Application of Artificial Intelligence for the Diagnosis and Treatment of Liver Diseases

Modern medical care produces large volumes of multimodal patient data, which many clinicians struggle to process and synthesize into actionable knowledge. In recent years, artificial intelligence (AI) has emerged as an effective tool in this regard. The field of hepatology is no exception, with a gr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Hepatology (Baltimore, Md.) Md.), 2021-06, Vol.73 (6), p.2546-2563
Hauptverfasser: Ahn, Joseph C., Connell, Alistair, Simonetto, Douglas A., Hughes, Cian, Shah, Vijay H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2563
container_issue 6
container_start_page 2546
container_title Hepatology (Baltimore, Md.)
container_volume 73
creator Ahn, Joseph C.
Connell, Alistair
Simonetto, Douglas A.
Hughes, Cian
Shah, Vijay H.
description Modern medical care produces large volumes of multimodal patient data, which many clinicians struggle to process and synthesize into actionable knowledge. In recent years, artificial intelligence (AI) has emerged as an effective tool in this regard. The field of hepatology is no exception, with a growing number of studies published that apply AI techniques to the diagnosis and treatment of liver diseases. These have included machine‐learning algorithms (such as regression models, Bayesian networks, and support vector machines) to predict disease progression, the presence of complications, and mortality; deep‐learning algorithms to enable rapid, automated interpretation of radiologic and pathologic images; and natural‐language processing to extract clinically meaningful concepts from vast quantities of unstructured data in electronic health records. This review article will provide a comprehensive overview of hepatology‐focused AI research, discuss some of the barriers to clinical implementation and adoption, and suggest future directions for the field.
doi_str_mv 10.1002/hep.31603
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2454118553</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2454118553</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4193-f5b042ca5cd1be97d0b7b80ef60eaf8d8bbd4eb1bcf1dfc1dffea96f3dd8ad3d3</originalsourceid><addsrcrecordid>eNp10E1LAzEQBuAgiq3Vg39AFrzoYXWy2bS7x1KrFgp6qOAt5GNSI9vdNdkq_fdGWz0IwoS5PHkZXkJOKVxRgOz6BdsrRofA9kif8myUMsZhn_QhG0FaUlb2yFEIrwBQ5llxSHqMQVnQHPrkedy2ldOyc02dNDYZ-85Zp52sklndYVW5JdYaE9v4pHvB5MbJZd0EFxJZm2ThUXYrrLuvr3P3jj6CgDJgOCYHVlYBT3Z7QJ5up4vJfTp_uJtNxvNU57RkqeUK8kxLrg1VWI4MqJEqAO0QUNrCFEqZHBVV2lJjdXwWZTm0zJhCGmbYgFxsc1vfvK0xdGLlgo6HyxqbdRBZznNKC85ZpOd_6Guz9nW8TmQ8j8NL4FFdbpX2TQgerWi9W0m_ERTEV90i1i2-6472bJe4Vis0v_Kn3wiut-DDVbj5P0ncTx-3kZ9oeYq6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2542545905</pqid></control><display><type>article</type><title>Application of Artificial Intelligence for the Diagnosis and Treatment of Liver Diseases</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Ahn, Joseph C. ; Connell, Alistair ; Simonetto, Douglas A. ; Hughes, Cian ; Shah, Vijay H.</creator><creatorcontrib>Ahn, Joseph C. ; Connell, Alistair ; Simonetto, Douglas A. ; Hughes, Cian ; Shah, Vijay H.</creatorcontrib><description>Modern medical care produces large volumes of multimodal patient data, which many clinicians struggle to process and synthesize into actionable knowledge. In recent years, artificial intelligence (AI) has emerged as an effective tool in this regard. The field of hepatology is no exception, with a growing number of studies published that apply AI techniques to the diagnosis and treatment of liver diseases. These have included machine‐learning algorithms (such as regression models, Bayesian networks, and support vector machines) to predict disease progression, the presence of complications, and mortality; deep‐learning algorithms to enable rapid, automated interpretation of radiologic and pathologic images; and natural‐language processing to extract clinically meaningful concepts from vast quantities of unstructured data in electronic health records. This review article will provide a comprehensive overview of hepatology‐focused AI research, discuss some of the barriers to clinical implementation and adoption, and suggest future directions for the field.</description><identifier>ISSN: 0270-9139</identifier><identifier>EISSN: 1527-3350</identifier><identifier>DOI: 10.1002/hep.31603</identifier><identifier>PMID: 33098140</identifier><language>eng</language><publisher>United States: Wolters Kluwer Health, Inc</publisher><subject>Algorithms ; Artificial Intelligence ; Bayesian analysis ; Deep learning ; Diagnosis ; Electronic medical records ; Gastroenterology - methods ; Gastroenterology - trends ; Hepatology ; Humans ; Learning algorithms ; Liver diseases ; Liver Diseases - diagnosis ; Liver Diseases - therapy ; Machine learning ; Mathematical models ; Medical diagnosis ; Medical Records Systems, Computerized ; Medical treatment ; Regression analysis ; Translational Research, Biomedical</subject><ispartof>Hepatology (Baltimore, Md.), 2021-06, Vol.73 (6), p.2546-2563</ispartof><rights>2020 by the American Association for the Study of Liver Diseases.</rights><rights>2021 by the American Association for the Study of Liver Diseases.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4193-f5b042ca5cd1be97d0b7b80ef60eaf8d8bbd4eb1bcf1dfc1dffea96f3dd8ad3d3</citedby><cites>FETCH-LOGICAL-c4193-f5b042ca5cd1be97d0b7b80ef60eaf8d8bbd4eb1bcf1dfc1dffea96f3dd8ad3d3</cites><orcidid>0000-0001-7620-573X ; 0000-0003-0318-1049 ; 0000-0003-4095-8144 ; 0000-0001-6901-0985 ; 0000-0001-6994-2870</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fhep.31603$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fhep.31603$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33098140$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ahn, Joseph C.</creatorcontrib><creatorcontrib>Connell, Alistair</creatorcontrib><creatorcontrib>Simonetto, Douglas A.</creatorcontrib><creatorcontrib>Hughes, Cian</creatorcontrib><creatorcontrib>Shah, Vijay H.</creatorcontrib><title>Application of Artificial Intelligence for the Diagnosis and Treatment of Liver Diseases</title><title>Hepatology (Baltimore, Md.)</title><addtitle>Hepatology</addtitle><description>Modern medical care produces large volumes of multimodal patient data, which many clinicians struggle to process and synthesize into actionable knowledge. In recent years, artificial intelligence (AI) has emerged as an effective tool in this regard. The field of hepatology is no exception, with a growing number of studies published that apply AI techniques to the diagnosis and treatment of liver diseases. These have included machine‐learning algorithms (such as regression models, Bayesian networks, and support vector machines) to predict disease progression, the presence of complications, and mortality; deep‐learning algorithms to enable rapid, automated interpretation of radiologic and pathologic images; and natural‐language processing to extract clinically meaningful concepts from vast quantities of unstructured data in electronic health records. This review article will provide a comprehensive overview of hepatology‐focused AI research, discuss some of the barriers to clinical implementation and adoption, and suggest future directions for the field.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Bayesian analysis</subject><subject>Deep learning</subject><subject>Diagnosis</subject><subject>Electronic medical records</subject><subject>Gastroenterology - methods</subject><subject>Gastroenterology - trends</subject><subject>Hepatology</subject><subject>Humans</subject><subject>Learning algorithms</subject><subject>Liver diseases</subject><subject>Liver Diseases - diagnosis</subject><subject>Liver Diseases - therapy</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Medical diagnosis</subject><subject>Medical Records Systems, Computerized</subject><subject>Medical treatment</subject><subject>Regression analysis</subject><subject>Translational Research, Biomedical</subject><issn>0270-9139</issn><issn>1527-3350</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10E1LAzEQBuAgiq3Vg39AFrzoYXWy2bS7x1KrFgp6qOAt5GNSI9vdNdkq_fdGWz0IwoS5PHkZXkJOKVxRgOz6BdsrRofA9kif8myUMsZhn_QhG0FaUlb2yFEIrwBQ5llxSHqMQVnQHPrkedy2ldOyc02dNDYZ-85Zp52sklndYVW5JdYaE9v4pHvB5MbJZd0EFxJZm2ThUXYrrLuvr3P3jj6CgDJgOCYHVlYBT3Z7QJ5up4vJfTp_uJtNxvNU57RkqeUK8kxLrg1VWI4MqJEqAO0QUNrCFEqZHBVV2lJjdXwWZTm0zJhCGmbYgFxsc1vfvK0xdGLlgo6HyxqbdRBZznNKC85ZpOd_6Guz9nW8TmQ8j8NL4FFdbpX2TQgerWi9W0m_ERTEV90i1i2-6472bJe4Vis0v_Kn3wiut-DDVbj5P0ncTx-3kZ9oeYq6</recordid><startdate>202106</startdate><enddate>202106</enddate><creator>Ahn, Joseph C.</creator><creator>Connell, Alistair</creator><creator>Simonetto, Douglas A.</creator><creator>Hughes, Cian</creator><creator>Shah, Vijay H.</creator><general>Wolters Kluwer Health, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T5</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>H94</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7620-573X</orcidid><orcidid>https://orcid.org/0000-0003-0318-1049</orcidid><orcidid>https://orcid.org/0000-0003-4095-8144</orcidid><orcidid>https://orcid.org/0000-0001-6901-0985</orcidid><orcidid>https://orcid.org/0000-0001-6994-2870</orcidid></search><sort><creationdate>202106</creationdate><title>Application of Artificial Intelligence for the Diagnosis and Treatment of Liver Diseases</title><author>Ahn, Joseph C. ; Connell, Alistair ; Simonetto, Douglas A. ; Hughes, Cian ; Shah, Vijay H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4193-f5b042ca5cd1be97d0b7b80ef60eaf8d8bbd4eb1bcf1dfc1dffea96f3dd8ad3d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Bayesian analysis</topic><topic>Deep learning</topic><topic>Diagnosis</topic><topic>Electronic medical records</topic><topic>Gastroenterology - methods</topic><topic>Gastroenterology - trends</topic><topic>Hepatology</topic><topic>Humans</topic><topic>Learning algorithms</topic><topic>Liver diseases</topic><topic>Liver Diseases - diagnosis</topic><topic>Liver Diseases - therapy</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Medical diagnosis</topic><topic>Medical Records Systems, Computerized</topic><topic>Medical treatment</topic><topic>Regression analysis</topic><topic>Translational Research, Biomedical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahn, Joseph C.</creatorcontrib><creatorcontrib>Connell, Alistair</creatorcontrib><creatorcontrib>Simonetto, Douglas A.</creatorcontrib><creatorcontrib>Hughes, Cian</creatorcontrib><creatorcontrib>Shah, Vijay H.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Hepatology (Baltimore, Md.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahn, Joseph C.</au><au>Connell, Alistair</au><au>Simonetto, Douglas A.</au><au>Hughes, Cian</au><au>Shah, Vijay H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of Artificial Intelligence for the Diagnosis and Treatment of Liver Diseases</atitle><jtitle>Hepatology (Baltimore, Md.)</jtitle><addtitle>Hepatology</addtitle><date>2021-06</date><risdate>2021</risdate><volume>73</volume><issue>6</issue><spage>2546</spage><epage>2563</epage><pages>2546-2563</pages><issn>0270-9139</issn><eissn>1527-3350</eissn><abstract>Modern medical care produces large volumes of multimodal patient data, which many clinicians struggle to process and synthesize into actionable knowledge. In recent years, artificial intelligence (AI) has emerged as an effective tool in this regard. The field of hepatology is no exception, with a growing number of studies published that apply AI techniques to the diagnosis and treatment of liver diseases. These have included machine‐learning algorithms (such as regression models, Bayesian networks, and support vector machines) to predict disease progression, the presence of complications, and mortality; deep‐learning algorithms to enable rapid, automated interpretation of radiologic and pathologic images; and natural‐language processing to extract clinically meaningful concepts from vast quantities of unstructured data in electronic health records. This review article will provide a comprehensive overview of hepatology‐focused AI research, discuss some of the barriers to clinical implementation and adoption, and suggest future directions for the field.</abstract><cop>United States</cop><pub>Wolters Kluwer Health, Inc</pub><pmid>33098140</pmid><doi>10.1002/hep.31603</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-7620-573X</orcidid><orcidid>https://orcid.org/0000-0003-0318-1049</orcidid><orcidid>https://orcid.org/0000-0003-4095-8144</orcidid><orcidid>https://orcid.org/0000-0001-6901-0985</orcidid><orcidid>https://orcid.org/0000-0001-6994-2870</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0270-9139
ispartof Hepatology (Baltimore, Md.), 2021-06, Vol.73 (6), p.2546-2563
issn 0270-9139
1527-3350
language eng
recordid cdi_proquest_miscellaneous_2454118553
source MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algorithms
Artificial Intelligence
Bayesian analysis
Deep learning
Diagnosis
Electronic medical records
Gastroenterology - methods
Gastroenterology - trends
Hepatology
Humans
Learning algorithms
Liver diseases
Liver Diseases - diagnosis
Liver Diseases - therapy
Machine learning
Mathematical models
Medical diagnosis
Medical Records Systems, Computerized
Medical treatment
Regression analysis
Translational Research, Biomedical
title Application of Artificial Intelligence for the Diagnosis and Treatment of Liver Diseases
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T17%3A49%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20Artificial%20Intelligence%20for%20the%20Diagnosis%20and%20Treatment%20of%20Liver%20Diseases&rft.jtitle=Hepatology%20(Baltimore,%20Md.)&rft.au=Ahn,%20Joseph%20C.&rft.date=2021-06&rft.volume=73&rft.issue=6&rft.spage=2546&rft.epage=2563&rft.pages=2546-2563&rft.issn=0270-9139&rft.eissn=1527-3350&rft_id=info:doi/10.1002/hep.31603&rft_dat=%3Cproquest_cross%3E2454118553%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2542545905&rft_id=info:pmid/33098140&rfr_iscdi=true