Oxidation of Gallium-based Liquid Metal Alloys by Water

Gallium alloys with other low melting point metals, such as indium or tin, to form room-temperature liquid eutectic systems. The gallium in the alloys rapidly forms a thin surface oxide when exposed to ambient oxygen. This surface oxide has been previously exploited for self-stabilization of liquid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2020-11, Vol.36 (43), p.12933-12941
Hauptverfasser: Creighton, Megan A, Yuen, Michelle C, Susner, Michael A, Farrell, Zachary, Maruyama, Benji, Tabor, Christopher E
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12941
container_issue 43
container_start_page 12933
container_title Langmuir
container_volume 36
creator Creighton, Megan A
Yuen, Michelle C
Susner, Michael A
Farrell, Zachary
Maruyama, Benji
Tabor, Christopher E
description Gallium alloys with other low melting point metals, such as indium or tin, to form room-temperature liquid eutectic systems. The gallium in the alloys rapidly forms a thin surface oxide when exposed to ambient oxygen. This surface oxide has been previously exploited for self-stabilization of liquid metal nanoparticles, retention of metastable shapes, and imparting stimuli-responsive behavior to the alloy surface. In this work, we study the effect of water as an oxidant and its role in defining the alloy surface chemistry. We identify several pathways that can lead to the formation of gallium oxide hydroxide (GaOOH) crystallites, which may be undesirable in many applications. Furthermore, we find that some crystallite formation pathways can be reinforced by typical top-down particle synthesis techniques like sonication. This improved understanding of interfacial interactions provides critical insight for process design and implementation of advanced devices that utilize the unique coupling of flexibility and conductivity offered by these gallium-based liquid metal alloys.
doi_str_mv 10.1021/acs.langmuir.0c02086
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2454128817</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2454128817</sourcerecordid><originalsourceid>FETCH-LOGICAL-a391t-a80288e7d53251dce0a51f07646ac487e5d2460a9fd642038eb8410422f5d60a3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKvfwEOOXrZO_m2yx1K0CpVeFI8h3WQlJdu0yS7Yb29K9epp4M17M7wfQvcEZgQoeTRtngWz--pHn2bQAgVVX6AJERQqoai8RBOQnFWS1-wa3eS8BYCG8WaC5PrbWzP4uMOxw0sTgh_7amOys3jlD6O3-M0NJuB5CPGY8eaIP83g0i266kzI7u53TtHH89P74qVarZevi_mqMqwhQ2UUUKWctIJRQWzrwAjSgax5bVqupBOW8hpM09maU2DKbRQnwCnthC06m6KH8919iofR5UH3PrculLoujllTLjgpL4gsVn62tinmnFyn98n3Jh01AX3ipAsn_cdJ_3IqMTjHTtttHNOu9Pk_8gNNnG22</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454128817</pqid></control><display><type>article</type><title>Oxidation of Gallium-based Liquid Metal Alloys by Water</title><source>American Chemical Society Journals</source><creator>Creighton, Megan A ; Yuen, Michelle C ; Susner, Michael A ; Farrell, Zachary ; Maruyama, Benji ; Tabor, Christopher E</creator><creatorcontrib>Creighton, Megan A ; Yuen, Michelle C ; Susner, Michael A ; Farrell, Zachary ; Maruyama, Benji ; Tabor, Christopher E</creatorcontrib><description>Gallium alloys with other low melting point metals, such as indium or tin, to form room-temperature liquid eutectic systems. The gallium in the alloys rapidly forms a thin surface oxide when exposed to ambient oxygen. This surface oxide has been previously exploited for self-stabilization of liquid metal nanoparticles, retention of metastable shapes, and imparting stimuli-responsive behavior to the alloy surface. In this work, we study the effect of water as an oxidant and its role in defining the alloy surface chemistry. We identify several pathways that can lead to the formation of gallium oxide hydroxide (GaOOH) crystallites, which may be undesirable in many applications. Furthermore, we find that some crystallite formation pathways can be reinforced by typical top-down particle synthesis techniques like sonication. This improved understanding of interfacial interactions provides critical insight for process design and implementation of advanced devices that utilize the unique coupling of flexibility and conductivity offered by these gallium-based liquid metal alloys.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/acs.langmuir.0c02086</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Langmuir, 2020-11, Vol.36 (43), p.12933-12941</ispartof><rights>2020 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a391t-a80288e7d53251dce0a51f07646ac487e5d2460a9fd642038eb8410422f5d60a3</citedby><cites>FETCH-LOGICAL-a391t-a80288e7d53251dce0a51f07646ac487e5d2460a9fd642038eb8410422f5d60a3</cites><orcidid>0000-0001-5793-2034</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.langmuir.0c02086$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.langmuir.0c02086$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Creighton, Megan A</creatorcontrib><creatorcontrib>Yuen, Michelle C</creatorcontrib><creatorcontrib>Susner, Michael A</creatorcontrib><creatorcontrib>Farrell, Zachary</creatorcontrib><creatorcontrib>Maruyama, Benji</creatorcontrib><creatorcontrib>Tabor, Christopher E</creatorcontrib><title>Oxidation of Gallium-based Liquid Metal Alloys by Water</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>Gallium alloys with other low melting point metals, such as indium or tin, to form room-temperature liquid eutectic systems. The gallium in the alloys rapidly forms a thin surface oxide when exposed to ambient oxygen. This surface oxide has been previously exploited for self-stabilization of liquid metal nanoparticles, retention of metastable shapes, and imparting stimuli-responsive behavior to the alloy surface. In this work, we study the effect of water as an oxidant and its role in defining the alloy surface chemistry. We identify several pathways that can lead to the formation of gallium oxide hydroxide (GaOOH) crystallites, which may be undesirable in many applications. Furthermore, we find that some crystallite formation pathways can be reinforced by typical top-down particle synthesis techniques like sonication. This improved understanding of interfacial interactions provides critical insight for process design and implementation of advanced devices that utilize the unique coupling of flexibility and conductivity offered by these gallium-based liquid metal alloys.</description><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKvfwEOOXrZO_m2yx1K0CpVeFI8h3WQlJdu0yS7Yb29K9epp4M17M7wfQvcEZgQoeTRtngWz--pHn2bQAgVVX6AJERQqoai8RBOQnFWS1-wa3eS8BYCG8WaC5PrbWzP4uMOxw0sTgh_7amOys3jlD6O3-M0NJuB5CPGY8eaIP83g0i266kzI7u53TtHH89P74qVarZevi_mqMqwhQ2UUUKWctIJRQWzrwAjSgax5bVqupBOW8hpM09maU2DKbRQnwCnthC06m6KH8919iofR5UH3PrculLoujllTLjgpL4gsVn62tinmnFyn98n3Jh01AX3ipAsn_cdJ_3IqMTjHTtttHNOu9Pk_8gNNnG22</recordid><startdate>20201103</startdate><enddate>20201103</enddate><creator>Creighton, Megan A</creator><creator>Yuen, Michelle C</creator><creator>Susner, Michael A</creator><creator>Farrell, Zachary</creator><creator>Maruyama, Benji</creator><creator>Tabor, Christopher E</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5793-2034</orcidid></search><sort><creationdate>20201103</creationdate><title>Oxidation of Gallium-based Liquid Metal Alloys by Water</title><author>Creighton, Megan A ; Yuen, Michelle C ; Susner, Michael A ; Farrell, Zachary ; Maruyama, Benji ; Tabor, Christopher E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a391t-a80288e7d53251dce0a51f07646ac487e5d2460a9fd642038eb8410422f5d60a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Creighton, Megan A</creatorcontrib><creatorcontrib>Yuen, Michelle C</creatorcontrib><creatorcontrib>Susner, Michael A</creatorcontrib><creatorcontrib>Farrell, Zachary</creatorcontrib><creatorcontrib>Maruyama, Benji</creatorcontrib><creatorcontrib>Tabor, Christopher E</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Creighton, Megan A</au><au>Yuen, Michelle C</au><au>Susner, Michael A</au><au>Farrell, Zachary</au><au>Maruyama, Benji</au><au>Tabor, Christopher E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oxidation of Gallium-based Liquid Metal Alloys by Water</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2020-11-03</date><risdate>2020</risdate><volume>36</volume><issue>43</issue><spage>12933</spage><epage>12941</epage><pages>12933-12941</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><abstract>Gallium alloys with other low melting point metals, such as indium or tin, to form room-temperature liquid eutectic systems. The gallium in the alloys rapidly forms a thin surface oxide when exposed to ambient oxygen. This surface oxide has been previously exploited for self-stabilization of liquid metal nanoparticles, retention of metastable shapes, and imparting stimuli-responsive behavior to the alloy surface. In this work, we study the effect of water as an oxidant and its role in defining the alloy surface chemistry. We identify several pathways that can lead to the formation of gallium oxide hydroxide (GaOOH) crystallites, which may be undesirable in many applications. Furthermore, we find that some crystallite formation pathways can be reinforced by typical top-down particle synthesis techniques like sonication. This improved understanding of interfacial interactions provides critical insight for process design and implementation of advanced devices that utilize the unique coupling of flexibility and conductivity offered by these gallium-based liquid metal alloys.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.langmuir.0c02086</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-5793-2034</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0743-7463
ispartof Langmuir, 2020-11, Vol.36 (43), p.12933-12941
issn 0743-7463
1520-5827
language eng
recordid cdi_proquest_miscellaneous_2454128817
source American Chemical Society Journals
title Oxidation of Gallium-based Liquid Metal Alloys by Water
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T13%3A18%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oxidation%20of%20Gallium-based%20Liquid%20Metal%20Alloys%20by%20Water&rft.jtitle=Langmuir&rft.au=Creighton,%20Megan%20A&rft.date=2020-11-03&rft.volume=36&rft.issue=43&rft.spage=12933&rft.epage=12941&rft.pages=12933-12941&rft.issn=0743-7463&rft.eissn=1520-5827&rft_id=info:doi/10.1021/acs.langmuir.0c02086&rft_dat=%3Cproquest_cross%3E2454128817%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454128817&rft_id=info:pmid/&rfr_iscdi=true