvD2GbXtAYi4z0nzza2Z-Qk45u-Q5rsKwveSacfOKLLhUZllxoV-TBWNFtVRS_Twi7xB3jDFTquItORIiV4apBYl3j5Fu4z72cRMnpOvVLzpYn5AG2NjRP0A_UxfDmGJPMc4N2EDbFKfNdqRj7CHZ4IA2M00wJED0YUPHLVDboPPoHbXOt7mJQwwIeELedLZHeP-Uj8mPz5_ublbL9fcvX2-u10sndT6gE6pyooSuFKDa1nEpKqeUsa2tlGsKyU2njeWiaGUrjRPSSMOZhrLrwColjsmHg-6Q4v0EONZ7jw763gbId9aFLCUvGddFRi_-QXdxSiFvl6mqlIxzrTP18UC5FBETdPWQ_N6mueas_uNCnV2o_7qQ2fMnxanZQ_tCPr89A1cH4NH3MP9fqf52u3qWPDtM7HCM6WWi0IxxUTLxGxY7m9Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2485401177</pqid></control><display><type>article</type><title>Two homologous LHY pairs negatively control soybean drought tolerance by repressing the abscisic acid responses</title><source>MEDLINE</source><source>Wiley Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library All Journals</source><creator>Wang, Kai ; Bu, Tiantian ; Cheng, Qun ; Dong, Lidong ; Su, Tong ; Chen, Zimei ; Kong, Fanjiang ; Gong, Zhizhong ; Liu, Baohui ; Li, Meina</creator><creatorcontrib>Wang, Kai ; Bu, Tiantian ; Cheng, Qun ; Dong, Lidong ; Su, Tong ; Chen, Zimei ; Kong, Fanjiang ; Gong, Zhizhong ; Liu, Baohui ; Li, Meina</creatorcontrib><description>• The circadian clock plays essential roles in diverse plant biological processes, such as flowering, phytohormone biosynthesis and abiotic stress responses. The manner in which circadian clock genes regulate drought stress responses in model plants has been well established, but comparatively little is known in crop species, such as soybean, a major global crop. This paper reports that the core clock components GmLHYs, the orthologues of CCA1/LHY in Arabidopsis, negatively control drought tolerance in soybean.
• The expressions of four GmLHYs were all induced by drought, and the quadruple mutants of GmLHYs demonstrated significantly improved drought tolerance. Transcriptome profiling suggested that the abscisic acid (ABA) signaling pathway is regulated by GmLHYs to respond to drought tolerance.
• Genetic dissections showed that two homologous pairs of LHY1a and LHY1b redundantly control the drought response. Functional characterization of LHY1a and LHY1b in Arabidopsis and soybean further supported the notion that GmLHYs can maintain cellular homeostasis through the ABA signaling pathway under drought stress.
• This study improves our understanding of the underlying molecular mechanisms on soybean drought tolerance. Furthermore, the two homologues of LHY1a and LHY1b provide alternative targets for genome editing to rapidly generate mutant alleles in elite soybean cultivars to enhance their drought tolerance.</description><identifier>ISSN: 0028-646X</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/nph.17019</identifier><identifier>PMID: 33095906</identifier><language>eng</language><publisher>England: Wiley</publisher><subject>Abscisic Acid ; agronomic trait ; Alleles ; Arabidopsis ; Biological activity ; Biological clocks ; Biosynthesis ; Cellular stress response ; Circadian rhythm ; Circadian rhythms ; Control ; Cultivars ; DNA-Binding Proteins - metabolism ; Drought ; Drought resistance ; drought tolerance ; Droughts ; Flowering ; Gene expression ; Gene Expression Regulation, Plant ; Genome editing ; Genomes ; Glycine max - genetics ; Glycine max - metabolism ; Homeostasis ; Homology ; LATE ELONGATED HYPOCOTYL (LHY) ; molecular breeding ; Molecular modelling ; Mutants ; Plant growth substances ; Plant hormones ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Signal transduction ; Signaling ; soybean ; Soybeans ; Transcription Factors - metabolism ; Transcriptomes</subject><ispartof>The New phytologist, 2021-03, Vol.229 (5), p.2660-2675</ispartof><rights>2020 The Authors © 2020 New Phytologist Foundation</rights><rights>2020 The Authors New Phytologist © 2020 New Phytologist Foundation</rights><rights>2020 The Authors New Phytologist © 2020 New Phytologist Foundation.</rights><rights>Copyright © 2021 New Phytologist Trust</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4769-f368c35ef53e6ddc1438c669ada86cb2419f79a132d4d49c34949107e5ffea663</citedby><cites>FETCH-LOGICAL-c4769-f368c35ef53e6ddc1438c669ada86cb2419f79a132d4d49c34949107e5ffea663</cites><orcidid>0000-0001-9859-8837 ; 0000-0001-6551-6014 ; 0000-0002-8085-1678 ; 0000-0001-6294-7193 ; 0000-0002-7788-4268 ; 0000-0001-5595-2058 ; 0000-0002-9387-9258 ; 0000-0003-3491-8293 ; 0000-0001-7138-1478</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fnph.17019$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fnph.17019$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,1432,27923,27924,45573,45574,46408,46832</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33095906$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Kai</creatorcontrib><creatorcontrib>Bu, Tiantian</creatorcontrib><creatorcontrib>Cheng, Qun</creatorcontrib><creatorcontrib>Dong, Lidong</creatorcontrib><creatorcontrib>Su, Tong</creatorcontrib><creatorcontrib>Chen, Zimei</creatorcontrib><creatorcontrib>Kong, Fanjiang</creatorcontrib><creatorcontrib>Gong, Zhizhong</creatorcontrib><creatorcontrib>Liu, Baohui</creatorcontrib><creatorcontrib>Li, Meina</creatorcontrib><title>Two homologous LHY pairs negatively control soybean drought tolerance by repressing the abscisic acid responses</title><title>The New phytologist</title><addtitle>New Phytol</addtitle><description>• The circadian clock plays essential roles in diverse plant biological processes, such as flowering, phytohormone biosynthesis and abiotic stress responses. The manner in which circadian clock genes regulate drought stress responses in model plants has been well established, but comparatively little is known in crop species, such as soybean, a major global crop. This paper reports that the core clock components GmLHYs, the orthologues of CCA1/LHY in Arabidopsis, negatively control drought tolerance in soybean.
• The expressions of four GmLHYs were all induced by drought, and the quadruple mutants of GmLHYs demonstrated significantly improved drought tolerance. Transcriptome profiling suggested that the abscisic acid (ABA) signaling pathway is regulated by GmLHYs to respond to drought tolerance.
• Genetic dissections showed that two homologous pairs of LHY1a and LHY1b redundantly control the drought response. Functional characterization of LHY1a and LHY1b in Arabidopsis and soybean further supported the notion that GmLHYs can maintain cellular homeostasis through the ABA signaling pathway under drought stress.
• This study improves our understanding of the underlying molecular mechanisms on soybean drought tolerance. Furthermore, the two homologues of LHY1a and LHY1b provide alternative targets for genome editing to rapidly generate mutant alleles in elite soybean cultivars to enhance their drought tolerance.</description><subject>Abscisic Acid</subject><subject>agronomic trait</subject><subject>Alleles</subject><subject>Arabidopsis</subject><subject>Biological activity</subject><subject>Biological clocks</subject><subject>Biosynthesis</subject><subject>Cellular stress response</subject><subject>Circadian rhythm</subject><subject>Circadian rhythms</subject><subject>Control</subject><subject>Cultivars</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Drought</subject><subject>Drought resistance</subject><subject>drought tolerance</subject><subject>Droughts</subject><subject>Flowering</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Plant</subject><subject>Genome editing</subject><subject>Genomes</subject><subject>Glycine max - genetics</subject><subject>Glycine max - metabolism</subject><subject>Homeostasis</subject><subject>Homology</subject><subject>LATE ELONGATED HYPOCOTYL (LHY)</subject><subject>molecular breeding</subject><subject>Molecular modelling</subject><subject>Mutants</subject><subject>Plant growth substances</subject><subject>Plant hormones</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Signal transduction</subject><subject>Signaling</subject><subject>soybean</subject><subject>Soybeans</subject><subject>Transcription Factors - metabolism</subject><subject>Transcriptomes</subject><issn>0028-646X</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kcFu1DAQhi0EokvLoQ_QylIvcNjWjh07PlYVsEgr6KFIcIocZ7LrVdZOPUmrvD2GbXtAYi4z0nzza2Z-Qk45u-Q5rsKwveSacfOKLLhUZllxoV-TBWNFtVRS_Twi7xB3jDFTquItORIiV4apBYl3j5Fu4z72cRMnpOvVLzpYn5AG2NjRP0A_UxfDmGJPMc4N2EDbFKfNdqRj7CHZ4IA2M00wJED0YUPHLVDboPPoHbXOt7mJQwwIeELedLZHeP-Uj8mPz5_ublbL9fcvX2-u10sndT6gE6pyooSuFKDa1nEpKqeUsa2tlGsKyU2njeWiaGUrjRPSSMOZhrLrwColjsmHg-6Q4v0EONZ7jw763gbId9aFLCUvGddFRi_-QXdxSiFvl6mqlIxzrTP18UC5FBETdPWQ_N6mueas_uNCnV2o_7qQ2fMnxanZQ_tCPr89A1cH4NH3MP9fqf52u3qWPDtM7HCM6WWi0IxxUTLxGxY7m9Q</recordid><startdate>202103</startdate><enddate>202103</enddate><creator>Wang, Kai</creator><creator>Bu, Tiantian</creator><creator>Cheng, Qun</creator><creator>Dong, Lidong</creator><creator>Su, Tong</creator><creator>Chen, Zimei</creator><creator>Kong, Fanjiang</creator><creator>Gong, Zhizhong</creator><creator>Liu, Baohui</creator><creator>Li, Meina</creator><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9859-8837</orcidid><orcidid>https://orcid.org/0000-0001-6551-6014</orcidid><orcidid>https://orcid.org/0000-0002-8085-1678</orcidid><orcidid>https://orcid.org/0000-0001-6294-7193</orcidid><orcidid>https://orcid.org/0000-0002-7788-4268</orcidid><orcidid>https://orcid.org/0000-0001-5595-2058</orcidid><orcidid>https://orcid.org/0000-0002-9387-9258</orcidid><orcidid>https://orcid.org/0000-0003-3491-8293</orcidid><orcidid>https://orcid.org/0000-0001-7138-1478</orcidid></search><sort><creationdate>202103</creationdate><title>Two homologous LHY pairs negatively control soybean drought tolerance by repressing the abscisic acid responses</title><author>Wang, Kai ; Bu, Tiantian ; Cheng, Qun ; Dong, Lidong ; Su, Tong ; Chen, Zimei ; Kong, Fanjiang ; Gong, Zhizhong ; Liu, Baohui ; Li, Meina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4769-f368c35ef53e6ddc1438c669ada86cb2419f79a132d4d49c34949107e5ffea663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Abscisic Acid</topic><topic>agronomic trait</topic><topic>Alleles</topic><topic>Arabidopsis</topic><topic>Biological activity</topic><topic>Biological clocks</topic><topic>Biosynthesis</topic><topic>Cellular stress response</topic><topic>Circadian rhythm</topic><topic>Circadian rhythms</topic><topic>Control</topic><topic>Cultivars</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Drought</topic><topic>Drought resistance</topic><topic>drought tolerance</topic><topic>Droughts</topic><topic>Flowering</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Plant</topic><topic>Genome editing</topic><topic>Genomes</topic><topic>Glycine max - genetics</topic><topic>Glycine max - metabolism</topic><topic>Homeostasis</topic><topic>Homology</topic><topic>LATE ELONGATED HYPOCOTYL (LHY)</topic><topic>molecular breeding</topic><topic>Molecular modelling</topic><topic>Mutants</topic><topic>Plant growth substances</topic><topic>Plant hormones</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Signal transduction</topic><topic>Signaling</topic><topic>soybean</topic><topic>Soybeans</topic><topic>Transcription Factors - metabolism</topic><topic>Transcriptomes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Kai</creatorcontrib><creatorcontrib>Bu, Tiantian</creatorcontrib><creatorcontrib>Cheng, Qun</creatorcontrib><creatorcontrib>Dong, Lidong</creatorcontrib><creatorcontrib>Su, Tong</creatorcontrib><creatorcontrib>Chen, Zimei</creatorcontrib><creatorcontrib>Kong, Fanjiang</creatorcontrib><creatorcontrib>Gong, Zhizhong</creatorcontrib><creatorcontrib>Liu, Baohui</creatorcontrib><creatorcontrib>Li, Meina</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Kai</au><au>Bu, Tiantian</au><au>Cheng, Qun</au><au>Dong, Lidong</au><au>Su, Tong</au><au>Chen, Zimei</au><au>Kong, Fanjiang</au><au>Gong, Zhizhong</au><au>Liu, Baohui</au><au>Li, Meina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two homologous LHY pairs negatively control soybean drought tolerance by repressing the abscisic acid responses</atitle><jtitle>The New phytologist</jtitle><addtitle>New Phytol</addtitle><date>2021-03</date><risdate>2021</risdate><volume>229</volume><issue>5</issue><spage>2660</spage><epage>2675</epage><pages>2660-2675</pages><issn>0028-646X</issn><eissn>1469-8137</eissn><abstract>• The circadian clock plays essential roles in diverse plant biological processes, such as flowering, phytohormone biosynthesis and abiotic stress responses. The manner in which circadian clock genes regulate drought stress responses in model plants has been well established, but comparatively little is known in crop species, such as soybean, a major global crop. This paper reports that the core clock components GmLHYs, the orthologues of CCA1/LHY in Arabidopsis, negatively control drought tolerance in soybean.
• The expressions of four GmLHYs were all induced by drought, and the quadruple mutants of GmLHYs demonstrated significantly improved drought tolerance. Transcriptome profiling suggested that the abscisic acid (ABA) signaling pathway is regulated by GmLHYs to respond to drought tolerance.
• Genetic dissections showed that two homologous pairs of LHY1a and LHY1b redundantly control the drought response. Functional characterization of LHY1a and LHY1b in Arabidopsis and soybean further supported the notion that GmLHYs can maintain cellular homeostasis through the ABA signaling pathway under drought stress.
• This study improves our understanding of the underlying molecular mechanisms on soybean drought tolerance. Furthermore, the two homologues of LHY1a and LHY1b provide alternative targets for genome editing to rapidly generate mutant alleles in elite soybean cultivars to enhance their drought tolerance.</abstract><cop>England</cop><pub>Wiley</pub><pmid>33095906</pmid><doi>10.1111/nph.17019</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-9859-8837</orcidid><orcidid>https://orcid.org/0000-0001-6551-6014</orcidid><orcidid>https://orcid.org/0000-0002-8085-1678</orcidid><orcidid>https://orcid.org/0000-0001-6294-7193</orcidid><orcidid>https://orcid.org/0000-0002-7788-4268</orcidid><orcidid>https://orcid.org/0000-0001-5595-2058</orcidid><orcidid>https://orcid.org/0000-0002-9387-9258</orcidid><orcidid>https://orcid.org/0000-0003-3491-8293</orcidid><orcidid>https://orcid.org/0000-0001-7138-1478</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-646X |
ispartof | The New phytologist, 2021-03, Vol.229 (5), p.2660-2675 |
issn | 0028-646X 1469-8137 |
language | eng |
recordid | cdi_proquest_miscellaneous_2454150172 |
source | MEDLINE; Wiley Free Content; EZB-FREE-00999 freely available EZB journals; Wiley Online Library All Journals |
subjects | Abscisic Acid agronomic trait Alleles Arabidopsis Biological activity Biological clocks Biosynthesis Cellular stress response Circadian rhythm Circadian rhythms Control Cultivars DNA-Binding Proteins - metabolism Drought Drought resistance drought tolerance Droughts Flowering Gene expression Gene Expression Regulation, Plant Genome editing Genomes Glycine max - genetics Glycine max - metabolism Homeostasis Homology LATE ELONGATED HYPOCOTYL (LHY) molecular breeding Molecular modelling Mutants Plant growth substances Plant hormones Plant Proteins - genetics Plant Proteins - metabolism Signal transduction Signaling soybean Soybeans Transcription Factors - metabolism Transcriptomes |
title | Two homologous LHY pairs negatively control soybean drought tolerance by repressing the abscisic acid responses |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T14%3A20%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two%20homologous%20LHY%20pairs%20negatively%20control%20soybean%20drought%20tolerance%20by%20repressing%20the%20abscisic%20acid%20responses&rft.jtitle=The%20New%20phytologist&rft.au=Wang,%20Kai&rft.date=2021-03&rft.volume=229&rft.issue=5&rft.spage=2660&rft.epage=2675&rft.pages=2660-2675&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111/nph.17019&rft_dat=%3Cjstor_proqu%3E27001350%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2485401177&rft_id=info:pmid/33095906&rft_jstor_id=27001350&rfr_iscdi=true |