Two homologous LHY pairs negatively control soybean drought tolerance by repressing the abscisic acid responses

• The circadian clock plays essential roles in diverse plant biological processes, such as flowering, phytohormone biosynthesis and abiotic stress responses. The manner in which circadian clock genes regulate drought stress responses in model plants has been well established, but comparatively littl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The New phytologist 2021-03, Vol.229 (5), p.2660-2675
Hauptverfasser: Wang, Kai, Bu, Tiantian, Cheng, Qun, Dong, Lidong, Su, Tong, Chen, Zimei, Kong, Fanjiang, Gong, Zhizhong, Liu, Baohui, Li, Meina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2675
container_issue 5
container_start_page 2660
container_title The New phytologist
container_volume 229
creator Wang, Kai
Bu, Tiantian
Cheng, Qun
Dong, Lidong
Su, Tong
Chen, Zimei
Kong, Fanjiang
Gong, Zhizhong
Liu, Baohui
Li, Meina
description • The circadian clock plays essential roles in diverse plant biological processes, such as flowering, phytohormone biosynthesis and abiotic stress responses. The manner in which circadian clock genes regulate drought stress responses in model plants has been well established, but comparatively little is known in crop species, such as soybean, a major global crop. This paper reports that the core clock components GmLHYs, the orthologues of CCA1/LHY in Arabidopsis, negatively control drought tolerance in soybean. • The expressions of four GmLHYs were all induced by drought, and the quadruple mutants of GmLHYs demonstrated significantly improved drought tolerance. Transcriptome profiling suggested that the abscisic acid (ABA) signaling pathway is regulated by GmLHYs to respond to drought tolerance. • Genetic dissections showed that two homologous pairs of LHY1a and LHY1b redundantly control the drought response. Functional characterization of LHY1a and LHY1b in Arabidopsis and soybean further supported the notion that GmLHYs can maintain cellular homeostasis through the ABA signaling pathway under drought stress. • This study improves our understanding of the underlying molecular mechanisms on soybean drought tolerance. Furthermore, the two homologues of LHY1a and LHY1b provide alternative targets for genome editing to rapidly generate mutant alleles in elite soybean cultivars to enhance their drought tolerance.
doi_str_mv 10.1111/nph.17019
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2454150172</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27001350</jstor_id><sourcerecordid>27001350</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4769-f368c35ef53e6ddc1438c669ada86cb2419f79a132d4d49c34949107e5ffea663</originalsourceid><addsrcrecordid>eNp1kcFu1DAQhi0EokvLoQ_QylIvcNjWjh07PlYVsEgr6KFIcIocZ7LrVdZOPUmrvD2GbXtAYi4z0nzza2Z-Qk45u-Q5rsKwveSacfOKLLhUZllxoV-TBWNFtVRS_Twi7xB3jDFTquItORIiV4apBYl3j5Fu4z72cRMnpOvVLzpYn5AG2NjRP0A_UxfDmGJPMc4N2EDbFKfNdqRj7CHZ4IA2M00wJED0YUPHLVDboPPoHbXOt7mJQwwIeELedLZHeP-Uj8mPz5_ublbL9fcvX2-u10sndT6gE6pyooSuFKDa1nEpKqeUsa2tlGsKyU2njeWiaGUrjRPSSMOZhrLrwColjsmHg-6Q4v0EONZ7jw763gbId9aFLCUvGddFRi_-QXdxSiFvl6mqlIxzrTP18UC5FBETdPWQ_N6mueas_uNCnV2o_7qQ2fMnxanZQ_tCPr89A1cH4NH3MP9fqf52u3qWPDtM7HCM6WWi0IxxUTLxGxY7m9Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2485401177</pqid></control><display><type>article</type><title>Two homologous LHY pairs negatively control soybean drought tolerance by repressing the abscisic acid responses</title><source>MEDLINE</source><source>Wiley Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library All Journals</source><creator>Wang, Kai ; Bu, Tiantian ; Cheng, Qun ; Dong, Lidong ; Su, Tong ; Chen, Zimei ; Kong, Fanjiang ; Gong, Zhizhong ; Liu, Baohui ; Li, Meina</creator><creatorcontrib>Wang, Kai ; Bu, Tiantian ; Cheng, Qun ; Dong, Lidong ; Su, Tong ; Chen, Zimei ; Kong, Fanjiang ; Gong, Zhizhong ; Liu, Baohui ; Li, Meina</creatorcontrib><description>• The circadian clock plays essential roles in diverse plant biological processes, such as flowering, phytohormone biosynthesis and abiotic stress responses. The manner in which circadian clock genes regulate drought stress responses in model plants has been well established, but comparatively little is known in crop species, such as soybean, a major global crop. This paper reports that the core clock components GmLHYs, the orthologues of CCA1/LHY in Arabidopsis, negatively control drought tolerance in soybean. • The expressions of four GmLHYs were all induced by drought, and the quadruple mutants of GmLHYs demonstrated significantly improved drought tolerance. Transcriptome profiling suggested that the abscisic acid (ABA) signaling pathway is regulated by GmLHYs to respond to drought tolerance. • Genetic dissections showed that two homologous pairs of LHY1a and LHY1b redundantly control the drought response. Functional characterization of LHY1a and LHY1b in Arabidopsis and soybean further supported the notion that GmLHYs can maintain cellular homeostasis through the ABA signaling pathway under drought stress. • This study improves our understanding of the underlying molecular mechanisms on soybean drought tolerance. Furthermore, the two homologues of LHY1a and LHY1b provide alternative targets for genome editing to rapidly generate mutant alleles in elite soybean cultivars to enhance their drought tolerance.</description><identifier>ISSN: 0028-646X</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/nph.17019</identifier><identifier>PMID: 33095906</identifier><language>eng</language><publisher>England: Wiley</publisher><subject>Abscisic Acid ; agronomic trait ; Alleles ; Arabidopsis ; Biological activity ; Biological clocks ; Biosynthesis ; Cellular stress response ; Circadian rhythm ; Circadian rhythms ; Control ; Cultivars ; DNA-Binding Proteins - metabolism ; Drought ; Drought resistance ; drought tolerance ; Droughts ; Flowering ; Gene expression ; Gene Expression Regulation, Plant ; Genome editing ; Genomes ; Glycine max - genetics ; Glycine max - metabolism ; Homeostasis ; Homology ; LATE ELONGATED HYPOCOTYL (LHY) ; molecular breeding ; Molecular modelling ; Mutants ; Plant growth substances ; Plant hormones ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Signal transduction ; Signaling ; soybean ; Soybeans ; Transcription Factors - metabolism ; Transcriptomes</subject><ispartof>The New phytologist, 2021-03, Vol.229 (5), p.2660-2675</ispartof><rights>2020 The Authors © 2020 New Phytologist Foundation</rights><rights>2020 The Authors New Phytologist © 2020 New Phytologist Foundation</rights><rights>2020 The Authors New Phytologist © 2020 New Phytologist Foundation.</rights><rights>Copyright © 2021 New Phytologist Trust</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4769-f368c35ef53e6ddc1438c669ada86cb2419f79a132d4d49c34949107e5ffea663</citedby><cites>FETCH-LOGICAL-c4769-f368c35ef53e6ddc1438c669ada86cb2419f79a132d4d49c34949107e5ffea663</cites><orcidid>0000-0001-9859-8837 ; 0000-0001-6551-6014 ; 0000-0002-8085-1678 ; 0000-0001-6294-7193 ; 0000-0002-7788-4268 ; 0000-0001-5595-2058 ; 0000-0002-9387-9258 ; 0000-0003-3491-8293 ; 0000-0001-7138-1478</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fnph.17019$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fnph.17019$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,1432,27923,27924,45573,45574,46408,46832</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33095906$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Kai</creatorcontrib><creatorcontrib>Bu, Tiantian</creatorcontrib><creatorcontrib>Cheng, Qun</creatorcontrib><creatorcontrib>Dong, Lidong</creatorcontrib><creatorcontrib>Su, Tong</creatorcontrib><creatorcontrib>Chen, Zimei</creatorcontrib><creatorcontrib>Kong, Fanjiang</creatorcontrib><creatorcontrib>Gong, Zhizhong</creatorcontrib><creatorcontrib>Liu, Baohui</creatorcontrib><creatorcontrib>Li, Meina</creatorcontrib><title>Two homologous LHY pairs negatively control soybean drought tolerance by repressing the abscisic acid responses</title><title>The New phytologist</title><addtitle>New Phytol</addtitle><description>• The circadian clock plays essential roles in diverse plant biological processes, such as flowering, phytohormone biosynthesis and abiotic stress responses. The manner in which circadian clock genes regulate drought stress responses in model plants has been well established, but comparatively little is known in crop species, such as soybean, a major global crop. This paper reports that the core clock components GmLHYs, the orthologues of CCA1/LHY in Arabidopsis, negatively control drought tolerance in soybean. • The expressions of four GmLHYs were all induced by drought, and the quadruple mutants of GmLHYs demonstrated significantly improved drought tolerance. Transcriptome profiling suggested that the abscisic acid (ABA) signaling pathway is regulated by GmLHYs to respond to drought tolerance. • Genetic dissections showed that two homologous pairs of LHY1a and LHY1b redundantly control the drought response. Functional characterization of LHY1a and LHY1b in Arabidopsis and soybean further supported the notion that GmLHYs can maintain cellular homeostasis through the ABA signaling pathway under drought stress. • This study improves our understanding of the underlying molecular mechanisms on soybean drought tolerance. Furthermore, the two homologues of LHY1a and LHY1b provide alternative targets for genome editing to rapidly generate mutant alleles in elite soybean cultivars to enhance their drought tolerance.</description><subject>Abscisic Acid</subject><subject>agronomic trait</subject><subject>Alleles</subject><subject>Arabidopsis</subject><subject>Biological activity</subject><subject>Biological clocks</subject><subject>Biosynthesis</subject><subject>Cellular stress response</subject><subject>Circadian rhythm</subject><subject>Circadian rhythms</subject><subject>Control</subject><subject>Cultivars</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Drought</subject><subject>Drought resistance</subject><subject>drought tolerance</subject><subject>Droughts</subject><subject>Flowering</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Plant</subject><subject>Genome editing</subject><subject>Genomes</subject><subject>Glycine max - genetics</subject><subject>Glycine max - metabolism</subject><subject>Homeostasis</subject><subject>Homology</subject><subject>LATE ELONGATED HYPOCOTYL (LHY)</subject><subject>molecular breeding</subject><subject>Molecular modelling</subject><subject>Mutants</subject><subject>Plant growth substances</subject><subject>Plant hormones</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Signal transduction</subject><subject>Signaling</subject><subject>soybean</subject><subject>Soybeans</subject><subject>Transcription Factors - metabolism</subject><subject>Transcriptomes</subject><issn>0028-646X</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kcFu1DAQhi0EokvLoQ_QylIvcNjWjh07PlYVsEgr6KFIcIocZ7LrVdZOPUmrvD2GbXtAYi4z0nzza2Z-Qk45u-Q5rsKwveSacfOKLLhUZllxoV-TBWNFtVRS_Twi7xB3jDFTquItORIiV4apBYl3j5Fu4z72cRMnpOvVLzpYn5AG2NjRP0A_UxfDmGJPMc4N2EDbFKfNdqRj7CHZ4IA2M00wJED0YUPHLVDboPPoHbXOt7mJQwwIeELedLZHeP-Uj8mPz5_ublbL9fcvX2-u10sndT6gE6pyooSuFKDa1nEpKqeUsa2tlGsKyU2njeWiaGUrjRPSSMOZhrLrwColjsmHg-6Q4v0EONZ7jw763gbId9aFLCUvGddFRi_-QXdxSiFvl6mqlIxzrTP18UC5FBETdPWQ_N6mueas_uNCnV2o_7qQ2fMnxanZQ_tCPr89A1cH4NH3MP9fqf52u3qWPDtM7HCM6WWi0IxxUTLxGxY7m9Q</recordid><startdate>202103</startdate><enddate>202103</enddate><creator>Wang, Kai</creator><creator>Bu, Tiantian</creator><creator>Cheng, Qun</creator><creator>Dong, Lidong</creator><creator>Su, Tong</creator><creator>Chen, Zimei</creator><creator>Kong, Fanjiang</creator><creator>Gong, Zhizhong</creator><creator>Liu, Baohui</creator><creator>Li, Meina</creator><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9859-8837</orcidid><orcidid>https://orcid.org/0000-0001-6551-6014</orcidid><orcidid>https://orcid.org/0000-0002-8085-1678</orcidid><orcidid>https://orcid.org/0000-0001-6294-7193</orcidid><orcidid>https://orcid.org/0000-0002-7788-4268</orcidid><orcidid>https://orcid.org/0000-0001-5595-2058</orcidid><orcidid>https://orcid.org/0000-0002-9387-9258</orcidid><orcidid>https://orcid.org/0000-0003-3491-8293</orcidid><orcidid>https://orcid.org/0000-0001-7138-1478</orcidid></search><sort><creationdate>202103</creationdate><title>Two homologous LHY pairs negatively control soybean drought tolerance by repressing the abscisic acid responses</title><author>Wang, Kai ; Bu, Tiantian ; Cheng, Qun ; Dong, Lidong ; Su, Tong ; Chen, Zimei ; Kong, Fanjiang ; Gong, Zhizhong ; Liu, Baohui ; Li, Meina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4769-f368c35ef53e6ddc1438c669ada86cb2419f79a132d4d49c34949107e5ffea663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Abscisic Acid</topic><topic>agronomic trait</topic><topic>Alleles</topic><topic>Arabidopsis</topic><topic>Biological activity</topic><topic>Biological clocks</topic><topic>Biosynthesis</topic><topic>Cellular stress response</topic><topic>Circadian rhythm</topic><topic>Circadian rhythms</topic><topic>Control</topic><topic>Cultivars</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Drought</topic><topic>Drought resistance</topic><topic>drought tolerance</topic><topic>Droughts</topic><topic>Flowering</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Plant</topic><topic>Genome editing</topic><topic>Genomes</topic><topic>Glycine max - genetics</topic><topic>Glycine max - metabolism</topic><topic>Homeostasis</topic><topic>Homology</topic><topic>LATE ELONGATED HYPOCOTYL (LHY)</topic><topic>molecular breeding</topic><topic>Molecular modelling</topic><topic>Mutants</topic><topic>Plant growth substances</topic><topic>Plant hormones</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Signal transduction</topic><topic>Signaling</topic><topic>soybean</topic><topic>Soybeans</topic><topic>Transcription Factors - metabolism</topic><topic>Transcriptomes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Kai</creatorcontrib><creatorcontrib>Bu, Tiantian</creatorcontrib><creatorcontrib>Cheng, Qun</creatorcontrib><creatorcontrib>Dong, Lidong</creatorcontrib><creatorcontrib>Su, Tong</creatorcontrib><creatorcontrib>Chen, Zimei</creatorcontrib><creatorcontrib>Kong, Fanjiang</creatorcontrib><creatorcontrib>Gong, Zhizhong</creatorcontrib><creatorcontrib>Liu, Baohui</creatorcontrib><creatorcontrib>Li, Meina</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Kai</au><au>Bu, Tiantian</au><au>Cheng, Qun</au><au>Dong, Lidong</au><au>Su, Tong</au><au>Chen, Zimei</au><au>Kong, Fanjiang</au><au>Gong, Zhizhong</au><au>Liu, Baohui</au><au>Li, Meina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two homologous LHY pairs negatively control soybean drought tolerance by repressing the abscisic acid responses</atitle><jtitle>The New phytologist</jtitle><addtitle>New Phytol</addtitle><date>2021-03</date><risdate>2021</risdate><volume>229</volume><issue>5</issue><spage>2660</spage><epage>2675</epage><pages>2660-2675</pages><issn>0028-646X</issn><eissn>1469-8137</eissn><abstract>• The circadian clock plays essential roles in diverse plant biological processes, such as flowering, phytohormone biosynthesis and abiotic stress responses. The manner in which circadian clock genes regulate drought stress responses in model plants has been well established, but comparatively little is known in crop species, such as soybean, a major global crop. This paper reports that the core clock components GmLHYs, the orthologues of CCA1/LHY in Arabidopsis, negatively control drought tolerance in soybean. • The expressions of four GmLHYs were all induced by drought, and the quadruple mutants of GmLHYs demonstrated significantly improved drought tolerance. Transcriptome profiling suggested that the abscisic acid (ABA) signaling pathway is regulated by GmLHYs to respond to drought tolerance. • Genetic dissections showed that two homologous pairs of LHY1a and LHY1b redundantly control the drought response. Functional characterization of LHY1a and LHY1b in Arabidopsis and soybean further supported the notion that GmLHYs can maintain cellular homeostasis through the ABA signaling pathway under drought stress. • This study improves our understanding of the underlying molecular mechanisms on soybean drought tolerance. Furthermore, the two homologues of LHY1a and LHY1b provide alternative targets for genome editing to rapidly generate mutant alleles in elite soybean cultivars to enhance their drought tolerance.</abstract><cop>England</cop><pub>Wiley</pub><pmid>33095906</pmid><doi>10.1111/nph.17019</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-9859-8837</orcidid><orcidid>https://orcid.org/0000-0001-6551-6014</orcidid><orcidid>https://orcid.org/0000-0002-8085-1678</orcidid><orcidid>https://orcid.org/0000-0001-6294-7193</orcidid><orcidid>https://orcid.org/0000-0002-7788-4268</orcidid><orcidid>https://orcid.org/0000-0001-5595-2058</orcidid><orcidid>https://orcid.org/0000-0002-9387-9258</orcidid><orcidid>https://orcid.org/0000-0003-3491-8293</orcidid><orcidid>https://orcid.org/0000-0001-7138-1478</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-646X
ispartof The New phytologist, 2021-03, Vol.229 (5), p.2660-2675
issn 0028-646X
1469-8137
language eng
recordid cdi_proquest_miscellaneous_2454150172
source MEDLINE; Wiley Free Content; EZB-FREE-00999 freely available EZB journals; Wiley Online Library All Journals
subjects Abscisic Acid
agronomic trait
Alleles
Arabidopsis
Biological activity
Biological clocks
Biosynthesis
Cellular stress response
Circadian rhythm
Circadian rhythms
Control
Cultivars
DNA-Binding Proteins - metabolism
Drought
Drought resistance
drought tolerance
Droughts
Flowering
Gene expression
Gene Expression Regulation, Plant
Genome editing
Genomes
Glycine max - genetics
Glycine max - metabolism
Homeostasis
Homology
LATE ELONGATED HYPOCOTYL (LHY)
molecular breeding
Molecular modelling
Mutants
Plant growth substances
Plant hormones
Plant Proteins - genetics
Plant Proteins - metabolism
Signal transduction
Signaling
soybean
Soybeans
Transcription Factors - metabolism
Transcriptomes
title Two homologous LHY pairs negatively control soybean drought tolerance by repressing the abscisic acid responses
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T14%3A20%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two%20homologous%20LHY%20pairs%20negatively%20control%20soybean%20drought%20tolerance%20by%20repressing%20the%20abscisic%20acid%20responses&rft.jtitle=The%20New%20phytologist&rft.au=Wang,%20Kai&rft.date=2021-03&rft.volume=229&rft.issue=5&rft.spage=2660&rft.epage=2675&rft.pages=2660-2675&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111/nph.17019&rft_dat=%3Cjstor_proqu%3E27001350%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2485401177&rft_id=info:pmid/33095906&rft_jstor_id=27001350&rfr_iscdi=true