Antifungal activity and potential mechanism of magnoflorine against Trichophyton rubrum

Coptis alkaloids show potent antifungal activity against Trichophyton rubrum (T. rubrum) , which was a Tinea pedis fungus, but little of the literature was reported to investigate the antifungal activity of magnoflorine against it. Meanwhile, the potential mechanism of magnoflorine against T. rubrum...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of antibiotics 2021-03, Vol.74 (3), p.206-214
Hauptverfasser: Luo, Nanxuan, Jin, Liang, Yang, Changqing, Zhu, Yurong, Ye, Xiaoli, Li, Xuegang, Zhang, Baoshun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 214
container_issue 3
container_start_page 206
container_title Journal of antibiotics
container_volume 74
creator Luo, Nanxuan
Jin, Liang
Yang, Changqing
Zhu, Yurong
Ye, Xiaoli
Li, Xuegang
Zhang, Baoshun
description Coptis alkaloids show potent antifungal activity against Trichophyton rubrum (T. rubrum) , which was a Tinea pedis fungus, but little of the literature was reported to investigate the antifungal activity of magnoflorine against it. Meanwhile, the potential mechanism of magnoflorine against T. rubrum is unknown. In the present study, we found that Coptis alkaloids, especially magnoflorine had significant antifungal activities against T. rubrum and Trichophyton mentagrophyte (T. mentagrophyte) . The MIC values of magnoflorine against T. rubrum and T. mentagrophyte were both 62.5 μg ml −1 , but magnoflorine exerted a better fungicidal efficiency against T. rubrum than T. mentagrophyte . Magnoflorine inhibited the conidia germination and hyphal growth, and changed the mycelial morphology such as deformation growth, surface peeling, and cytoplasmic contraction in T. rubrum . Magnoflorine had no significant effect on cell wall integrity. However, magnoflorine destroyed the fungal cell membrane of T. rubrum through increasing the nucleic acid leakage, reducing the activities of squalene epoxidase and CYP51 enzyme, and decreasing the content of ergosterol in hyphae. Our study supported the potential use of magnoflorine as an antifungal agent against T. rubrum and made contributions to the clinical application of magnoflorine against fungi.
doi_str_mv 10.1038/s41429-020-00380-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2452979680</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2487153153</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3144-a3c80c0e9603d50ea05feaaac783def358548a290067456abeb6976daf8461143</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOl5ewIUU3LipnlzapksRbyC4UVyGM2k6k6FNxqQV5u3NOKOCCyEQkvPlPycfIacULilweRUFFazOgUEO6Qy52CETKiXNqSjrXTIBYDSXksEBOYxxkaCKV3KfHHAOkhWsnpC3azfYdnQz7DLUg_2wwypD12RLP5hUSte90XN0NvaZb7MeZ863nQ_WmQxnaF0cspdg9dwv56vBuyyM0zD2x2SvxS6ak-1-RF7vbl9uHvKn5_vHm-unXHMqRI5cS9Bg6hJ4U4BBKFqDiLqSvDEtL2QhJLIaoKxEUeLUTMu6KhtspSgpFfyIXGxyl8G_jyYOqrdRm65DZ_wYFRPpm1VdSkjo-R904cfg0nSJkhUteFqJYhtKBx9jMK1aBttjWCkKaq1dbbSrpF19aVfrKc620eO0N83Pk2_PCeAbIKaSm5nw2_uf2E_nF42d</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2487153153</pqid></control><display><type>article</type><title>Antifungal activity and potential mechanism of magnoflorine against Trichophyton rubrum</title><source>Alma/SFX Local Collection</source><creator>Luo, Nanxuan ; Jin, Liang ; Yang, Changqing ; Zhu, Yurong ; Ye, Xiaoli ; Li, Xuegang ; Zhang, Baoshun</creator><creatorcontrib>Luo, Nanxuan ; Jin, Liang ; Yang, Changqing ; Zhu, Yurong ; Ye, Xiaoli ; Li, Xuegang ; Zhang, Baoshun</creatorcontrib><description>Coptis alkaloids show potent antifungal activity against Trichophyton rubrum (T. rubrum) , which was a Tinea pedis fungus, but little of the literature was reported to investigate the antifungal activity of magnoflorine against it. Meanwhile, the potential mechanism of magnoflorine against T. rubrum is unknown. In the present study, we found that Coptis alkaloids, especially magnoflorine had significant antifungal activities against T. rubrum and Trichophyton mentagrophyte (T. mentagrophyte) . The MIC values of magnoflorine against T. rubrum and T. mentagrophyte were both 62.5 μg ml −1 , but magnoflorine exerted a better fungicidal efficiency against T. rubrum than T. mentagrophyte . Magnoflorine inhibited the conidia germination and hyphal growth, and changed the mycelial morphology such as deformation growth, surface peeling, and cytoplasmic contraction in T. rubrum . Magnoflorine had no significant effect on cell wall integrity. However, magnoflorine destroyed the fungal cell membrane of T. rubrum through increasing the nucleic acid leakage, reducing the activities of squalene epoxidase and CYP51 enzyme, and decreasing the content of ergosterol in hyphae. Our study supported the potential use of magnoflorine as an antifungal agent against T. rubrum and made contributions to the clinical application of magnoflorine against fungi.</description><identifier>ISSN: 0021-8820</identifier><identifier>EISSN: 1881-1469</identifier><identifier>DOI: 10.1038/s41429-020-00380-4</identifier><identifier>PMID: 33082529</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>14 ; 14/28 ; 631/378/193 ; 692/699 ; Antibiotics ; Antifungal agents ; Athletes foot ; Bacteriology ; Biomedical and Life Sciences ; Bioorganic Chemistry ; Drinking water ; Fungi ; Life Sciences ; Medicinal Chemistry ; Microbiology ; Morphology ; Nucleic acids ; Organic Chemistry</subject><ispartof>Journal of antibiotics, 2021-03, Vol.74 (3), p.206-214</ispartof><rights>The Author(s), under exclusive licence to the Japan Antibiotics Research Association 2020</rights><rights>The Author(s), under exclusive licence to the Japan Antibiotics Research Association 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3144-a3c80c0e9603d50ea05feaaac783def358548a290067456abeb6976daf8461143</citedby><cites>FETCH-LOGICAL-c3144-a3c80c0e9603d50ea05feaaac783def358548a290067456abeb6976daf8461143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33082529$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Luo, Nanxuan</creatorcontrib><creatorcontrib>Jin, Liang</creatorcontrib><creatorcontrib>Yang, Changqing</creatorcontrib><creatorcontrib>Zhu, Yurong</creatorcontrib><creatorcontrib>Ye, Xiaoli</creatorcontrib><creatorcontrib>Li, Xuegang</creatorcontrib><creatorcontrib>Zhang, Baoshun</creatorcontrib><title>Antifungal activity and potential mechanism of magnoflorine against Trichophyton rubrum</title><title>Journal of antibiotics</title><addtitle>J Antibiot</addtitle><addtitle>J Antibiot (Tokyo)</addtitle><description>Coptis alkaloids show potent antifungal activity against Trichophyton rubrum (T. rubrum) , which was a Tinea pedis fungus, but little of the literature was reported to investigate the antifungal activity of magnoflorine against it. Meanwhile, the potential mechanism of magnoflorine against T. rubrum is unknown. In the present study, we found that Coptis alkaloids, especially magnoflorine had significant antifungal activities against T. rubrum and Trichophyton mentagrophyte (T. mentagrophyte) . The MIC values of magnoflorine against T. rubrum and T. mentagrophyte were both 62.5 μg ml −1 , but magnoflorine exerted a better fungicidal efficiency against T. rubrum than T. mentagrophyte . Magnoflorine inhibited the conidia germination and hyphal growth, and changed the mycelial morphology such as deformation growth, surface peeling, and cytoplasmic contraction in T. rubrum . Magnoflorine had no significant effect on cell wall integrity. However, magnoflorine destroyed the fungal cell membrane of T. rubrum through increasing the nucleic acid leakage, reducing the activities of squalene epoxidase and CYP51 enzyme, and decreasing the content of ergosterol in hyphae. Our study supported the potential use of magnoflorine as an antifungal agent against T. rubrum and made contributions to the clinical application of magnoflorine against fungi.</description><subject>14</subject><subject>14/28</subject><subject>631/378/193</subject><subject>692/699</subject><subject>Antibiotics</subject><subject>Antifungal agents</subject><subject>Athletes foot</subject><subject>Bacteriology</subject><subject>Biomedical and Life Sciences</subject><subject>Bioorganic Chemistry</subject><subject>Drinking water</subject><subject>Fungi</subject><subject>Life Sciences</subject><subject>Medicinal Chemistry</subject><subject>Microbiology</subject><subject>Morphology</subject><subject>Nucleic acids</subject><subject>Organic Chemistry</subject><issn>0021-8820</issn><issn>1881-1469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kMtKxDAUhoMoOl5ewIUU3LipnlzapksRbyC4UVyGM2k6k6FNxqQV5u3NOKOCCyEQkvPlPycfIacULilweRUFFazOgUEO6Qy52CETKiXNqSjrXTIBYDSXksEBOYxxkaCKV3KfHHAOkhWsnpC3azfYdnQz7DLUg_2wwypD12RLP5hUSte90XN0NvaZb7MeZ863nQ_WmQxnaF0cspdg9dwv56vBuyyM0zD2x2SvxS6ak-1-RF7vbl9uHvKn5_vHm-unXHMqRI5cS9Bg6hJ4U4BBKFqDiLqSvDEtL2QhJLIaoKxEUeLUTMu6KhtspSgpFfyIXGxyl8G_jyYOqrdRm65DZ_wYFRPpm1VdSkjo-R904cfg0nSJkhUteFqJYhtKBx9jMK1aBttjWCkKaq1dbbSrpF19aVfrKc620eO0N83Pk2_PCeAbIKaSm5nw2_uf2E_nF42d</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Luo, Nanxuan</creator><creator>Jin, Liang</creator><creator>Yang, Changqing</creator><creator>Zhu, Yurong</creator><creator>Ye, Xiaoli</creator><creator>Li, Xuegang</creator><creator>Zhang, Baoshun</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7T5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20210301</creationdate><title>Antifungal activity and potential mechanism of magnoflorine against Trichophyton rubrum</title><author>Luo, Nanxuan ; Jin, Liang ; Yang, Changqing ; Zhu, Yurong ; Ye, Xiaoli ; Li, Xuegang ; Zhang, Baoshun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3144-a3c80c0e9603d50ea05feaaac783def358548a290067456abeb6976daf8461143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>14</topic><topic>14/28</topic><topic>631/378/193</topic><topic>692/699</topic><topic>Antibiotics</topic><topic>Antifungal agents</topic><topic>Athletes foot</topic><topic>Bacteriology</topic><topic>Biomedical and Life Sciences</topic><topic>Bioorganic Chemistry</topic><topic>Drinking water</topic><topic>Fungi</topic><topic>Life Sciences</topic><topic>Medicinal Chemistry</topic><topic>Microbiology</topic><topic>Morphology</topic><topic>Nucleic acids</topic><topic>Organic Chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Nanxuan</creatorcontrib><creatorcontrib>Jin, Liang</creatorcontrib><creatorcontrib>Yang, Changqing</creatorcontrib><creatorcontrib>Zhu, Yurong</creatorcontrib><creatorcontrib>Ye, Xiaoli</creatorcontrib><creatorcontrib>Li, Xuegang</creatorcontrib><creatorcontrib>Zhang, Baoshun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Immunology Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of antibiotics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Nanxuan</au><au>Jin, Liang</au><au>Yang, Changqing</au><au>Zhu, Yurong</au><au>Ye, Xiaoli</au><au>Li, Xuegang</au><au>Zhang, Baoshun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Antifungal activity and potential mechanism of magnoflorine against Trichophyton rubrum</atitle><jtitle>Journal of antibiotics</jtitle><stitle>J Antibiot</stitle><addtitle>J Antibiot (Tokyo)</addtitle><date>2021-03-01</date><risdate>2021</risdate><volume>74</volume><issue>3</issue><spage>206</spage><epage>214</epage><pages>206-214</pages><issn>0021-8820</issn><eissn>1881-1469</eissn><abstract>Coptis alkaloids show potent antifungal activity against Trichophyton rubrum (T. rubrum) , which was a Tinea pedis fungus, but little of the literature was reported to investigate the antifungal activity of magnoflorine against it. Meanwhile, the potential mechanism of magnoflorine against T. rubrum is unknown. In the present study, we found that Coptis alkaloids, especially magnoflorine had significant antifungal activities against T. rubrum and Trichophyton mentagrophyte (T. mentagrophyte) . The MIC values of magnoflorine against T. rubrum and T. mentagrophyte were both 62.5 μg ml −1 , but magnoflorine exerted a better fungicidal efficiency against T. rubrum than T. mentagrophyte . Magnoflorine inhibited the conidia germination and hyphal growth, and changed the mycelial morphology such as deformation growth, surface peeling, and cytoplasmic contraction in T. rubrum . Magnoflorine had no significant effect on cell wall integrity. However, magnoflorine destroyed the fungal cell membrane of T. rubrum through increasing the nucleic acid leakage, reducing the activities of squalene epoxidase and CYP51 enzyme, and decreasing the content of ergosterol in hyphae. Our study supported the potential use of magnoflorine as an antifungal agent against T. rubrum and made contributions to the clinical application of magnoflorine against fungi.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33082529</pmid><doi>10.1038/s41429-020-00380-4</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-8820
ispartof Journal of antibiotics, 2021-03, Vol.74 (3), p.206-214
issn 0021-8820
1881-1469
language eng
recordid cdi_proquest_miscellaneous_2452979680
source Alma/SFX Local Collection
subjects 14
14/28
631/378/193
692/699
Antibiotics
Antifungal agents
Athletes foot
Bacteriology
Biomedical and Life Sciences
Bioorganic Chemistry
Drinking water
Fungi
Life Sciences
Medicinal Chemistry
Microbiology
Morphology
Nucleic acids
Organic Chemistry
title Antifungal activity and potential mechanism of magnoflorine against Trichophyton rubrum
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T00%3A10%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Antifungal%20activity%20and%20potential%20mechanism%20of%20magnoflorine%20against%20Trichophyton%20rubrum&rft.jtitle=Journal%20of%20antibiotics&rft.au=Luo,%20Nanxuan&rft.date=2021-03-01&rft.volume=74&rft.issue=3&rft.spage=206&rft.epage=214&rft.pages=206-214&rft.issn=0021-8820&rft.eissn=1881-1469&rft_id=info:doi/10.1038/s41429-020-00380-4&rft_dat=%3Cproquest_cross%3E2487153153%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2487153153&rft_id=info:pmid/33082529&rfr_iscdi=true