Application of Artificial Intelligence for the Diagnosis and Treatment of Liver Diseases
Modern medical care produces large volumes of multimodal patient data, which many clinicians struggle to process and synthesize into actionable knowledge. In recent years, artificial intelligence (AI) has emerged as an effective tool in this regard. The field of hepatology is no exception, with a gr...
Gespeichert in:
Veröffentlicht in: | Hepatology (Baltimore, Md.) Md.), 2021-06, Vol.73 (6), p.2546-2563 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2563 |
---|---|
container_issue | 6 |
container_start_page | 2546 |
container_title | Hepatology (Baltimore, Md.) |
container_volume | 73 |
creator | Ahn, Joseph C. Connell, Alistair Simonetto, Douglas A. Hughes, Cian Shah, Vijay H. |
description | Modern medical care produces large volumes of multimodal patient data, which many clinicians struggle to process and synthesize into actionable knowledge. In recent years, artificial intelligence (AI) has emerged as an effective tool in this regard. The field of hepatology is no exception, with a growing number of studies published that apply AI techniques to the diagnosis and treatment of liver diseases. These have included machine‐learning algorithms (such as regression models, Bayesian networks, and support vector machines) to predict disease progression, the presence of complications, and mortality; deep‐learning algorithms to enable rapid, automated interpretation of radiologic and pathologic images; and natural‐language processing to extract clinically meaningful concepts from vast quantities of unstructured data in electronic health records. This review article will provide a comprehensive overview of hepatology‐focused AI research, discuss some of the barriers to clinical implementation and adoption, and suggest future directions for the field. |
doi_str_mv | 10.1002/hep.31603 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2454118553</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2454118553</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4193-f5b042ca5cd1be97d0b7b80ef60eaf8d8bbd4eb1bcf1dfc1dffea96f3dd8ad3d3</originalsourceid><addsrcrecordid>eNp10E1LAzEQBuAgiq3Vg39AFrzoYXWy2bS7x1KrFgp6qOAt5GNSI9vdNdkq_fdGWz0IwoS5PHkZXkJOKVxRgOz6BdsrRofA9kif8myUMsZhn_QhG0FaUlb2yFEIrwBQ5llxSHqMQVnQHPrkedy2ldOyc02dNDYZ-85Zp52sklndYVW5JdYaE9v4pHvB5MbJZd0EFxJZm2ThUXYrrLuvr3P3jj6CgDJgOCYHVlYBT3Z7QJ5up4vJfTp_uJtNxvNU57RkqeUK8kxLrg1VWI4MqJEqAO0QUNrCFEqZHBVV2lJjdXwWZTm0zJhCGmbYgFxsc1vfvK0xdGLlgo6HyxqbdRBZznNKC85ZpOd_6Guz9nW8TmQ8j8NL4FFdbpX2TQgerWi9W0m_ERTEV90i1i2-6472bJe4Vis0v_Kn3wiut-DDVbj5P0ncTx-3kZ9oeYq6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2542545905</pqid></control><display><type>article</type><title>Application of Artificial Intelligence for the Diagnosis and Treatment of Liver Diseases</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Ahn, Joseph C. ; Connell, Alistair ; Simonetto, Douglas A. ; Hughes, Cian ; Shah, Vijay H.</creator><creatorcontrib>Ahn, Joseph C. ; Connell, Alistair ; Simonetto, Douglas A. ; Hughes, Cian ; Shah, Vijay H.</creatorcontrib><description>Modern medical care produces large volumes of multimodal patient data, which many clinicians struggle to process and synthesize into actionable knowledge. In recent years, artificial intelligence (AI) has emerged as an effective tool in this regard. The field of hepatology is no exception, with a growing number of studies published that apply AI techniques to the diagnosis and treatment of liver diseases. These have included machine‐learning algorithms (such as regression models, Bayesian networks, and support vector machines) to predict disease progression, the presence of complications, and mortality; deep‐learning algorithms to enable rapid, automated interpretation of radiologic and pathologic images; and natural‐language processing to extract clinically meaningful concepts from vast quantities of unstructured data in electronic health records. This review article will provide a comprehensive overview of hepatology‐focused AI research, discuss some of the barriers to clinical implementation and adoption, and suggest future directions for the field.</description><identifier>ISSN: 0270-9139</identifier><identifier>EISSN: 1527-3350</identifier><identifier>DOI: 10.1002/hep.31603</identifier><identifier>PMID: 33098140</identifier><language>eng</language><publisher>United States: Wolters Kluwer Health, Inc</publisher><subject>Algorithms ; Artificial Intelligence ; Bayesian analysis ; Deep learning ; Diagnosis ; Electronic medical records ; Gastroenterology - methods ; Gastroenterology - trends ; Hepatology ; Humans ; Learning algorithms ; Liver diseases ; Liver Diseases - diagnosis ; Liver Diseases - therapy ; Machine learning ; Mathematical models ; Medical diagnosis ; Medical Records Systems, Computerized ; Medical treatment ; Regression analysis ; Translational Research, Biomedical</subject><ispartof>Hepatology (Baltimore, Md.), 2021-06, Vol.73 (6), p.2546-2563</ispartof><rights>2020 by the American Association for the Study of Liver Diseases.</rights><rights>2021 by the American Association for the Study of Liver Diseases.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4193-f5b042ca5cd1be97d0b7b80ef60eaf8d8bbd4eb1bcf1dfc1dffea96f3dd8ad3d3</citedby><cites>FETCH-LOGICAL-c4193-f5b042ca5cd1be97d0b7b80ef60eaf8d8bbd4eb1bcf1dfc1dffea96f3dd8ad3d3</cites><orcidid>0000-0001-7620-573X ; 0000-0003-0318-1049 ; 0000-0003-4095-8144 ; 0000-0001-6901-0985 ; 0000-0001-6994-2870</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fhep.31603$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fhep.31603$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33098140$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ahn, Joseph C.</creatorcontrib><creatorcontrib>Connell, Alistair</creatorcontrib><creatorcontrib>Simonetto, Douglas A.</creatorcontrib><creatorcontrib>Hughes, Cian</creatorcontrib><creatorcontrib>Shah, Vijay H.</creatorcontrib><title>Application of Artificial Intelligence for the Diagnosis and Treatment of Liver Diseases</title><title>Hepatology (Baltimore, Md.)</title><addtitle>Hepatology</addtitle><description>Modern medical care produces large volumes of multimodal patient data, which many clinicians struggle to process and synthesize into actionable knowledge. In recent years, artificial intelligence (AI) has emerged as an effective tool in this regard. The field of hepatology is no exception, with a growing number of studies published that apply AI techniques to the diagnosis and treatment of liver diseases. These have included machine‐learning algorithms (such as regression models, Bayesian networks, and support vector machines) to predict disease progression, the presence of complications, and mortality; deep‐learning algorithms to enable rapid, automated interpretation of radiologic and pathologic images; and natural‐language processing to extract clinically meaningful concepts from vast quantities of unstructured data in electronic health records. This review article will provide a comprehensive overview of hepatology‐focused AI research, discuss some of the barriers to clinical implementation and adoption, and suggest future directions for the field.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Bayesian analysis</subject><subject>Deep learning</subject><subject>Diagnosis</subject><subject>Electronic medical records</subject><subject>Gastroenterology - methods</subject><subject>Gastroenterology - trends</subject><subject>Hepatology</subject><subject>Humans</subject><subject>Learning algorithms</subject><subject>Liver diseases</subject><subject>Liver Diseases - diagnosis</subject><subject>Liver Diseases - therapy</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Medical diagnosis</subject><subject>Medical Records Systems, Computerized</subject><subject>Medical treatment</subject><subject>Regression analysis</subject><subject>Translational Research, Biomedical</subject><issn>0270-9139</issn><issn>1527-3350</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10E1LAzEQBuAgiq3Vg39AFrzoYXWy2bS7x1KrFgp6qOAt5GNSI9vdNdkq_fdGWz0IwoS5PHkZXkJOKVxRgOz6BdsrRofA9kif8myUMsZhn_QhG0FaUlb2yFEIrwBQ5llxSHqMQVnQHPrkedy2ldOyc02dNDYZ-85Zp52sklndYVW5JdYaE9v4pHvB5MbJZd0EFxJZm2ThUXYrrLuvr3P3jj6CgDJgOCYHVlYBT3Z7QJ5up4vJfTp_uJtNxvNU57RkqeUK8kxLrg1VWI4MqJEqAO0QUNrCFEqZHBVV2lJjdXwWZTm0zJhCGmbYgFxsc1vfvK0xdGLlgo6HyxqbdRBZznNKC85ZpOd_6Guz9nW8TmQ8j8NL4FFdbpX2TQgerWi9W0m_ERTEV90i1i2-6472bJe4Vis0v_Kn3wiut-DDVbj5P0ncTx-3kZ9oeYq6</recordid><startdate>202106</startdate><enddate>202106</enddate><creator>Ahn, Joseph C.</creator><creator>Connell, Alistair</creator><creator>Simonetto, Douglas A.</creator><creator>Hughes, Cian</creator><creator>Shah, Vijay H.</creator><general>Wolters Kluwer Health, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T5</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>H94</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7620-573X</orcidid><orcidid>https://orcid.org/0000-0003-0318-1049</orcidid><orcidid>https://orcid.org/0000-0003-4095-8144</orcidid><orcidid>https://orcid.org/0000-0001-6901-0985</orcidid><orcidid>https://orcid.org/0000-0001-6994-2870</orcidid></search><sort><creationdate>202106</creationdate><title>Application of Artificial Intelligence for the Diagnosis and Treatment of Liver Diseases</title><author>Ahn, Joseph C. ; Connell, Alistair ; Simonetto, Douglas A. ; Hughes, Cian ; Shah, Vijay H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4193-f5b042ca5cd1be97d0b7b80ef60eaf8d8bbd4eb1bcf1dfc1dffea96f3dd8ad3d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Bayesian analysis</topic><topic>Deep learning</topic><topic>Diagnosis</topic><topic>Electronic medical records</topic><topic>Gastroenterology - methods</topic><topic>Gastroenterology - trends</topic><topic>Hepatology</topic><topic>Humans</topic><topic>Learning algorithms</topic><topic>Liver diseases</topic><topic>Liver Diseases - diagnosis</topic><topic>Liver Diseases - therapy</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Medical diagnosis</topic><topic>Medical Records Systems, Computerized</topic><topic>Medical treatment</topic><topic>Regression analysis</topic><topic>Translational Research, Biomedical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahn, Joseph C.</creatorcontrib><creatorcontrib>Connell, Alistair</creatorcontrib><creatorcontrib>Simonetto, Douglas A.</creatorcontrib><creatorcontrib>Hughes, Cian</creatorcontrib><creatorcontrib>Shah, Vijay H.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Hepatology (Baltimore, Md.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahn, Joseph C.</au><au>Connell, Alistair</au><au>Simonetto, Douglas A.</au><au>Hughes, Cian</au><au>Shah, Vijay H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of Artificial Intelligence for the Diagnosis and Treatment of Liver Diseases</atitle><jtitle>Hepatology (Baltimore, Md.)</jtitle><addtitle>Hepatology</addtitle><date>2021-06</date><risdate>2021</risdate><volume>73</volume><issue>6</issue><spage>2546</spage><epage>2563</epage><pages>2546-2563</pages><issn>0270-9139</issn><eissn>1527-3350</eissn><abstract>Modern medical care produces large volumes of multimodal patient data, which many clinicians struggle to process and synthesize into actionable knowledge. In recent years, artificial intelligence (AI) has emerged as an effective tool in this regard. The field of hepatology is no exception, with a growing number of studies published that apply AI techniques to the diagnosis and treatment of liver diseases. These have included machine‐learning algorithms (such as regression models, Bayesian networks, and support vector machines) to predict disease progression, the presence of complications, and mortality; deep‐learning algorithms to enable rapid, automated interpretation of radiologic and pathologic images; and natural‐language processing to extract clinically meaningful concepts from vast quantities of unstructured data in electronic health records. This review article will provide a comprehensive overview of hepatology‐focused AI research, discuss some of the barriers to clinical implementation and adoption, and suggest future directions for the field.</abstract><cop>United States</cop><pub>Wolters Kluwer Health, Inc</pub><pmid>33098140</pmid><doi>10.1002/hep.31603</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-7620-573X</orcidid><orcidid>https://orcid.org/0000-0003-0318-1049</orcidid><orcidid>https://orcid.org/0000-0003-4095-8144</orcidid><orcidid>https://orcid.org/0000-0001-6901-0985</orcidid><orcidid>https://orcid.org/0000-0001-6994-2870</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0270-9139 |
ispartof | Hepatology (Baltimore, Md.), 2021-06, Vol.73 (6), p.2546-2563 |
issn | 0270-9139 1527-3350 |
language | eng |
recordid | cdi_proquest_miscellaneous_2454118553 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Algorithms Artificial Intelligence Bayesian analysis Deep learning Diagnosis Electronic medical records Gastroenterology - methods Gastroenterology - trends Hepatology Humans Learning algorithms Liver diseases Liver Diseases - diagnosis Liver Diseases - therapy Machine learning Mathematical models Medical diagnosis Medical Records Systems, Computerized Medical treatment Regression analysis Translational Research, Biomedical |
title | Application of Artificial Intelligence for the Diagnosis and Treatment of Liver Diseases |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T17%3A49%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20Artificial%20Intelligence%20for%20the%20Diagnosis%20and%20Treatment%20of%20Liver%20Diseases&rft.jtitle=Hepatology%20(Baltimore,%20Md.)&rft.au=Ahn,%20Joseph%20C.&rft.date=2021-06&rft.volume=73&rft.issue=6&rft.spage=2546&rft.epage=2563&rft.pages=2546-2563&rft.issn=0270-9139&rft.eissn=1527-3350&rft_id=info:doi/10.1002/hep.31603&rft_dat=%3Cproquest_cross%3E2454118553%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2542545905&rft_id=info:pmid/33098140&rfr_iscdi=true |