A close‐up comparison of the misclassification error distance and the adjusted Rand index for external clustering evaluation

The misclassification error distance and the adjusted Rand index are two of the most common criteria used to evaluate the performance of clustering algorithms. This paper provides an in‐depth comparison of the two criteria, with the aim of better understand exactly what they measure, their propertie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:British journal of mathematical & statistical psychology 2021-05, Vol.74 (2), p.203-231
1. Verfasser: Chacón, José E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 231
container_issue 2
container_start_page 203
container_title British journal of mathematical & statistical psychology
container_volume 74
creator Chacón, José E.
description The misclassification error distance and the adjusted Rand index are two of the most common criteria used to evaluate the performance of clustering algorithms. This paper provides an in‐depth comparison of the two criteria, with the aim of better understand exactly what they measure, their properties and their differences. Starting from their population origins, the investigation includes many data analysis examples and the study of particular cases in great detail. An exhaustive simulation study provides insight into the criteria distributions and reveals some previous misconceptions.
doi_str_mv 10.1111/bmsp.12212
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2453689529</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2511747265</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3572-da98b71df6b1469eca1468e0866f277c14deee3187c337c89edd7fad64efaa33</originalsourceid><addsrcrecordid>eNp90cFO3DAQBmALtYItcOEBkCUuqFKox07i5EhRSytRFQH3yGuPW6-SOLWTAhfUR-gz8iQ4u9ADh_oykufTb1k_IQfATiCdD8suDifAOfAtsuAsz7NKgHxDFowxmQEwvkPexbhiDHjBym2yIwSrWQHVgjycUt36iI9__k4D1b4bVHDR99RbOv5E2rmoWxWjs06r0aUFhuADNS6OqtdIVW_WUJnVFEc09Gq-cb3BO2oTxLsRQ6_a9My8D67_QfG3aqd12h55a1Ubcf957pKbz59uzr5kF9_Pv56dXmRaFJJnRtXVUoKx5RLyskat0qiQVWVpuZQacoOIAiqphZC6qtEYaZUpc7RKCbFLjjexQ_C_JoxjM_8L21b16KfY8LwQZVUXvE706BVd-Wn-QFIFgMwlL4uk3m-UDj7GgLYZgutUuG-ANXMpzVxKsy4l4cPnyGnZoflHX1pIADbg1rV4_5-o5uO368tN6BPJM5ph</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2511747265</pqid></control><display><type>article</type><title>A close‐up comparison of the misclassification error distance and the adjusted Rand index for external clustering evaluation</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Chacón, José E.</creator><creatorcontrib>Chacón, José E.</creatorcontrib><description>The misclassification error distance and the adjusted Rand index are two of the most common criteria used to evaluate the performance of clustering algorithms. This paper provides an in‐depth comparison of the two criteria, with the aim of better understand exactly what they measure, their properties and their differences. Starting from their population origins, the investigation includes many data analysis examples and the study of particular cases in great detail. An exhaustive simulation study provides insight into the criteria distributions and reveals some previous misconceptions.</description><identifier>ISSN: 0007-1102</identifier><identifier>EISSN: 2044-8317</identifier><identifier>DOI: 10.1111/bmsp.12212</identifier><identifier>PMID: 33090518</identifier><language>eng</language><publisher>England: British Psychological Society</publisher><subject>adjusted Rand index ; Algorithms ; Classification ; Clustering ; confusion matrix ; Criteria ; Data analysis ; external clustering evaluation ; misclassification error distance ; Performance evaluation</subject><ispartof>British journal of mathematical &amp; statistical psychology, 2021-05, Vol.74 (2), p.203-231</ispartof><rights>2020 The British Psychological Society</rights><rights>2020 The British Psychological Society.</rights><rights>Copyright © 2021 The British Psychological Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3572-da98b71df6b1469eca1468e0866f277c14deee3187c337c89edd7fad64efaa33</citedby><cites>FETCH-LOGICAL-c3572-da98b71df6b1469eca1468e0866f277c14deee3187c337c89edd7fad64efaa33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fbmsp.12212$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fbmsp.12212$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27922,27923,45572,45573</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33090518$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chacón, José E.</creatorcontrib><title>A close‐up comparison of the misclassification error distance and the adjusted Rand index for external clustering evaluation</title><title>British journal of mathematical &amp; statistical psychology</title><addtitle>Br J Math Stat Psychol</addtitle><description>The misclassification error distance and the adjusted Rand index are two of the most common criteria used to evaluate the performance of clustering algorithms. This paper provides an in‐depth comparison of the two criteria, with the aim of better understand exactly what they measure, their properties and their differences. Starting from their population origins, the investigation includes many data analysis examples and the study of particular cases in great detail. An exhaustive simulation study provides insight into the criteria distributions and reveals some previous misconceptions.</description><subject>adjusted Rand index</subject><subject>Algorithms</subject><subject>Classification</subject><subject>Clustering</subject><subject>confusion matrix</subject><subject>Criteria</subject><subject>Data analysis</subject><subject>external clustering evaluation</subject><subject>misclassification error distance</subject><subject>Performance evaluation</subject><issn>0007-1102</issn><issn>2044-8317</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp90cFO3DAQBmALtYItcOEBkCUuqFKox07i5EhRSytRFQH3yGuPW6-SOLWTAhfUR-gz8iQ4u9ADh_oykufTb1k_IQfATiCdD8suDifAOfAtsuAsz7NKgHxDFowxmQEwvkPexbhiDHjBym2yIwSrWQHVgjycUt36iI9__k4D1b4bVHDR99RbOv5E2rmoWxWjs06r0aUFhuADNS6OqtdIVW_WUJnVFEc09Gq-cb3BO2oTxLsRQ6_a9My8D67_QfG3aqd12h55a1Ubcf957pKbz59uzr5kF9_Pv56dXmRaFJJnRtXVUoKx5RLyskat0qiQVWVpuZQacoOIAiqphZC6qtEYaZUpc7RKCbFLjjexQ_C_JoxjM_8L21b16KfY8LwQZVUXvE706BVd-Wn-QFIFgMwlL4uk3m-UDj7GgLYZgutUuG-ANXMpzVxKsy4l4cPnyGnZoflHX1pIADbg1rV4_5-o5uO368tN6BPJM5ph</recordid><startdate>202105</startdate><enddate>202105</enddate><creator>Chacón, José E.</creator><general>British Psychological Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>K9.</scope><scope>7X8</scope></search><sort><creationdate>202105</creationdate><title>A close‐up comparison of the misclassification error distance and the adjusted Rand index for external clustering evaluation</title><author>Chacón, José E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3572-da98b71df6b1469eca1468e0866f277c14deee3187c337c89edd7fad64efaa33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>adjusted Rand index</topic><topic>Algorithms</topic><topic>Classification</topic><topic>Clustering</topic><topic>confusion matrix</topic><topic>Criteria</topic><topic>Data analysis</topic><topic>external clustering evaluation</topic><topic>misclassification error distance</topic><topic>Performance evaluation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chacón, José E.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>British journal of mathematical &amp; statistical psychology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chacón, José E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A close‐up comparison of the misclassification error distance and the adjusted Rand index for external clustering evaluation</atitle><jtitle>British journal of mathematical &amp; statistical psychology</jtitle><addtitle>Br J Math Stat Psychol</addtitle><date>2021-05</date><risdate>2021</risdate><volume>74</volume><issue>2</issue><spage>203</spage><epage>231</epage><pages>203-231</pages><issn>0007-1102</issn><eissn>2044-8317</eissn><abstract>The misclassification error distance and the adjusted Rand index are two of the most common criteria used to evaluate the performance of clustering algorithms. This paper provides an in‐depth comparison of the two criteria, with the aim of better understand exactly what they measure, their properties and their differences. Starting from their population origins, the investigation includes many data analysis examples and the study of particular cases in great detail. An exhaustive simulation study provides insight into the criteria distributions and reveals some previous misconceptions.</abstract><cop>England</cop><pub>British Psychological Society</pub><pmid>33090518</pmid><doi>10.1111/bmsp.12212</doi><tpages>29</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0007-1102
ispartof British journal of mathematical & statistical psychology, 2021-05, Vol.74 (2), p.203-231
issn 0007-1102
2044-8317
language eng
recordid cdi_proquest_miscellaneous_2453689529
source Wiley Online Library Journals Frontfile Complete
subjects adjusted Rand index
Algorithms
Classification
Clustering
confusion matrix
Criteria
Data analysis
external clustering evaluation
misclassification error distance
Performance evaluation
title A close‐up comparison of the misclassification error distance and the adjusted Rand index for external clustering evaluation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T15%3A08%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20close%E2%80%90up%20comparison%20of%20the%20misclassification%20error%20distance%20and%20the%20adjusted%20Rand%20index%20for%20external%20clustering%20evaluation&rft.jtitle=British%20journal%20of%20mathematical%20&%20statistical%20psychology&rft.au=Chac%C3%B3n,%20Jos%C3%A9%20E.&rft.date=2021-05&rft.volume=74&rft.issue=2&rft.spage=203&rft.epage=231&rft.pages=203-231&rft.issn=0007-1102&rft.eissn=2044-8317&rft_id=info:doi/10.1111/bmsp.12212&rft_dat=%3Cproquest_cross%3E2511747265%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2511747265&rft_id=info:pmid/33090518&rfr_iscdi=true