The protective role of corilagin on renal calcium oxalate crystal‐induced oxidative stress, inflammatory response, and apoptosis via PPAR‐γ and PI3K/Akt pathway in rats
Kidney stones, also known as calcium oxalate (CaOx) nephrolithiasis, are often asymptomatic, leading to kidney injury and renal failure complications. Corilagin is a gallotannin found in various plants and is known to elicit various biological activities. The present study aimed to elucidate the ren...
Gespeichert in:
Veröffentlicht in: | Biotechnology and applied biochemistry 2021-12, Vol.68 (6), p.1323-1331, Article bab.2054 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1331 |
---|---|
container_issue | 6 |
container_start_page | 1323 |
container_title | Biotechnology and applied biochemistry |
container_volume | 68 |
creator | Yuan, Haibo Zhang, Jinghong Yin, Xiaosong Liu, Tongwei Yue, Xiao Li, Chuangui Wang, Yuanyuan Li, Ding Wang, Qiang |
description | Kidney stones, also known as calcium oxalate (CaOx) nephrolithiasis, are often asymptomatic, leading to kidney injury and renal failure complications. Corilagin is a gallotannin found in various plants and is known to elicit various biological activities. The present study aimed to elucidate the renoprotective effect of corilagin against the rats’ renal stones deposition. The rats were induced for nephrolithiasis (CaOx deposition) using 0.75% ethylene glycol in their drinking water. Then, they were treated with corilagin at 50 and 100 mg/kg/day for 4 weeks. At the end of the experimental period, the rats were killed; blood and renal tissues were collected for various histological, biochemical, and gene expression analyses. The results demonstrated that the rats had renal calculi displaying a significant increase in serum creatinine (59.39 μmol/L) and blood urea nitrogen (19.03 mmol/L) levels compared with controls. Moreover, the malondialdehyde (13.29 nmol/mg) level was found to increase with a profound reduction in antioxidants’ activities with upregulated inflammatory cytokines. In contrast, the RT‐PCR and immunohistochemistry analysis demonstrated a substantial reduction in cell survival markers PPAR‐γ and PI3K/Akt with an apparent increase in apoptosis markers genes expressions in rats suffering from renal stones. Thus, the present study results suggest that corilagin could suppress renal CaOx crystal‐induced oxidative stress, inflammatory response, and apoptosis via PPAR‐γ and PI3K/Akt‐mediated pathway.
Corilagin could suppress renal CaOx crystal‐induced oxidative stress, inflammatory response, and apoptosis via PPAR‐γ and PI3K/Akt mediated pathway |
doi_str_mv | 10.1002/bab.2054 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2452981369</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2452981369</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3494-6ead7ff146eb27eb0fa23d7f6a7db07aacbf45dee8e908b3c34ee1405cd9e64a3</originalsourceid><addsrcrecordid>eNp1kU9u1TAQhy0Eoo-CxAmQJTZdNK0dO4mzfK34U1GJJ1TW0cSZUBcnDrbTkh1H4CKsuAeH4CT4vRaQkFiNNPPNt_j9CHnK2RFnLD9uoT3KWSHvkRWXFctUJeV9smJKFZksuNgjj0K4YoypSuUPyZ4QTDFWqRX5dnGJdPIuoo7mGql3FqnrqXbeWPhgRupG6nEESzVYbeaBus9gISLVfgkR7M8vX83YzRq7dDEd7DQhegzhkJqxtzAMEJ1fkiZMbgx4SGHsKExuii6YQK8N0M1m_S6Zfnzf3TZn4s3x-mOkE8TLG1iSh3qI4TF50IMN-ORu7pP3L19cnL7Ozt--Ojtdn2dayFpmJUJX9T2XJbZ5hS3rIRdpU0LVtawC0G0viw5RYc1UK9IXIpes0F2NpQSxTw5uvSmZTzOG2AwmaLQWRnRzaHJZ5LXioqwT-vwf9MrNPuWVqJJvIy9E_VeovQvBY99M3gzgl4azZlthkypsthUm9NmdcG4H7P6AvztLQHYL3BiLy39Fzcn6ZCf8BfEdqrM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2610008539</pqid></control><display><type>article</type><title>The protective role of corilagin on renal calcium oxalate crystal‐induced oxidative stress, inflammatory response, and apoptosis via PPAR‐γ and PI3K/Akt pathway in rats</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Yuan, Haibo ; Zhang, Jinghong ; Yin, Xiaosong ; Liu, Tongwei ; Yue, Xiao ; Li, Chuangui ; Wang, Yuanyuan ; Li, Ding ; Wang, Qiang</creator><creatorcontrib>Yuan, Haibo ; Zhang, Jinghong ; Yin, Xiaosong ; Liu, Tongwei ; Yue, Xiao ; Li, Chuangui ; Wang, Yuanyuan ; Li, Ding ; Wang, Qiang</creatorcontrib><description>Kidney stones, also known as calcium oxalate (CaOx) nephrolithiasis, are often asymptomatic, leading to kidney injury and renal failure complications. Corilagin is a gallotannin found in various plants and is known to elicit various biological activities. The present study aimed to elucidate the renoprotective effect of corilagin against the rats’ renal stones deposition. The rats were induced for nephrolithiasis (CaOx deposition) using 0.75% ethylene glycol in their drinking water. Then, they were treated with corilagin at 50 and 100 mg/kg/day for 4 weeks. At the end of the experimental period, the rats were killed; blood and renal tissues were collected for various histological, biochemical, and gene expression analyses. The results demonstrated that the rats had renal calculi displaying a significant increase in serum creatinine (59.39 μmol/L) and blood urea nitrogen (19.03 mmol/L) levels compared with controls. Moreover, the malondialdehyde (13.29 nmol/mg) level was found to increase with a profound reduction in antioxidants’ activities with upregulated inflammatory cytokines. In contrast, the RT‐PCR and immunohistochemistry analysis demonstrated a substantial reduction in cell survival markers PPAR‐γ and PI3K/Akt with an apparent increase in apoptosis markers genes expressions in rats suffering from renal stones. Thus, the present study results suggest that corilagin could suppress renal CaOx crystal‐induced oxidative stress, inflammatory response, and apoptosis via PPAR‐γ and PI3K/Akt‐mediated pathway.
Corilagin could suppress renal CaOx crystal‐induced oxidative stress, inflammatory response, and apoptosis via PPAR‐γ and PI3K/Akt mediated pathway</description><identifier>ISSN: 0885-4513</identifier><identifier>EISSN: 1470-8744</identifier><identifier>DOI: 10.1002/bab.2054</identifier><identifier>PMID: 33080078</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>1-Phosphatidylinositol 3-kinase ; AKT protein ; Animals ; Antioxidants ; Apoptosis ; Apoptosis - drug effects ; Biomarkers ; Blood ; Calcium ; Calcium oxalate ; Calcium Oxalate - antagonists & inhibitors ; Calcium Oxalate - pharmacology ; Calculi ; Cell survival ; Complications ; corilagin ; Creatinine ; Crystallization ; Cytokines ; Deposition ; Drinking water ; Ethylene glycol ; Gallotannin ; Gene expression ; Glucosides - pharmacology ; Hydrolyzable Tannins - pharmacology ; Immunohistochemistry ; Inflammation ; Inflammation - drug therapy ; Inflammation - metabolism ; Inflammatory response ; Kidney stones ; Kidneys ; Male ; Malondialdehyde ; Nephrolithiasis ; Oxalic acid ; Oxidative stress ; Oxidative Stress - drug effects ; Peroxisome proliferator-activated receptors ; Phosphatidylinositol 3-Kinases - metabolism ; PI3K/Akt pathway ; PPAR gamma - antagonists & inhibitors ; PPAR gamma - metabolism ; Protective Agents - pharmacology ; Proto-Oncogene Proteins c-akt - antagonists & inhibitors ; Proto-Oncogene Proteins c-akt - metabolism ; Rats ; Rats, Wistar ; Reduction ; Renal failure ; Signal Transduction - drug effects ; Urea</subject><ispartof>Biotechnology and applied biochemistry, 2021-12, Vol.68 (6), p.1323-1331, Article bab.2054</ispartof><rights>2020 International Union of Biochemistry and Molecular Biology, Inc.</rights><rights>2021 International Union of Biochemistry and Molecular Biology, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3494-6ead7ff146eb27eb0fa23d7f6a7db07aacbf45dee8e908b3c34ee1405cd9e64a3</citedby><cites>FETCH-LOGICAL-c3494-6ead7ff146eb27eb0fa23d7f6a7db07aacbf45dee8e908b3c34ee1405cd9e64a3</cites><orcidid>0000-0002-2731-1584 ; 0000-0002-6644-8276</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbab.2054$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbab.2054$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33080078$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yuan, Haibo</creatorcontrib><creatorcontrib>Zhang, Jinghong</creatorcontrib><creatorcontrib>Yin, Xiaosong</creatorcontrib><creatorcontrib>Liu, Tongwei</creatorcontrib><creatorcontrib>Yue, Xiao</creatorcontrib><creatorcontrib>Li, Chuangui</creatorcontrib><creatorcontrib>Wang, Yuanyuan</creatorcontrib><creatorcontrib>Li, Ding</creatorcontrib><creatorcontrib>Wang, Qiang</creatorcontrib><title>The protective role of corilagin on renal calcium oxalate crystal‐induced oxidative stress, inflammatory response, and apoptosis via PPAR‐γ and PI3K/Akt pathway in rats</title><title>Biotechnology and applied biochemistry</title><addtitle>Biotechnol Appl Biochem</addtitle><description>Kidney stones, also known as calcium oxalate (CaOx) nephrolithiasis, are often asymptomatic, leading to kidney injury and renal failure complications. Corilagin is a gallotannin found in various plants and is known to elicit various biological activities. The present study aimed to elucidate the renoprotective effect of corilagin against the rats’ renal stones deposition. The rats were induced for nephrolithiasis (CaOx deposition) using 0.75% ethylene glycol in their drinking water. Then, they were treated with corilagin at 50 and 100 mg/kg/day for 4 weeks. At the end of the experimental period, the rats were killed; blood and renal tissues were collected for various histological, biochemical, and gene expression analyses. The results demonstrated that the rats had renal calculi displaying a significant increase in serum creatinine (59.39 μmol/L) and blood urea nitrogen (19.03 mmol/L) levels compared with controls. Moreover, the malondialdehyde (13.29 nmol/mg) level was found to increase with a profound reduction in antioxidants’ activities with upregulated inflammatory cytokines. In contrast, the RT‐PCR and immunohistochemistry analysis demonstrated a substantial reduction in cell survival markers PPAR‐γ and PI3K/Akt with an apparent increase in apoptosis markers genes expressions in rats suffering from renal stones. Thus, the present study results suggest that corilagin could suppress renal CaOx crystal‐induced oxidative stress, inflammatory response, and apoptosis via PPAR‐γ and PI3K/Akt‐mediated pathway.
Corilagin could suppress renal CaOx crystal‐induced oxidative stress, inflammatory response, and apoptosis via PPAR‐γ and PI3K/Akt mediated pathway</description><subject>1-Phosphatidylinositol 3-kinase</subject><subject>AKT protein</subject><subject>Animals</subject><subject>Antioxidants</subject><subject>Apoptosis</subject><subject>Apoptosis - drug effects</subject><subject>Biomarkers</subject><subject>Blood</subject><subject>Calcium</subject><subject>Calcium oxalate</subject><subject>Calcium Oxalate - antagonists & inhibitors</subject><subject>Calcium Oxalate - pharmacology</subject><subject>Calculi</subject><subject>Cell survival</subject><subject>Complications</subject><subject>corilagin</subject><subject>Creatinine</subject><subject>Crystallization</subject><subject>Cytokines</subject><subject>Deposition</subject><subject>Drinking water</subject><subject>Ethylene glycol</subject><subject>Gallotannin</subject><subject>Gene expression</subject><subject>Glucosides - pharmacology</subject><subject>Hydrolyzable Tannins - pharmacology</subject><subject>Immunohistochemistry</subject><subject>Inflammation</subject><subject>Inflammation - drug therapy</subject><subject>Inflammation - metabolism</subject><subject>Inflammatory response</subject><subject>Kidney stones</subject><subject>Kidneys</subject><subject>Male</subject><subject>Malondialdehyde</subject><subject>Nephrolithiasis</subject><subject>Oxalic acid</subject><subject>Oxidative stress</subject><subject>Oxidative Stress - drug effects</subject><subject>Peroxisome proliferator-activated receptors</subject><subject>Phosphatidylinositol 3-Kinases - metabolism</subject><subject>PI3K/Akt pathway</subject><subject>PPAR gamma - antagonists & inhibitors</subject><subject>PPAR gamma - metabolism</subject><subject>Protective Agents - pharmacology</subject><subject>Proto-Oncogene Proteins c-akt - antagonists & inhibitors</subject><subject>Proto-Oncogene Proteins c-akt - metabolism</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>Reduction</subject><subject>Renal failure</subject><subject>Signal Transduction - drug effects</subject><subject>Urea</subject><issn>0885-4513</issn><issn>1470-8744</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kU9u1TAQhy0Eoo-CxAmQJTZdNK0dO4mzfK34U1GJJ1TW0cSZUBcnDrbTkh1H4CKsuAeH4CT4vRaQkFiNNPPNt_j9CHnK2RFnLD9uoT3KWSHvkRWXFctUJeV9smJKFZksuNgjj0K4YoypSuUPyZ4QTDFWqRX5dnGJdPIuoo7mGql3FqnrqXbeWPhgRupG6nEESzVYbeaBus9gISLVfgkR7M8vX83YzRq7dDEd7DQhegzhkJqxtzAMEJ1fkiZMbgx4SGHsKExuii6YQK8N0M1m_S6Zfnzf3TZn4s3x-mOkE8TLG1iSh3qI4TF50IMN-ORu7pP3L19cnL7Ozt--Ojtdn2dayFpmJUJX9T2XJbZ5hS3rIRdpU0LVtawC0G0viw5RYc1UK9IXIpes0F2NpQSxTw5uvSmZTzOG2AwmaLQWRnRzaHJZ5LXioqwT-vwf9MrNPuWVqJJvIy9E_VeovQvBY99M3gzgl4azZlthkypsthUm9NmdcG4H7P6AvztLQHYL3BiLy39Fzcn6ZCf8BfEdqrM</recordid><startdate>202112</startdate><enddate>202112</enddate><creator>Yuan, Haibo</creator><creator>Zhang, Jinghong</creator><creator>Yin, Xiaosong</creator><creator>Liu, Tongwei</creator><creator>Yue, Xiao</creator><creator>Li, Chuangui</creator><creator>Wang, Yuanyuan</creator><creator>Li, Ding</creator><creator>Wang, Qiang</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>L7M</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2731-1584</orcidid><orcidid>https://orcid.org/0000-0002-6644-8276</orcidid></search><sort><creationdate>202112</creationdate><title>The protective role of corilagin on renal calcium oxalate crystal‐induced oxidative stress, inflammatory response, and apoptosis via PPAR‐γ and PI3K/Akt pathway in rats</title><author>Yuan, Haibo ; Zhang, Jinghong ; Yin, Xiaosong ; Liu, Tongwei ; Yue, Xiao ; Li, Chuangui ; Wang, Yuanyuan ; Li, Ding ; Wang, Qiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3494-6ead7ff146eb27eb0fa23d7f6a7db07aacbf45dee8e908b3c34ee1405cd9e64a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>1-Phosphatidylinositol 3-kinase</topic><topic>AKT protein</topic><topic>Animals</topic><topic>Antioxidants</topic><topic>Apoptosis</topic><topic>Apoptosis - drug effects</topic><topic>Biomarkers</topic><topic>Blood</topic><topic>Calcium</topic><topic>Calcium oxalate</topic><topic>Calcium Oxalate - antagonists & inhibitors</topic><topic>Calcium Oxalate - pharmacology</topic><topic>Calculi</topic><topic>Cell survival</topic><topic>Complications</topic><topic>corilagin</topic><topic>Creatinine</topic><topic>Crystallization</topic><topic>Cytokines</topic><topic>Deposition</topic><topic>Drinking water</topic><topic>Ethylene glycol</topic><topic>Gallotannin</topic><topic>Gene expression</topic><topic>Glucosides - pharmacology</topic><topic>Hydrolyzable Tannins - pharmacology</topic><topic>Immunohistochemistry</topic><topic>Inflammation</topic><topic>Inflammation - drug therapy</topic><topic>Inflammation - metabolism</topic><topic>Inflammatory response</topic><topic>Kidney stones</topic><topic>Kidneys</topic><topic>Male</topic><topic>Malondialdehyde</topic><topic>Nephrolithiasis</topic><topic>Oxalic acid</topic><topic>Oxidative stress</topic><topic>Oxidative Stress - drug effects</topic><topic>Peroxisome proliferator-activated receptors</topic><topic>Phosphatidylinositol 3-Kinases - metabolism</topic><topic>PI3K/Akt pathway</topic><topic>PPAR gamma - antagonists & inhibitors</topic><topic>PPAR gamma - metabolism</topic><topic>Protective Agents - pharmacology</topic><topic>Proto-Oncogene Proteins c-akt - antagonists & inhibitors</topic><topic>Proto-Oncogene Proteins c-akt - metabolism</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>Reduction</topic><topic>Renal failure</topic><topic>Signal Transduction - drug effects</topic><topic>Urea</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan, Haibo</creatorcontrib><creatorcontrib>Zhang, Jinghong</creatorcontrib><creatorcontrib>Yin, Xiaosong</creatorcontrib><creatorcontrib>Liu, Tongwei</creatorcontrib><creatorcontrib>Yue, Xiao</creatorcontrib><creatorcontrib>Li, Chuangui</creatorcontrib><creatorcontrib>Wang, Yuanyuan</creatorcontrib><creatorcontrib>Li, Ding</creatorcontrib><creatorcontrib>Wang, Qiang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biotechnology and applied biochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuan, Haibo</au><au>Zhang, Jinghong</au><au>Yin, Xiaosong</au><au>Liu, Tongwei</au><au>Yue, Xiao</au><au>Li, Chuangui</au><au>Wang, Yuanyuan</au><au>Li, Ding</au><au>Wang, Qiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The protective role of corilagin on renal calcium oxalate crystal‐induced oxidative stress, inflammatory response, and apoptosis via PPAR‐γ and PI3K/Akt pathway in rats</atitle><jtitle>Biotechnology and applied biochemistry</jtitle><addtitle>Biotechnol Appl Biochem</addtitle><date>2021-12</date><risdate>2021</risdate><volume>68</volume><issue>6</issue><spage>1323</spage><epage>1331</epage><pages>1323-1331</pages><artnum>bab.2054</artnum><issn>0885-4513</issn><eissn>1470-8744</eissn><abstract>Kidney stones, also known as calcium oxalate (CaOx) nephrolithiasis, are often asymptomatic, leading to kidney injury and renal failure complications. Corilagin is a gallotannin found in various plants and is known to elicit various biological activities. The present study aimed to elucidate the renoprotective effect of corilagin against the rats’ renal stones deposition. The rats were induced for nephrolithiasis (CaOx deposition) using 0.75% ethylene glycol in their drinking water. Then, they were treated with corilagin at 50 and 100 mg/kg/day for 4 weeks. At the end of the experimental period, the rats were killed; blood and renal tissues were collected for various histological, biochemical, and gene expression analyses. The results demonstrated that the rats had renal calculi displaying a significant increase in serum creatinine (59.39 μmol/L) and blood urea nitrogen (19.03 mmol/L) levels compared with controls. Moreover, the malondialdehyde (13.29 nmol/mg) level was found to increase with a profound reduction in antioxidants’ activities with upregulated inflammatory cytokines. In contrast, the RT‐PCR and immunohistochemistry analysis demonstrated a substantial reduction in cell survival markers PPAR‐γ and PI3K/Akt with an apparent increase in apoptosis markers genes expressions in rats suffering from renal stones. Thus, the present study results suggest that corilagin could suppress renal CaOx crystal‐induced oxidative stress, inflammatory response, and apoptosis via PPAR‐γ and PI3K/Akt‐mediated pathway.
Corilagin could suppress renal CaOx crystal‐induced oxidative stress, inflammatory response, and apoptosis via PPAR‐γ and PI3K/Akt mediated pathway</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>33080078</pmid><doi>10.1002/bab.2054</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-2731-1584</orcidid><orcidid>https://orcid.org/0000-0002-6644-8276</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0885-4513 |
ispartof | Biotechnology and applied biochemistry, 2021-12, Vol.68 (6), p.1323-1331, Article bab.2054 |
issn | 0885-4513 1470-8744 |
language | eng |
recordid | cdi_proquest_miscellaneous_2452981369 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | 1-Phosphatidylinositol 3-kinase AKT protein Animals Antioxidants Apoptosis Apoptosis - drug effects Biomarkers Blood Calcium Calcium oxalate Calcium Oxalate - antagonists & inhibitors Calcium Oxalate - pharmacology Calculi Cell survival Complications corilagin Creatinine Crystallization Cytokines Deposition Drinking water Ethylene glycol Gallotannin Gene expression Glucosides - pharmacology Hydrolyzable Tannins - pharmacology Immunohistochemistry Inflammation Inflammation - drug therapy Inflammation - metabolism Inflammatory response Kidney stones Kidneys Male Malondialdehyde Nephrolithiasis Oxalic acid Oxidative stress Oxidative Stress - drug effects Peroxisome proliferator-activated receptors Phosphatidylinositol 3-Kinases - metabolism PI3K/Akt pathway PPAR gamma - antagonists & inhibitors PPAR gamma - metabolism Protective Agents - pharmacology Proto-Oncogene Proteins c-akt - antagonists & inhibitors Proto-Oncogene Proteins c-akt - metabolism Rats Rats, Wistar Reduction Renal failure Signal Transduction - drug effects Urea |
title | The protective role of corilagin on renal calcium oxalate crystal‐induced oxidative stress, inflammatory response, and apoptosis via PPAR‐γ and PI3K/Akt pathway in rats |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T20%3A59%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20protective%20role%20of%20corilagin%20on%20renal%20calcium%20oxalate%20crystal%E2%80%90induced%20oxidative%20stress,%20inflammatory%20response,%20and%20apoptosis%20via%20PPAR%E2%80%90%CE%B3%20and%20PI3K/Akt%20pathway%20in%20rats&rft.jtitle=Biotechnology%20and%20applied%20biochemistry&rft.au=Yuan,%20Haibo&rft.date=2021-12&rft.volume=68&rft.issue=6&rft.spage=1323&rft.epage=1331&rft.pages=1323-1331&rft.artnum=bab.2054&rft.issn=0885-4513&rft.eissn=1470-8744&rft_id=info:doi/10.1002/bab.2054&rft_dat=%3Cproquest_cross%3E2452981369%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2610008539&rft_id=info:pmid/33080078&rfr_iscdi=true |