Orderly compartmental mapping of premotor inhibition in the developing zebrafish spinal cord

In vertebrates, faster movements involve the orderly recruitment of different types of spinal motor neurons. However, it is not known how premotor inhibitory circuits are organized to ensure alternating motor output at different movement speeds. We found that different types of commissural inhibitor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2020-10, Vol.370 (6515), p.431-436
Hauptverfasser: Kishore, Sandeep, Cadoff, Eli B, Agha, Moneeza A, McLean, David L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 436
container_issue 6515
container_start_page 431
container_title Science (American Association for the Advancement of Science)
container_volume 370
creator Kishore, Sandeep
Cadoff, Eli B
Agha, Moneeza A
McLean, David L
description In vertebrates, faster movements involve the orderly recruitment of different types of spinal motor neurons. However, it is not known how premotor inhibitory circuits are organized to ensure alternating motor output at different movement speeds. We found that different types of commissural inhibitory interneurons in zebrafish form compartmental microcircuits during development that align inhibitory strength and recruitment order. Axonal microcircuits develop first and provide the most potent premotor inhibition during the fastest movements, followed by perisomatic microcircuits, and then dendritic microcircuits that provide the weakest inhibition during the slowest movements. The conversion of a temporal sequence of neuronal development into a spatial pattern of inhibitory connections provides an "ontogenotopic" solution to the problem of shaping spinal motor output at different speeds of movement.
doi_str_mv 10.1126/science.abb4608
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2454103953</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2453796051</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-94fdd0d797c001f0f36dd7825c2b2cbc260e70df9803f8788e813a635bf4cdcc3</originalsourceid><addsrcrecordid>eNpdkD1PwzAQhi0EoqUws6FILCxpz3HixCOq-JKQusCGFDn2mbpK4mAnSOXXE9rCwHR3uudenR5CLinMKU34IiiLrcK5rKqUQ3FEphREFosE2DGZAjAeF5BnE3IWwgZg3Al2SiaMgWAU0il5W3mNvt5GyjWd9H2DbS_rqJFdZ9v3yJmo89i43vnItmtb2d66dmyjfo2Rxk-s3Q78wspLY8M6CuM8Jijn9Tk5MbIOeHGoM_J6f_eyfIyfVw9Py9vnWDHO-1ikRmvQucgVADVgGNc6L5JMJVWiKpVwwBy0EQUwU-RFgQVlkrOsMqnSSrEZudnndt59DBj6srFBYV3LFt0QyiTNUgpMZGxEr_-hGzf48eEdxXLBIaMjtdhTyrsQPJqy87aRfltSKH_Elwfx5UH8eHF1yB2qBvUf_2uafQN6wYIE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2453796051</pqid></control><display><type>article</type><title>Orderly compartmental mapping of premotor inhibition in the developing zebrafish spinal cord</title><source>MEDLINE</source><source>Science Magazine</source><creator>Kishore, Sandeep ; Cadoff, Eli B ; Agha, Moneeza A ; McLean, David L</creator><creatorcontrib>Kishore, Sandeep ; Cadoff, Eli B ; Agha, Moneeza A ; McLean, David L</creatorcontrib><description>In vertebrates, faster movements involve the orderly recruitment of different types of spinal motor neurons. However, it is not known how premotor inhibitory circuits are organized to ensure alternating motor output at different movement speeds. We found that different types of commissural inhibitory interneurons in zebrafish form compartmental microcircuits during development that align inhibitory strength and recruitment order. Axonal microcircuits develop first and provide the most potent premotor inhibition during the fastest movements, followed by perisomatic microcircuits, and then dendritic microcircuits that provide the weakest inhibition during the slowest movements. The conversion of a temporal sequence of neuronal development into a spatial pattern of inhibitory connections provides an "ontogenotopic" solution to the problem of shaping spinal motor output at different speeds of movement.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.abb4608</identifier><identifier>PMID: 33093104</identifier><language>eng</language><publisher>United States: The American Association for the Advancement of Science</publisher><subject>Animals ; Axons - physiology ; Circuits ; Commissural Interneurons - physiology ; Danio rerio ; Inhibition ; Interneurons ; Locomotion ; Motor neurons ; Motor Neurons - physiology ; Nerve Net - embryology ; Neurogenesis ; Neurons ; Recruitment ; Spinal cord ; Spinal Cord - embryology ; Spinal Cord - physiology ; Swimming ; Synapses ; Vertebrates ; Zebrafish ; Zebrafish - embryology ; Zebrafish - physiology</subject><ispartof>Science (American Association for the Advancement of Science), 2020-10, Vol.370 (6515), p.431-436</ispartof><rights>Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.</rights><rights>Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c366t-94fdd0d797c001f0f36dd7825c2b2cbc260e70df9803f8788e813a635bf4cdcc3</citedby><cites>FETCH-LOGICAL-c366t-94fdd0d797c001f0f36dd7825c2b2cbc260e70df9803f8788e813a635bf4cdcc3</cites><orcidid>0000-0003-1371-3707 ; 0000-0002-0974-7368 ; 0000-0001-6337-2301 ; 0000-0001-7868-8325</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2871,2872,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33093104$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kishore, Sandeep</creatorcontrib><creatorcontrib>Cadoff, Eli B</creatorcontrib><creatorcontrib>Agha, Moneeza A</creatorcontrib><creatorcontrib>McLean, David L</creatorcontrib><title>Orderly compartmental mapping of premotor inhibition in the developing zebrafish spinal cord</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>In vertebrates, faster movements involve the orderly recruitment of different types of spinal motor neurons. However, it is not known how premotor inhibitory circuits are organized to ensure alternating motor output at different movement speeds. We found that different types of commissural inhibitory interneurons in zebrafish form compartmental microcircuits during development that align inhibitory strength and recruitment order. Axonal microcircuits develop first and provide the most potent premotor inhibition during the fastest movements, followed by perisomatic microcircuits, and then dendritic microcircuits that provide the weakest inhibition during the slowest movements. The conversion of a temporal sequence of neuronal development into a spatial pattern of inhibitory connections provides an "ontogenotopic" solution to the problem of shaping spinal motor output at different speeds of movement.</description><subject>Animals</subject><subject>Axons - physiology</subject><subject>Circuits</subject><subject>Commissural Interneurons - physiology</subject><subject>Danio rerio</subject><subject>Inhibition</subject><subject>Interneurons</subject><subject>Locomotion</subject><subject>Motor neurons</subject><subject>Motor Neurons - physiology</subject><subject>Nerve Net - embryology</subject><subject>Neurogenesis</subject><subject>Neurons</subject><subject>Recruitment</subject><subject>Spinal cord</subject><subject>Spinal Cord - embryology</subject><subject>Spinal Cord - physiology</subject><subject>Swimming</subject><subject>Synapses</subject><subject>Vertebrates</subject><subject>Zebrafish</subject><subject>Zebrafish - embryology</subject><subject>Zebrafish - physiology</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkD1PwzAQhi0EoqUws6FILCxpz3HixCOq-JKQusCGFDn2mbpK4mAnSOXXE9rCwHR3uudenR5CLinMKU34IiiLrcK5rKqUQ3FEphREFosE2DGZAjAeF5BnE3IWwgZg3Al2SiaMgWAU0il5W3mNvt5GyjWd9H2DbS_rqJFdZ9v3yJmo89i43vnItmtb2d66dmyjfo2Rxk-s3Q78wspLY8M6CuM8Jijn9Tk5MbIOeHGoM_J6f_eyfIyfVw9Py9vnWDHO-1ikRmvQucgVADVgGNc6L5JMJVWiKpVwwBy0EQUwU-RFgQVlkrOsMqnSSrEZudnndt59DBj6srFBYV3LFt0QyiTNUgpMZGxEr_-hGzf48eEdxXLBIaMjtdhTyrsQPJqy87aRfltSKH_Elwfx5UH8eHF1yB2qBvUf_2uafQN6wYIE</recordid><startdate>20201023</startdate><enddate>20201023</enddate><creator>Kishore, Sandeep</creator><creator>Cadoff, Eli B</creator><creator>Agha, Moneeza A</creator><creator>McLean, David L</creator><general>The American Association for the Advancement of Science</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1371-3707</orcidid><orcidid>https://orcid.org/0000-0002-0974-7368</orcidid><orcidid>https://orcid.org/0000-0001-6337-2301</orcidid><orcidid>https://orcid.org/0000-0001-7868-8325</orcidid></search><sort><creationdate>20201023</creationdate><title>Orderly compartmental mapping of premotor inhibition in the developing zebrafish spinal cord</title><author>Kishore, Sandeep ; Cadoff, Eli B ; Agha, Moneeza A ; McLean, David L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-94fdd0d797c001f0f36dd7825c2b2cbc260e70df9803f8788e813a635bf4cdcc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Axons - physiology</topic><topic>Circuits</topic><topic>Commissural Interneurons - physiology</topic><topic>Danio rerio</topic><topic>Inhibition</topic><topic>Interneurons</topic><topic>Locomotion</topic><topic>Motor neurons</topic><topic>Motor Neurons - physiology</topic><topic>Nerve Net - embryology</topic><topic>Neurogenesis</topic><topic>Neurons</topic><topic>Recruitment</topic><topic>Spinal cord</topic><topic>Spinal Cord - embryology</topic><topic>Spinal Cord - physiology</topic><topic>Swimming</topic><topic>Synapses</topic><topic>Vertebrates</topic><topic>Zebrafish</topic><topic>Zebrafish - embryology</topic><topic>Zebrafish - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kishore, Sandeep</creatorcontrib><creatorcontrib>Cadoff, Eli B</creatorcontrib><creatorcontrib>Agha, Moneeza A</creatorcontrib><creatorcontrib>McLean, David L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kishore, Sandeep</au><au>Cadoff, Eli B</au><au>Agha, Moneeza A</au><au>McLean, David L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Orderly compartmental mapping of premotor inhibition in the developing zebrafish spinal cord</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2020-10-23</date><risdate>2020</risdate><volume>370</volume><issue>6515</issue><spage>431</spage><epage>436</epage><pages>431-436</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>In vertebrates, faster movements involve the orderly recruitment of different types of spinal motor neurons. However, it is not known how premotor inhibitory circuits are organized to ensure alternating motor output at different movement speeds. We found that different types of commissural inhibitory interneurons in zebrafish form compartmental microcircuits during development that align inhibitory strength and recruitment order. Axonal microcircuits develop first and provide the most potent premotor inhibition during the fastest movements, followed by perisomatic microcircuits, and then dendritic microcircuits that provide the weakest inhibition during the slowest movements. The conversion of a temporal sequence of neuronal development into a spatial pattern of inhibitory connections provides an "ontogenotopic" solution to the problem of shaping spinal motor output at different speeds of movement.</abstract><cop>United States</cop><pub>The American Association for the Advancement of Science</pub><pmid>33093104</pmid><doi>10.1126/science.abb4608</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-1371-3707</orcidid><orcidid>https://orcid.org/0000-0002-0974-7368</orcidid><orcidid>https://orcid.org/0000-0001-6337-2301</orcidid><orcidid>https://orcid.org/0000-0001-7868-8325</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2020-10, Vol.370 (6515), p.431-436
issn 0036-8075
1095-9203
language eng
recordid cdi_proquest_miscellaneous_2454103953
source MEDLINE; Science Magazine
subjects Animals
Axons - physiology
Circuits
Commissural Interneurons - physiology
Danio rerio
Inhibition
Interneurons
Locomotion
Motor neurons
Motor Neurons - physiology
Nerve Net - embryology
Neurogenesis
Neurons
Recruitment
Spinal cord
Spinal Cord - embryology
Spinal Cord - physiology
Swimming
Synapses
Vertebrates
Zebrafish
Zebrafish - embryology
Zebrafish - physiology
title Orderly compartmental mapping of premotor inhibition in the developing zebrafish spinal cord
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T02%3A55%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Orderly%20compartmental%20mapping%20of%20premotor%20inhibition%20in%20the%20developing%20zebrafish%20spinal%20cord&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Kishore,%20Sandeep&rft.date=2020-10-23&rft.volume=370&rft.issue=6515&rft.spage=431&rft.epage=436&rft.pages=431-436&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.abb4608&rft_dat=%3Cproquest_cross%3E2453796051%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2453796051&rft_id=info:pmid/33093104&rfr_iscdi=true