Human β‐defensin‐2 suppresses key features of asthma in murine models of allergic airways disease
Background Asthma is an airway inflammatory disease and a major health problem worldwide. Anti‐inflammatory steroids and bronchodilators are the gold‐standard therapy for asthma. However, they do not prevent the development of the disease, and critically, a subset of asthmatics are resistant to ster...
Gespeichert in:
Veröffentlicht in: | Clinical and experimental allergy 2021-01, Vol.51 (1), p.120-131 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 131 |
---|---|
container_issue | 1 |
container_start_page | 120 |
container_title | Clinical and experimental allergy |
container_volume | 51 |
creator | Pinkerton, James W. Kim, Richard Y. Koeninger, Louis Armbruster, Nicole S. Hansbro, Nicole G. Brown, Alexandra C. Jayaraman, Ranjith Shen, Sijie Malek, Nisar Cooper, Matthew A. Nordkild, Peter Horvat, Jay C. Jensen, Benjamin A. H. Wehkamp, Jan Hansbro, Philip M. |
description | Background
Asthma is an airway inflammatory disease and a major health problem worldwide. Anti‐inflammatory steroids and bronchodilators are the gold‐standard therapy for asthma. However, they do not prevent the development of the disease, and critically, a subset of asthmatics are resistant to steroid therapy.
Objective
To elucidate the therapeutic potential of human β‐defensins (hBD), such as hBD2 mild to moderate and severe asthma.
Methods
We investigated the role of hBD2 in a steroid‐sensitive, house dust mite‐induced allergic airways disease (AAD) model and a steroid‐insensitive model combining ovalbumin‐induced AAD with C muridarum (Cmu) respiratory infection.
Results
In both models, we demonstrated that therapeutic intranasal application of hBD2 significantly reduced the influx of inflammatory cells into the bronchoalveolar lavage fluid. Furthermore, key type 2 asthma‐related cytokines IL‐9 and IL‐13, as well as additional immunomodulating cytokines, were significantly decreased after administration of hBD2 in the steroid‐sensitive model. The suppression of inflammation was associated with improvements in airway physiology and treatment also suppressed airway hyper‐responsiveness (AHR) in terms of airway resistance and compliance to methacholine challenge.
Conclusions and Clinical relevance
These data indicate that hBD2 reduces the hallmark features and has potential as a new therapeutic agent in allergic and especially steroid‐resistant asthma. |
doi_str_mv | 10.1111/cea.13766 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2454113716</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2474500284</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3536-ae9ac5324fbb67ce207053a7075cc5968e8ca0891ecbc1ddc385864779f7a29b3</originalsourceid><addsrcrecordid>eNp1kEtKBDEQhoMoOj4WXkACbnTRmnQ6nWQpgy8Q3Oi6SaerNdqPMTXNMDuP4Fk8iIfwJEZbXQjWpqqoj5_iI2SXsyMe69iBPeJC5fkKmXCRyySNtUomzMgsUdpkG2QT8YExJqTR62RDCGY0l-mE1BdDazv69vr-_FJBDR36Lo4pxWE2C4AISB9hSWuw8yHutK-pxfl9a6nvaDsE3wFt-wqa8dQ0EO68o9aHhV0irTyCRdgma7VtEHa--xa5PTu9mV4kV9fnl9OTq8QJKfLEgrFOijSryzJXDlKmmBRWMSWdkybXoJ1l2nBwpeNV5YSWOs-UMrWyqSnFFjkYc2ehfxoA50Xr0UHT2A76AYs0kxmPqnge0f0_6EM_hC5-FymVScZSnUXqcKRc6BED1MUs-NaGZcFZ8Sm_iPKLL_mR3ftOHMoWql_yx3YEjkdg4RtY_p9UTE9PxsgPtJKQUg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2474500284</pqid></control><display><type>article</type><title>Human β‐defensin‐2 suppresses key features of asthma in murine models of allergic airways disease</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Pinkerton, James W. ; Kim, Richard Y. ; Koeninger, Louis ; Armbruster, Nicole S. ; Hansbro, Nicole G. ; Brown, Alexandra C. ; Jayaraman, Ranjith ; Shen, Sijie ; Malek, Nisar ; Cooper, Matthew A. ; Nordkild, Peter ; Horvat, Jay C. ; Jensen, Benjamin A. H. ; Wehkamp, Jan ; Hansbro, Philip M.</creator><creatorcontrib>Pinkerton, James W. ; Kim, Richard Y. ; Koeninger, Louis ; Armbruster, Nicole S. ; Hansbro, Nicole G. ; Brown, Alexandra C. ; Jayaraman, Ranjith ; Shen, Sijie ; Malek, Nisar ; Cooper, Matthew A. ; Nordkild, Peter ; Horvat, Jay C. ; Jensen, Benjamin A. H. ; Wehkamp, Jan ; Hansbro, Philip M.</creatorcontrib><description>Background
Asthma is an airway inflammatory disease and a major health problem worldwide. Anti‐inflammatory steroids and bronchodilators are the gold‐standard therapy for asthma. However, they do not prevent the development of the disease, and critically, a subset of asthmatics are resistant to steroid therapy.
Objective
To elucidate the therapeutic potential of human β‐defensins (hBD), such as hBD2 mild to moderate and severe asthma.
Methods
We investigated the role of hBD2 in a steroid‐sensitive, house dust mite‐induced allergic airways disease (AAD) model and a steroid‐insensitive model combining ovalbumin‐induced AAD with C muridarum (Cmu) respiratory infection.
Results
In both models, we demonstrated that therapeutic intranasal application of hBD2 significantly reduced the influx of inflammatory cells into the bronchoalveolar lavage fluid. Furthermore, key type 2 asthma‐related cytokines IL‐9 and IL‐13, as well as additional immunomodulating cytokines, were significantly decreased after administration of hBD2 in the steroid‐sensitive model. The suppression of inflammation was associated with improvements in airway physiology and treatment also suppressed airway hyper‐responsiveness (AHR) in terms of airway resistance and compliance to methacholine challenge.
Conclusions and Clinical relevance
These data indicate that hBD2 reduces the hallmark features and has potential as a new therapeutic agent in allergic and especially steroid‐resistant asthma.</description><identifier>ISSN: 0954-7894</identifier><identifier>EISSN: 1365-2222</identifier><identifier>DOI: 10.1111/cea.13766</identifier><identifier>PMID: 33098152</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Airway Resistance - drug effects ; Alveoli ; Animal models ; Animals ; Asthma ; Asthma - metabolism ; Asthma - physiopathology ; beta-Defensins - pharmacology ; Bronchoalveolar Lavage Fluid - chemistry ; Bronchoalveolar Lavage Fluid - cytology ; Bronchodilators ; Bronchus ; Chlamydia Infections - metabolism ; Chlamydia Infections - physiopathology ; Chlamydia muridarum ; Cytokines ; Defensins ; Disease Models, Animal ; human β‐defensin‐2 ; Inflammation - metabolism ; Inflammation - physiopathology ; Inflammatory diseases ; Interleukin-13 - metabolism ; Interleukin-9 - metabolism ; Lung - drug effects ; Lung - metabolism ; Lung - physiopathology ; Lung Compliance - drug effects ; Methacholine ; Mice ; Ovalbumin ; Pyroglyphidae ; Respiratory Hypersensitivity - metabolism ; Respiratory Hypersensitivity - physiopathology ; Respiratory tract ; Respiratory tract diseases ; Respiratory Tract Infections - metabolism ; Respiratory Tract Infections - physiopathology ; Steroid hormones ; steroid resistant ; steroid sensitive</subject><ispartof>Clinical and experimental allergy, 2021-01, Vol.51 (1), p.120-131</ispartof><rights>2020 John Wiley & Sons Ltd</rights><rights>2020 John Wiley & Sons Ltd.</rights><rights>Copyright © 2021 John Wiley & Sons Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3536-ae9ac5324fbb67ce207053a7075cc5968e8ca0891ecbc1ddc385864779f7a29b3</citedby><cites>FETCH-LOGICAL-c3536-ae9ac5324fbb67ce207053a7075cc5968e8ca0891ecbc1ddc385864779f7a29b3</cites><orcidid>0000-0001-6991-0828 ; 0000-0002-4741-3035</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fcea.13766$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fcea.13766$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33098152$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pinkerton, James W.</creatorcontrib><creatorcontrib>Kim, Richard Y.</creatorcontrib><creatorcontrib>Koeninger, Louis</creatorcontrib><creatorcontrib>Armbruster, Nicole S.</creatorcontrib><creatorcontrib>Hansbro, Nicole G.</creatorcontrib><creatorcontrib>Brown, Alexandra C.</creatorcontrib><creatorcontrib>Jayaraman, Ranjith</creatorcontrib><creatorcontrib>Shen, Sijie</creatorcontrib><creatorcontrib>Malek, Nisar</creatorcontrib><creatorcontrib>Cooper, Matthew A.</creatorcontrib><creatorcontrib>Nordkild, Peter</creatorcontrib><creatorcontrib>Horvat, Jay C.</creatorcontrib><creatorcontrib>Jensen, Benjamin A. H.</creatorcontrib><creatorcontrib>Wehkamp, Jan</creatorcontrib><creatorcontrib>Hansbro, Philip M.</creatorcontrib><title>Human β‐defensin‐2 suppresses key features of asthma in murine models of allergic airways disease</title><title>Clinical and experimental allergy</title><addtitle>Clin Exp Allergy</addtitle><description>Background
Asthma is an airway inflammatory disease and a major health problem worldwide. Anti‐inflammatory steroids and bronchodilators are the gold‐standard therapy for asthma. However, they do not prevent the development of the disease, and critically, a subset of asthmatics are resistant to steroid therapy.
Objective
To elucidate the therapeutic potential of human β‐defensins (hBD), such as hBD2 mild to moderate and severe asthma.
Methods
We investigated the role of hBD2 in a steroid‐sensitive, house dust mite‐induced allergic airways disease (AAD) model and a steroid‐insensitive model combining ovalbumin‐induced AAD with C muridarum (Cmu) respiratory infection.
Results
In both models, we demonstrated that therapeutic intranasal application of hBD2 significantly reduced the influx of inflammatory cells into the bronchoalveolar lavage fluid. Furthermore, key type 2 asthma‐related cytokines IL‐9 and IL‐13, as well as additional immunomodulating cytokines, were significantly decreased after administration of hBD2 in the steroid‐sensitive model. The suppression of inflammation was associated with improvements in airway physiology and treatment also suppressed airway hyper‐responsiveness (AHR) in terms of airway resistance and compliance to methacholine challenge.
Conclusions and Clinical relevance
These data indicate that hBD2 reduces the hallmark features and has potential as a new therapeutic agent in allergic and especially steroid‐resistant asthma.</description><subject>Airway Resistance - drug effects</subject><subject>Alveoli</subject><subject>Animal models</subject><subject>Animals</subject><subject>Asthma</subject><subject>Asthma - metabolism</subject><subject>Asthma - physiopathology</subject><subject>beta-Defensins - pharmacology</subject><subject>Bronchoalveolar Lavage Fluid - chemistry</subject><subject>Bronchoalveolar Lavage Fluid - cytology</subject><subject>Bronchodilators</subject><subject>Bronchus</subject><subject>Chlamydia Infections - metabolism</subject><subject>Chlamydia Infections - physiopathology</subject><subject>Chlamydia muridarum</subject><subject>Cytokines</subject><subject>Defensins</subject><subject>Disease Models, Animal</subject><subject>human β‐defensin‐2</subject><subject>Inflammation - metabolism</subject><subject>Inflammation - physiopathology</subject><subject>Inflammatory diseases</subject><subject>Interleukin-13 - metabolism</subject><subject>Interleukin-9 - metabolism</subject><subject>Lung - drug effects</subject><subject>Lung - metabolism</subject><subject>Lung - physiopathology</subject><subject>Lung Compliance - drug effects</subject><subject>Methacholine</subject><subject>Mice</subject><subject>Ovalbumin</subject><subject>Pyroglyphidae</subject><subject>Respiratory Hypersensitivity - metabolism</subject><subject>Respiratory Hypersensitivity - physiopathology</subject><subject>Respiratory tract</subject><subject>Respiratory tract diseases</subject><subject>Respiratory Tract Infections - metabolism</subject><subject>Respiratory Tract Infections - physiopathology</subject><subject>Steroid hormones</subject><subject>steroid resistant</subject><subject>steroid sensitive</subject><issn>0954-7894</issn><issn>1365-2222</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kEtKBDEQhoMoOj4WXkACbnTRmnQ6nWQpgy8Q3Oi6SaerNdqPMTXNMDuP4Fk8iIfwJEZbXQjWpqqoj5_iI2SXsyMe69iBPeJC5fkKmXCRyySNtUomzMgsUdpkG2QT8YExJqTR62RDCGY0l-mE1BdDazv69vr-_FJBDR36Lo4pxWE2C4AISB9hSWuw8yHutK-pxfl9a6nvaDsE3wFt-wqa8dQ0EO68o9aHhV0irTyCRdgma7VtEHa--xa5PTu9mV4kV9fnl9OTq8QJKfLEgrFOijSryzJXDlKmmBRWMSWdkybXoJ1l2nBwpeNV5YSWOs-UMrWyqSnFFjkYc2ehfxoA50Xr0UHT2A76AYs0kxmPqnge0f0_6EM_hC5-FymVScZSnUXqcKRc6BED1MUs-NaGZcFZ8Sm_iPKLL_mR3ftOHMoWql_yx3YEjkdg4RtY_p9UTE9PxsgPtJKQUg</recordid><startdate>202101</startdate><enddate>202101</enddate><creator>Pinkerton, James W.</creator><creator>Kim, Richard Y.</creator><creator>Koeninger, Louis</creator><creator>Armbruster, Nicole S.</creator><creator>Hansbro, Nicole G.</creator><creator>Brown, Alexandra C.</creator><creator>Jayaraman, Ranjith</creator><creator>Shen, Sijie</creator><creator>Malek, Nisar</creator><creator>Cooper, Matthew A.</creator><creator>Nordkild, Peter</creator><creator>Horvat, Jay C.</creator><creator>Jensen, Benjamin A. H.</creator><creator>Wehkamp, Jan</creator><creator>Hansbro, Philip M.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T5</scope><scope>H94</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6991-0828</orcidid><orcidid>https://orcid.org/0000-0002-4741-3035</orcidid></search><sort><creationdate>202101</creationdate><title>Human β‐defensin‐2 suppresses key features of asthma in murine models of allergic airways disease</title><author>Pinkerton, James W. ; Kim, Richard Y. ; Koeninger, Louis ; Armbruster, Nicole S. ; Hansbro, Nicole G. ; Brown, Alexandra C. ; Jayaraman, Ranjith ; Shen, Sijie ; Malek, Nisar ; Cooper, Matthew A. ; Nordkild, Peter ; Horvat, Jay C. ; Jensen, Benjamin A. H. ; Wehkamp, Jan ; Hansbro, Philip M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3536-ae9ac5324fbb67ce207053a7075cc5968e8ca0891ecbc1ddc385864779f7a29b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Airway Resistance - drug effects</topic><topic>Alveoli</topic><topic>Animal models</topic><topic>Animals</topic><topic>Asthma</topic><topic>Asthma - metabolism</topic><topic>Asthma - physiopathology</topic><topic>beta-Defensins - pharmacology</topic><topic>Bronchoalveolar Lavage Fluid - chemistry</topic><topic>Bronchoalveolar Lavage Fluid - cytology</topic><topic>Bronchodilators</topic><topic>Bronchus</topic><topic>Chlamydia Infections - metabolism</topic><topic>Chlamydia Infections - physiopathology</topic><topic>Chlamydia muridarum</topic><topic>Cytokines</topic><topic>Defensins</topic><topic>Disease Models, Animal</topic><topic>human β‐defensin‐2</topic><topic>Inflammation - metabolism</topic><topic>Inflammation - physiopathology</topic><topic>Inflammatory diseases</topic><topic>Interleukin-13 - metabolism</topic><topic>Interleukin-9 - metabolism</topic><topic>Lung - drug effects</topic><topic>Lung - metabolism</topic><topic>Lung - physiopathology</topic><topic>Lung Compliance - drug effects</topic><topic>Methacholine</topic><topic>Mice</topic><topic>Ovalbumin</topic><topic>Pyroglyphidae</topic><topic>Respiratory Hypersensitivity - metabolism</topic><topic>Respiratory Hypersensitivity - physiopathology</topic><topic>Respiratory tract</topic><topic>Respiratory tract diseases</topic><topic>Respiratory Tract Infections - metabolism</topic><topic>Respiratory Tract Infections - physiopathology</topic><topic>Steroid hormones</topic><topic>steroid resistant</topic><topic>steroid sensitive</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pinkerton, James W.</creatorcontrib><creatorcontrib>Kim, Richard Y.</creatorcontrib><creatorcontrib>Koeninger, Louis</creatorcontrib><creatorcontrib>Armbruster, Nicole S.</creatorcontrib><creatorcontrib>Hansbro, Nicole G.</creatorcontrib><creatorcontrib>Brown, Alexandra C.</creatorcontrib><creatorcontrib>Jayaraman, Ranjith</creatorcontrib><creatorcontrib>Shen, Sijie</creatorcontrib><creatorcontrib>Malek, Nisar</creatorcontrib><creatorcontrib>Cooper, Matthew A.</creatorcontrib><creatorcontrib>Nordkild, Peter</creatorcontrib><creatorcontrib>Horvat, Jay C.</creatorcontrib><creatorcontrib>Jensen, Benjamin A. H.</creatorcontrib><creatorcontrib>Wehkamp, Jan</creatorcontrib><creatorcontrib>Hansbro, Philip M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Immunology Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Clinical and experimental allergy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pinkerton, James W.</au><au>Kim, Richard Y.</au><au>Koeninger, Louis</au><au>Armbruster, Nicole S.</au><au>Hansbro, Nicole G.</au><au>Brown, Alexandra C.</au><au>Jayaraman, Ranjith</au><au>Shen, Sijie</au><au>Malek, Nisar</au><au>Cooper, Matthew A.</au><au>Nordkild, Peter</au><au>Horvat, Jay C.</au><au>Jensen, Benjamin A. H.</au><au>Wehkamp, Jan</au><au>Hansbro, Philip M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Human β‐defensin‐2 suppresses key features of asthma in murine models of allergic airways disease</atitle><jtitle>Clinical and experimental allergy</jtitle><addtitle>Clin Exp Allergy</addtitle><date>2021-01</date><risdate>2021</risdate><volume>51</volume><issue>1</issue><spage>120</spage><epage>131</epage><pages>120-131</pages><issn>0954-7894</issn><eissn>1365-2222</eissn><abstract>Background
Asthma is an airway inflammatory disease and a major health problem worldwide. Anti‐inflammatory steroids and bronchodilators are the gold‐standard therapy for asthma. However, they do not prevent the development of the disease, and critically, a subset of asthmatics are resistant to steroid therapy.
Objective
To elucidate the therapeutic potential of human β‐defensins (hBD), such as hBD2 mild to moderate and severe asthma.
Methods
We investigated the role of hBD2 in a steroid‐sensitive, house dust mite‐induced allergic airways disease (AAD) model and a steroid‐insensitive model combining ovalbumin‐induced AAD with C muridarum (Cmu) respiratory infection.
Results
In both models, we demonstrated that therapeutic intranasal application of hBD2 significantly reduced the influx of inflammatory cells into the bronchoalveolar lavage fluid. Furthermore, key type 2 asthma‐related cytokines IL‐9 and IL‐13, as well as additional immunomodulating cytokines, were significantly decreased after administration of hBD2 in the steroid‐sensitive model. The suppression of inflammation was associated with improvements in airway physiology and treatment also suppressed airway hyper‐responsiveness (AHR) in terms of airway resistance and compliance to methacholine challenge.
Conclusions and Clinical relevance
These data indicate that hBD2 reduces the hallmark features and has potential as a new therapeutic agent in allergic and especially steroid‐resistant asthma.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>33098152</pmid><doi>10.1111/cea.13766</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6991-0828</orcidid><orcidid>https://orcid.org/0000-0002-4741-3035</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0954-7894 |
ispartof | Clinical and experimental allergy, 2021-01, Vol.51 (1), p.120-131 |
issn | 0954-7894 1365-2222 |
language | eng |
recordid | cdi_proquest_miscellaneous_2454113716 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Airway Resistance - drug effects Alveoli Animal models Animals Asthma Asthma - metabolism Asthma - physiopathology beta-Defensins - pharmacology Bronchoalveolar Lavage Fluid - chemistry Bronchoalveolar Lavage Fluid - cytology Bronchodilators Bronchus Chlamydia Infections - metabolism Chlamydia Infections - physiopathology Chlamydia muridarum Cytokines Defensins Disease Models, Animal human β‐defensin‐2 Inflammation - metabolism Inflammation - physiopathology Inflammatory diseases Interleukin-13 - metabolism Interleukin-9 - metabolism Lung - drug effects Lung - metabolism Lung - physiopathology Lung Compliance - drug effects Methacholine Mice Ovalbumin Pyroglyphidae Respiratory Hypersensitivity - metabolism Respiratory Hypersensitivity - physiopathology Respiratory tract Respiratory tract diseases Respiratory Tract Infections - metabolism Respiratory Tract Infections - physiopathology Steroid hormones steroid resistant steroid sensitive |
title | Human β‐defensin‐2 suppresses key features of asthma in murine models of allergic airways disease |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T18%3A21%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Human%20%CE%B2%E2%80%90defensin%E2%80%902%20suppresses%20key%20features%20of%20asthma%20in%20murine%20models%20of%20allergic%20airways%20disease&rft.jtitle=Clinical%20and%20experimental%20allergy&rft.au=Pinkerton,%20James%20W.&rft.date=2021-01&rft.volume=51&rft.issue=1&rft.spage=120&rft.epage=131&rft.pages=120-131&rft.issn=0954-7894&rft.eissn=1365-2222&rft_id=info:doi/10.1111/cea.13766&rft_dat=%3Cproquest_cross%3E2474500284%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2474500284&rft_id=info:pmid/33098152&rfr_iscdi=true |