Exergetic sustainability analysis of industrial furnace: a case study
Industrial furnaces play a significant role in industrial energy consumption and production. Minimizing losses from these furnaces can contribute to industrial sustainability. Exergy being an optimization tool can reduce energy loss and emission from furnaces and contribute to environmental sustaina...
Gespeichert in:
Veröffentlicht in: | Environmental science and pollution research international 2021-03, Vol.28 (10), p.12881-12888 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12888 |
---|---|
container_issue | 10 |
container_start_page | 12881 |
container_title | Environmental science and pollution research international |
container_volume | 28 |
creator | Chowdhury, Hemal Chowdhury, Tamal Hossain, Nazia Chowdhury, Piyal Salam, Bodius Sait, Sadiq M. Mahlia, Teuku Meurah Indra |
description | Industrial furnaces play a significant role in industrial energy consumption and production. Minimizing losses from these furnaces can contribute to industrial sustainability. Exergy being an optimization tool can reduce energy loss and emission from furnaces and contribute to environmental sustainability. Currently, no exergy-based sustainability analysis has been adopted in the literature. In this analysis, a reheater furnace that is fired by natural gas is analyzed in terms of energy and exergy utilization. To address the sustainability of the furnace, several exergy-based sustainability parameters have been used. The overall energy efficiency of the furnace is 93.40%, while exergy efficiency is only 27.37%. From sustainability analysis, it is found that 72.63% of the fuel is diminished from the furnace, and it contributes to a lower sustainability index of 1.38. Higher exergy losses from this furnace positively affect the environment, which is validated from the higher value of the environmental destruction coefficient, the environmental destruction index, and the lower value of the environmental benign index. The value of the environmental destruction coefficient is 3.65, and the value of the environmental benign index is 0.38. Recovering waste energy and optimizing auxiliary equipment will increase the value of sustainability parameters. |
doi_str_mv | 10.1007/s11356-020-11280-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2454102170</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2494718689</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-a1ea373b50da3a783519502e1311d02e50eddbc2adce7dae35f0719bc5397dc03</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EoqXwBxhQJBaWgM926pgNVeVDqsQCs3WxncpVmhQ7kci_J6F8SAxMN7zPvXd6CDkHeg2UypsIwLN5ShlNAVhOU35ApjAHkUqh1CGZUiVEClyICTmJcUMHUjF5TCacj9GcTcly-e7C2rXeJLGLLfoaC1_5tk-wxqqPPiZNmfjaDmHwWCVlF2o07jbBxGB0SWw725-SoxKr6M6-5oy83i9fFo_p6vnhaXG3So3geZsiOOSSFxm1yFHmPAOVUeaAA9hhZtRZWxiG1jhp0fGspBJUYTKupDWUz8jVvncXmrfOxVZvfTSuqrB2TRc1E5kAykCO6OUfdNOMr1cjpYSEfJ6rgWJ7yoQmxuBKvQt-i6HXQPUoWe8l60Gd_pSs-bB08VXdFVtnf1a-rQ4A3wNxiOq1C7-3_6n9AP7whs4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2494718689</pqid></control><display><type>article</type><title>Exergetic sustainability analysis of industrial furnace: a case study</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Chowdhury, Hemal ; Chowdhury, Tamal ; Hossain, Nazia ; Chowdhury, Piyal ; Salam, Bodius ; Sait, Sadiq M. ; Mahlia, Teuku Meurah Indra</creator><creatorcontrib>Chowdhury, Hemal ; Chowdhury, Tamal ; Hossain, Nazia ; Chowdhury, Piyal ; Salam, Bodius ; Sait, Sadiq M. ; Mahlia, Teuku Meurah Indra</creatorcontrib><description>Industrial furnaces play a significant role in industrial energy consumption and production. Minimizing losses from these furnaces can contribute to industrial sustainability. Exergy being an optimization tool can reduce energy loss and emission from furnaces and contribute to environmental sustainability. Currently, no exergy-based sustainability analysis has been adopted in the literature. In this analysis, a reheater furnace that is fired by natural gas is analyzed in terms of energy and exergy utilization. To address the sustainability of the furnace, several exergy-based sustainability parameters have been used. The overall energy efficiency of the furnace is 93.40%, while exergy efficiency is only 27.37%. From sustainability analysis, it is found that 72.63% of the fuel is diminished from the furnace, and it contributes to a lower sustainability index of 1.38. Higher exergy losses from this furnace positively affect the environment, which is validated from the higher value of the environmental destruction coefficient, the environmental destruction index, and the lower value of the environmental benign index. The value of the environmental destruction coefficient is 3.65, and the value of the environmental benign index is 0.38. Recovering waste energy and optimizing auxiliary equipment will increase the value of sustainability parameters.</description><identifier>ISSN: 0944-1344</identifier><identifier>EISSN: 1614-7499</identifier><identifier>DOI: 10.1007/s11356-020-11280-3</identifier><identifier>PMID: 33094462</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Aquatic Pollution ; Atmospheric Protection/Air Quality Control/Air Pollution ; Conservation of Energy Resources ; Destruction ; Earth and Environmental Science ; Ecotoxicology ; Energy consumption ; Energy dissipation ; Energy efficiency ; Energy loss ; Environment ; Environmental Chemistry ; Environmental degradation ; Environmental Health ; Environmental science ; Exergy ; Furnaces ; Industrial energy ; Industry ; Natural gas ; Optimization ; Parameters ; Research Article ; Sustainability ; Thermodynamics ; Waste Water Technology ; Water Management ; Water Pollution Control</subject><ispartof>Environmental science and pollution research international, 2021-03, Vol.28 (10), p.12881-12888</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-a1ea373b50da3a783519502e1311d02e50eddbc2adce7dae35f0719bc5397dc03</citedby><cites>FETCH-LOGICAL-c438t-a1ea373b50da3a783519502e1311d02e50eddbc2adce7dae35f0719bc5397dc03</cites><orcidid>0000-0001-7925-0894</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11356-020-11280-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11356-020-11280-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33094462$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chowdhury, Hemal</creatorcontrib><creatorcontrib>Chowdhury, Tamal</creatorcontrib><creatorcontrib>Hossain, Nazia</creatorcontrib><creatorcontrib>Chowdhury, Piyal</creatorcontrib><creatorcontrib>Salam, Bodius</creatorcontrib><creatorcontrib>Sait, Sadiq M.</creatorcontrib><creatorcontrib>Mahlia, Teuku Meurah Indra</creatorcontrib><title>Exergetic sustainability analysis of industrial furnace: a case study</title><title>Environmental science and pollution research international</title><addtitle>Environ Sci Pollut Res</addtitle><addtitle>Environ Sci Pollut Res Int</addtitle><description>Industrial furnaces play a significant role in industrial energy consumption and production. Minimizing losses from these furnaces can contribute to industrial sustainability. Exergy being an optimization tool can reduce energy loss and emission from furnaces and contribute to environmental sustainability. Currently, no exergy-based sustainability analysis has been adopted in the literature. In this analysis, a reheater furnace that is fired by natural gas is analyzed in terms of energy and exergy utilization. To address the sustainability of the furnace, several exergy-based sustainability parameters have been used. The overall energy efficiency of the furnace is 93.40%, while exergy efficiency is only 27.37%. From sustainability analysis, it is found that 72.63% of the fuel is diminished from the furnace, and it contributes to a lower sustainability index of 1.38. Higher exergy losses from this furnace positively affect the environment, which is validated from the higher value of the environmental destruction coefficient, the environmental destruction index, and the lower value of the environmental benign index. The value of the environmental destruction coefficient is 3.65, and the value of the environmental benign index is 0.38. Recovering waste energy and optimizing auxiliary equipment will increase the value of sustainability parameters.</description><subject>Aquatic Pollution</subject><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>Conservation of Energy Resources</subject><subject>Destruction</subject><subject>Earth and Environmental Science</subject><subject>Ecotoxicology</subject><subject>Energy consumption</subject><subject>Energy dissipation</subject><subject>Energy efficiency</subject><subject>Energy loss</subject><subject>Environment</subject><subject>Environmental Chemistry</subject><subject>Environmental degradation</subject><subject>Environmental Health</subject><subject>Environmental science</subject><subject>Exergy</subject><subject>Furnaces</subject><subject>Industrial energy</subject><subject>Industry</subject><subject>Natural gas</subject><subject>Optimization</subject><subject>Parameters</subject><subject>Research Article</subject><subject>Sustainability</subject><subject>Thermodynamics</subject><subject>Waste Water Technology</subject><subject>Water Management</subject><subject>Water Pollution Control</subject><issn>0944-1344</issn><issn>1614-7499</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kD1PwzAQhi0EoqXwBxhQJBaWgM926pgNVeVDqsQCs3WxncpVmhQ7kci_J6F8SAxMN7zPvXd6CDkHeg2UypsIwLN5ShlNAVhOU35ApjAHkUqh1CGZUiVEClyICTmJcUMHUjF5TCacj9GcTcly-e7C2rXeJLGLLfoaC1_5tk-wxqqPPiZNmfjaDmHwWCVlF2o07jbBxGB0SWw725-SoxKr6M6-5oy83i9fFo_p6vnhaXG3So3geZsiOOSSFxm1yFHmPAOVUeaAA9hhZtRZWxiG1jhp0fGspBJUYTKupDWUz8jVvncXmrfOxVZvfTSuqrB2TRc1E5kAykCO6OUfdNOMr1cjpYSEfJ6rgWJ7yoQmxuBKvQt-i6HXQPUoWe8l60Gd_pSs-bB08VXdFVtnf1a-rQ4A3wNxiOq1C7-3_6n9AP7whs4</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Chowdhury, Hemal</creator><creator>Chowdhury, Tamal</creator><creator>Hossain, Nazia</creator><creator>Chowdhury, Piyal</creator><creator>Salam, Bodius</creator><creator>Sait, Sadiq M.</creator><creator>Mahlia, Teuku Meurah Indra</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7T7</scope><scope>7TV</scope><scope>7U7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>P64</scope><scope>PATMY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7925-0894</orcidid></search><sort><creationdate>20210301</creationdate><title>Exergetic sustainability analysis of industrial furnace: a case study</title><author>Chowdhury, Hemal ; Chowdhury, Tamal ; Hossain, Nazia ; Chowdhury, Piyal ; Salam, Bodius ; Sait, Sadiq M. ; Mahlia, Teuku Meurah Indra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-a1ea373b50da3a783519502e1311d02e50eddbc2adce7dae35f0719bc5397dc03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aquatic Pollution</topic><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>Conservation of Energy Resources</topic><topic>Destruction</topic><topic>Earth and Environmental Science</topic><topic>Ecotoxicology</topic><topic>Energy consumption</topic><topic>Energy dissipation</topic><topic>Energy efficiency</topic><topic>Energy loss</topic><topic>Environment</topic><topic>Environmental Chemistry</topic><topic>Environmental degradation</topic><topic>Environmental Health</topic><topic>Environmental science</topic><topic>Exergy</topic><topic>Furnaces</topic><topic>Industrial energy</topic><topic>Industry</topic><topic>Natural gas</topic><topic>Optimization</topic><topic>Parameters</topic><topic>Research Article</topic><topic>Sustainability</topic><topic>Thermodynamics</topic><topic>Waste Water Technology</topic><topic>Water Management</topic><topic>Water Pollution Control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chowdhury, Hemal</creatorcontrib><creatorcontrib>Chowdhury, Tamal</creatorcontrib><creatorcontrib>Hossain, Nazia</creatorcontrib><creatorcontrib>Chowdhury, Piyal</creatorcontrib><creatorcontrib>Salam, Bodius</creatorcontrib><creatorcontrib>Sait, Sadiq M.</creatorcontrib><creatorcontrib>Mahlia, Teuku Meurah Indra</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Pollution Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental science and pollution research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chowdhury, Hemal</au><au>Chowdhury, Tamal</au><au>Hossain, Nazia</au><au>Chowdhury, Piyal</au><au>Salam, Bodius</au><au>Sait, Sadiq M.</au><au>Mahlia, Teuku Meurah Indra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exergetic sustainability analysis of industrial furnace: a case study</atitle><jtitle>Environmental science and pollution research international</jtitle><stitle>Environ Sci Pollut Res</stitle><addtitle>Environ Sci Pollut Res Int</addtitle><date>2021-03-01</date><risdate>2021</risdate><volume>28</volume><issue>10</issue><spage>12881</spage><epage>12888</epage><pages>12881-12888</pages><issn>0944-1344</issn><eissn>1614-7499</eissn><abstract>Industrial furnaces play a significant role in industrial energy consumption and production. Minimizing losses from these furnaces can contribute to industrial sustainability. Exergy being an optimization tool can reduce energy loss and emission from furnaces and contribute to environmental sustainability. Currently, no exergy-based sustainability analysis has been adopted in the literature. In this analysis, a reheater furnace that is fired by natural gas is analyzed in terms of energy and exergy utilization. To address the sustainability of the furnace, several exergy-based sustainability parameters have been used. The overall energy efficiency of the furnace is 93.40%, while exergy efficiency is only 27.37%. From sustainability analysis, it is found that 72.63% of the fuel is diminished from the furnace, and it contributes to a lower sustainability index of 1.38. Higher exergy losses from this furnace positively affect the environment, which is validated from the higher value of the environmental destruction coefficient, the environmental destruction index, and the lower value of the environmental benign index. The value of the environmental destruction coefficient is 3.65, and the value of the environmental benign index is 0.38. Recovering waste energy and optimizing auxiliary equipment will increase the value of sustainability parameters.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>33094462</pmid><doi>10.1007/s11356-020-11280-3</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-7925-0894</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0944-1344 |
ispartof | Environmental science and pollution research international, 2021-03, Vol.28 (10), p.12881-12888 |
issn | 0944-1344 1614-7499 |
language | eng |
recordid | cdi_proquest_miscellaneous_2454102170 |
source | MEDLINE; SpringerNature Journals |
subjects | Aquatic Pollution Atmospheric Protection/Air Quality Control/Air Pollution Conservation of Energy Resources Destruction Earth and Environmental Science Ecotoxicology Energy consumption Energy dissipation Energy efficiency Energy loss Environment Environmental Chemistry Environmental degradation Environmental Health Environmental science Exergy Furnaces Industrial energy Industry Natural gas Optimization Parameters Research Article Sustainability Thermodynamics Waste Water Technology Water Management Water Pollution Control |
title | Exergetic sustainability analysis of industrial furnace: a case study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T12%3A47%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exergetic%20sustainability%20analysis%20of%20industrial%20furnace:%20a%20case%20study&rft.jtitle=Environmental%20science%20and%20pollution%20research%20international&rft.au=Chowdhury,%20Hemal&rft.date=2021-03-01&rft.volume=28&rft.issue=10&rft.spage=12881&rft.epage=12888&rft.pages=12881-12888&rft.issn=0944-1344&rft.eissn=1614-7499&rft_id=info:doi/10.1007/s11356-020-11280-3&rft_dat=%3Cproquest_cross%3E2494718689%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2494718689&rft_id=info:pmid/33094462&rfr_iscdi=true |