A Gadolinium Metal‐Organic Framework Film as a Converter Layer for Neutron Detection

Metal‐organic frameworks (MOFs) are known for their versatility in terms of their crystalline structure, porosity, resistance to temperature, radiation damage, and luminescence among others. Gadolinium (Gd) is one of the elements with the highest reported cross‐section for low energy neutron capture...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ChemPlusChem (Weinheim, Germany) Germany), 2020-10, Vol.85 (10), p.2349-2356
Hauptverfasser: Canatelli, Axel X., Pérez, Martín, Lipovetzky, José, Marín, Julio H., Albornoz, Cecilia A., Tartaglione, Aureliano, Roncaroli, Federico
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2356
container_issue 10
container_start_page 2349
container_title ChemPlusChem (Weinheim, Germany)
container_volume 85
creator Canatelli, Axel X.
Pérez, Martín
Lipovetzky, José
Marín, Julio H.
Albornoz, Cecilia A.
Tartaglione, Aureliano
Roncaroli, Federico
description Metal‐organic frameworks (MOFs) are known for their versatility in terms of their crystalline structure, porosity, resistance to temperature, radiation damage, and luminescence among others. Gadolinium (Gd) is one of the elements with the highest reported cross‐section for low energy neutron capture, producing internal conversion electrons and γ rays as a result of the neutron absorption. The development of Gd‐BTC films (BTC=1,3,5‐benzenetricarboxylate) is shown that were deposited on Si and Al substrates by airbrushing, and characterized by profilometry, Raman, EDX and X‐ray diffraction. Radiation damage, thermal decomposition and neutron absorption of these films were studied as well. Gd‐BTC films were attached to CMOS devices (Complementary Metal‐Oxide‐Semiconductor), which are sensible to the internal conversion electrons, in order to build a neutron detector. The devices Gd‐BTC/CMOS could selectively detect neutrons in the presence of γ rays with a thermal neutron detection efficiency of 3.3±0.1 %, a signal to noise ratio of 6 : 1, and were suitable to obtain images. A neutron detector was constructed attaching a Gd‐MOF film on a CMOS camera. Neutrons were absorbed by Gd forming a part of the MOF and produced internal conversion electrons and γ photons. The first ones were detected by the CMOS camera producing an event matrix, which could be converted into an image. The device Gd‐MOF/CMOS could selectively detect neutrons with an efficiency of 3.3 % in the presence of γ rays.
doi_str_mv 10.1002/cplu.202000586
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2454109240</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2455653814</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3506-74834aa205707341f5e5f6779eba823e63a5f4a16f68caa7ff9c3cc07ebcdb673</originalsourceid><addsrcrecordid>eNqFkLFOwzAQhiMEElXpymyJhaXFsWM7GatAC1KgDJQ1urpnlJLExU6ouvEIPCNPQqoiQCwsdzd8_-nXFwSnIR2FlLILvS7bEaOMUipieRD0WJiwoRRUHv66j4OB96uOoZIKpngveByTKSxtWdRFW5FbbKD8eHufuSeoC00mDircWPdMJkVZEfAESGrrV3QNOpLBtpvGOnKHbeNsTS6xQd0Utj4JjgyUHgdfux_MJ1cP6fUwm01v0nE21LyrM1RRzCMARoWiikehESiMVCrBBcSMo-QgTAShNDLWAMqYRHOtqcKFXi6k4v3gfP937exLi77Jq8JrLEuo0bY-Z5GIQpqwiHbo2R90ZVtXd-12lJCCx2HUUaM9pZ313qHJ166owG3zkOY70_nOdP5tugsk-8CmKHH7D52n99n8J_sJQ5qCJA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455653814</pqid></control><display><type>article</type><title>A Gadolinium Metal‐Organic Framework Film as a Converter Layer for Neutron Detection</title><source>Wiley Journals</source><creator>Canatelli, Axel X. ; Pérez, Martín ; Lipovetzky, José ; Marín, Julio H. ; Albornoz, Cecilia A. ; Tartaglione, Aureliano ; Roncaroli, Federico</creator><creatorcontrib>Canatelli, Axel X. ; Pérez, Martín ; Lipovetzky, José ; Marín, Julio H. ; Albornoz, Cecilia A. ; Tartaglione, Aureliano ; Roncaroli, Federico</creatorcontrib><description>Metal‐organic frameworks (MOFs) are known for their versatility in terms of their crystalline structure, porosity, resistance to temperature, radiation damage, and luminescence among others. Gadolinium (Gd) is one of the elements with the highest reported cross‐section for low energy neutron capture, producing internal conversion electrons and γ rays as a result of the neutron absorption. The development of Gd‐BTC films (BTC=1,3,5‐benzenetricarboxylate) is shown that were deposited on Si and Al substrates by airbrushing, and characterized by profilometry, Raman, EDX and X‐ray diffraction. Radiation damage, thermal decomposition and neutron absorption of these films were studied as well. Gd‐BTC films were attached to CMOS devices (Complementary Metal‐Oxide‐Semiconductor), which are sensible to the internal conversion electrons, in order to build a neutron detector. The devices Gd‐BTC/CMOS could selectively detect neutrons in the presence of γ rays with a thermal neutron detection efficiency of 3.3±0.1 %, a signal to noise ratio of 6 : 1, and were suitable to obtain images. A neutron detector was constructed attaching a Gd‐MOF film on a CMOS camera. Neutrons were absorbed by Gd forming a part of the MOF and produced internal conversion electrons and γ photons. The first ones were detected by the CMOS camera producing an event matrix, which could be converted into an image. The device Gd‐MOF/CMOS could selectively detect neutrons with an efficiency of 3.3 % in the presence of γ rays.</description><identifier>ISSN: 2192-6506</identifier><identifier>EISSN: 2192-6506</identifier><identifier>DOI: 10.1002/cplu.202000586</identifier><language>eng</language><publisher>Prague: Blackwell Publishing Ltd</publisher><subject>Absorption ; Aluminum ; Chemistry ; CMOS ; Converters ; Electrons ; Gadolinium ; Internal conversion ; metal-organic frameworks ; Neutron absorption ; Neutron counters ; Neutrons ; Nuclear capture ; Porosity ; Radiation damage ; Radiation tolerance ; radiochemistry ; sensors ; Signal to noise ratio ; Silicon substrates ; Thermal decomposition ; Thermal neutrons</subject><ispartof>ChemPlusChem (Weinheim, Germany), 2020-10, Vol.85 (10), p.2349-2356</ispartof><rights>2020 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3506-74834aa205707341f5e5f6779eba823e63a5f4a16f68caa7ff9c3cc07ebcdb673</citedby><cites>FETCH-LOGICAL-c3506-74834aa205707341f5e5f6779eba823e63a5f4a16f68caa7ff9c3cc07ebcdb673</cites><orcidid>0000-0002-2143-556X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcplu.202000586$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcplu.202000586$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Canatelli, Axel X.</creatorcontrib><creatorcontrib>Pérez, Martín</creatorcontrib><creatorcontrib>Lipovetzky, José</creatorcontrib><creatorcontrib>Marín, Julio H.</creatorcontrib><creatorcontrib>Albornoz, Cecilia A.</creatorcontrib><creatorcontrib>Tartaglione, Aureliano</creatorcontrib><creatorcontrib>Roncaroli, Federico</creatorcontrib><title>A Gadolinium Metal‐Organic Framework Film as a Converter Layer for Neutron Detection</title><title>ChemPlusChem (Weinheim, Germany)</title><description>Metal‐organic frameworks (MOFs) are known for their versatility in terms of their crystalline structure, porosity, resistance to temperature, radiation damage, and luminescence among others. Gadolinium (Gd) is one of the elements with the highest reported cross‐section for low energy neutron capture, producing internal conversion electrons and γ rays as a result of the neutron absorption. The development of Gd‐BTC films (BTC=1,3,5‐benzenetricarboxylate) is shown that were deposited on Si and Al substrates by airbrushing, and characterized by profilometry, Raman, EDX and X‐ray diffraction. Radiation damage, thermal decomposition and neutron absorption of these films were studied as well. Gd‐BTC films were attached to CMOS devices (Complementary Metal‐Oxide‐Semiconductor), which are sensible to the internal conversion electrons, in order to build a neutron detector. The devices Gd‐BTC/CMOS could selectively detect neutrons in the presence of γ rays with a thermal neutron detection efficiency of 3.3±0.1 %, a signal to noise ratio of 6 : 1, and were suitable to obtain images. A neutron detector was constructed attaching a Gd‐MOF film on a CMOS camera. Neutrons were absorbed by Gd forming a part of the MOF and produced internal conversion electrons and γ photons. The first ones were detected by the CMOS camera producing an event matrix, which could be converted into an image. The device Gd‐MOF/CMOS could selectively detect neutrons with an efficiency of 3.3 % in the presence of γ rays.</description><subject>Absorption</subject><subject>Aluminum</subject><subject>Chemistry</subject><subject>CMOS</subject><subject>Converters</subject><subject>Electrons</subject><subject>Gadolinium</subject><subject>Internal conversion</subject><subject>metal-organic frameworks</subject><subject>Neutron absorption</subject><subject>Neutron counters</subject><subject>Neutrons</subject><subject>Nuclear capture</subject><subject>Porosity</subject><subject>Radiation damage</subject><subject>Radiation tolerance</subject><subject>radiochemistry</subject><subject>sensors</subject><subject>Signal to noise ratio</subject><subject>Silicon substrates</subject><subject>Thermal decomposition</subject><subject>Thermal neutrons</subject><issn>2192-6506</issn><issn>2192-6506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkLFOwzAQhiMEElXpymyJhaXFsWM7GatAC1KgDJQ1urpnlJLExU6ouvEIPCNPQqoiQCwsdzd8_-nXFwSnIR2FlLILvS7bEaOMUipieRD0WJiwoRRUHv66j4OB96uOoZIKpngveByTKSxtWdRFW5FbbKD8eHufuSeoC00mDircWPdMJkVZEfAESGrrV3QNOpLBtpvGOnKHbeNsTS6xQd0Utj4JjgyUHgdfux_MJ1cP6fUwm01v0nE21LyrM1RRzCMARoWiikehESiMVCrBBcSMo-QgTAShNDLWAMqYRHOtqcKFXi6k4v3gfP937exLi77Jq8JrLEuo0bY-Z5GIQpqwiHbo2R90ZVtXd-12lJCCx2HUUaM9pZ313qHJ166owG3zkOY70_nOdP5tugsk-8CmKHH7D52n99n8J_sJQ5qCJA</recordid><startdate>202010</startdate><enddate>202010</enddate><creator>Canatelli, Axel X.</creator><creator>Pérez, Martín</creator><creator>Lipovetzky, José</creator><creator>Marín, Julio H.</creator><creator>Albornoz, Cecilia A.</creator><creator>Tartaglione, Aureliano</creator><creator>Roncaroli, Federico</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>4T-</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2143-556X</orcidid></search><sort><creationdate>202010</creationdate><title>A Gadolinium Metal‐Organic Framework Film as a Converter Layer for Neutron Detection</title><author>Canatelli, Axel X. ; Pérez, Martín ; Lipovetzky, José ; Marín, Julio H. ; Albornoz, Cecilia A. ; Tartaglione, Aureliano ; Roncaroli, Federico</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3506-74834aa205707341f5e5f6779eba823e63a5f4a16f68caa7ff9c3cc07ebcdb673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Absorption</topic><topic>Aluminum</topic><topic>Chemistry</topic><topic>CMOS</topic><topic>Converters</topic><topic>Electrons</topic><topic>Gadolinium</topic><topic>Internal conversion</topic><topic>metal-organic frameworks</topic><topic>Neutron absorption</topic><topic>Neutron counters</topic><topic>Neutrons</topic><topic>Nuclear capture</topic><topic>Porosity</topic><topic>Radiation damage</topic><topic>Radiation tolerance</topic><topic>radiochemistry</topic><topic>sensors</topic><topic>Signal to noise ratio</topic><topic>Silicon substrates</topic><topic>Thermal decomposition</topic><topic>Thermal neutrons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Canatelli, Axel X.</creatorcontrib><creatorcontrib>Pérez, Martín</creatorcontrib><creatorcontrib>Lipovetzky, José</creatorcontrib><creatorcontrib>Marín, Julio H.</creatorcontrib><creatorcontrib>Albornoz, Cecilia A.</creatorcontrib><creatorcontrib>Tartaglione, Aureliano</creatorcontrib><creatorcontrib>Roncaroli, Federico</creatorcontrib><collection>CrossRef</collection><collection>Docstoc</collection><collection>MEDLINE - Academic</collection><jtitle>ChemPlusChem (Weinheim, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Canatelli, Axel X.</au><au>Pérez, Martín</au><au>Lipovetzky, José</au><au>Marín, Julio H.</au><au>Albornoz, Cecilia A.</au><au>Tartaglione, Aureliano</au><au>Roncaroli, Federico</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Gadolinium Metal‐Organic Framework Film as a Converter Layer for Neutron Detection</atitle><jtitle>ChemPlusChem (Weinheim, Germany)</jtitle><date>2020-10</date><risdate>2020</risdate><volume>85</volume><issue>10</issue><spage>2349</spage><epage>2356</epage><pages>2349-2356</pages><issn>2192-6506</issn><eissn>2192-6506</eissn><abstract>Metal‐organic frameworks (MOFs) are known for their versatility in terms of their crystalline structure, porosity, resistance to temperature, radiation damage, and luminescence among others. Gadolinium (Gd) is one of the elements with the highest reported cross‐section for low energy neutron capture, producing internal conversion electrons and γ rays as a result of the neutron absorption. The development of Gd‐BTC films (BTC=1,3,5‐benzenetricarboxylate) is shown that were deposited on Si and Al substrates by airbrushing, and characterized by profilometry, Raman, EDX and X‐ray diffraction. Radiation damage, thermal decomposition and neutron absorption of these films were studied as well. Gd‐BTC films were attached to CMOS devices (Complementary Metal‐Oxide‐Semiconductor), which are sensible to the internal conversion electrons, in order to build a neutron detector. The devices Gd‐BTC/CMOS could selectively detect neutrons in the presence of γ rays with a thermal neutron detection efficiency of 3.3±0.1 %, a signal to noise ratio of 6 : 1, and were suitable to obtain images. A neutron detector was constructed attaching a Gd‐MOF film on a CMOS camera. Neutrons were absorbed by Gd forming a part of the MOF and produced internal conversion electrons and γ photons. The first ones were detected by the CMOS camera producing an event matrix, which could be converted into an image. The device Gd‐MOF/CMOS could selectively detect neutrons with an efficiency of 3.3 % in the presence of γ rays.</abstract><cop>Prague</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/cplu.202000586</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-2143-556X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2192-6506
ispartof ChemPlusChem (Weinheim, Germany), 2020-10, Vol.85 (10), p.2349-2356
issn 2192-6506
2192-6506
language eng
recordid cdi_proquest_miscellaneous_2454109240
source Wiley Journals
subjects Absorption
Aluminum
Chemistry
CMOS
Converters
Electrons
Gadolinium
Internal conversion
metal-organic frameworks
Neutron absorption
Neutron counters
Neutrons
Nuclear capture
Porosity
Radiation damage
Radiation tolerance
radiochemistry
sensors
Signal to noise ratio
Silicon substrates
Thermal decomposition
Thermal neutrons
title A Gadolinium Metal‐Organic Framework Film as a Converter Layer for Neutron Detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T18%3A18%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Gadolinium%20Metal%E2%80%90Organic%20Framework%20Film%20as%20a%20Converter%20Layer%20for%20Neutron%20Detection&rft.jtitle=ChemPlusChem%20(Weinheim,%20Germany)&rft.au=Canatelli,%20Axel%20X.&rft.date=2020-10&rft.volume=85&rft.issue=10&rft.spage=2349&rft.epage=2356&rft.pages=2349-2356&rft.issn=2192-6506&rft.eissn=2192-6506&rft_id=info:doi/10.1002/cplu.202000586&rft_dat=%3Cproquest_cross%3E2455653814%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455653814&rft_id=info:pmid/&rfr_iscdi=true