Antifungal activity and potential mechanism of magnoflorine against Trichophyton rubrum
Coptis alkaloids show potent antifungal activity against Trichophyton rubrum (T. rubrum) , which was a Tinea pedis fungus, but little of the literature was reported to investigate the antifungal activity of magnoflorine against it. Meanwhile, the potential mechanism of magnoflorine against T. rubrum...
Gespeichert in:
Veröffentlicht in: | Journal of antibiotics 2021-03, Vol.74 (3), p.206-214 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 214 |
---|---|
container_issue | 3 |
container_start_page | 206 |
container_title | Journal of antibiotics |
container_volume | 74 |
creator | Luo, Nanxuan Jin, Liang Yang, Changqing Zhu, Yurong Ye, Xiaoli Li, Xuegang Zhang, Baoshun |
description | Coptis alkaloids show potent antifungal activity against
Trichophyton rubrum (T. rubrum)
, which was a Tinea pedis fungus, but little of the literature was reported to investigate the antifungal activity of magnoflorine against it. Meanwhile, the potential mechanism of magnoflorine against
T. rubrum
is unknown. In the present study, we found that Coptis alkaloids, especially magnoflorine had significant antifungal activities against
T. rubrum
and
Trichophyton mentagrophyte (T. mentagrophyte)
. The MIC values of magnoflorine against
T. rubrum
and
T. mentagrophyte
were both 62.5 μg ml
−1
, but magnoflorine exerted a better fungicidal efficiency against
T. rubrum
than
T. mentagrophyte
. Magnoflorine inhibited the conidia germination and hyphal growth, and changed the mycelial morphology such as deformation growth, surface peeling, and cytoplasmic contraction in
T. rubrum
. Magnoflorine had no significant effect on cell wall integrity. However, magnoflorine destroyed the fungal cell membrane of
T. rubrum
through increasing the nucleic acid leakage, reducing the activities of squalene epoxidase and CYP51 enzyme, and decreasing the content of ergosterol in hyphae. Our study supported the potential use of magnoflorine as an antifungal agent against
T. rubrum
and made contributions to the clinical application of magnoflorine against fungi. |
doi_str_mv | 10.1038/s41429-020-00380-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2452979680</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2487153153</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3144-a3c80c0e9603d50ea05feaaac783def358548a290067456abeb6976daf8461143</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOl5ewIUU3LipnlzapksRbyC4UVyGM2k6k6FNxqQV5u3NOKOCCyEQkvPlPycfIacULilweRUFFazOgUEO6Qy52CETKiXNqSjrXTIBYDSXksEBOYxxkaCKV3KfHHAOkhWsnpC3azfYdnQz7DLUg_2wwypD12RLP5hUSte90XN0NvaZb7MeZ863nQ_WmQxnaF0cspdg9dwv56vBuyyM0zD2x2SvxS6ak-1-RF7vbl9uHvKn5_vHm-unXHMqRI5cS9Bg6hJ4U4BBKFqDiLqSvDEtL2QhJLIaoKxEUeLUTMu6KhtspSgpFfyIXGxyl8G_jyYOqrdRm65DZ_wYFRPpm1VdSkjo-R904cfg0nSJkhUteFqJYhtKBx9jMK1aBttjWCkKaq1dbbSrpF19aVfrKc620eO0N83Pk2_PCeAbIKaSm5nw2_uf2E_nF42d</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2487153153</pqid></control><display><type>article</type><title>Antifungal activity and potential mechanism of magnoflorine against Trichophyton rubrum</title><source>Alma/SFX Local Collection</source><creator>Luo, Nanxuan ; Jin, Liang ; Yang, Changqing ; Zhu, Yurong ; Ye, Xiaoli ; Li, Xuegang ; Zhang, Baoshun</creator><creatorcontrib>Luo, Nanxuan ; Jin, Liang ; Yang, Changqing ; Zhu, Yurong ; Ye, Xiaoli ; Li, Xuegang ; Zhang, Baoshun</creatorcontrib><description>Coptis alkaloids show potent antifungal activity against
Trichophyton rubrum (T. rubrum)
, which was a Tinea pedis fungus, but little of the literature was reported to investigate the antifungal activity of magnoflorine against it. Meanwhile, the potential mechanism of magnoflorine against
T. rubrum
is unknown. In the present study, we found that Coptis alkaloids, especially magnoflorine had significant antifungal activities against
T. rubrum
and
Trichophyton mentagrophyte (T. mentagrophyte)
. The MIC values of magnoflorine against
T. rubrum
and
T. mentagrophyte
were both 62.5 μg ml
−1
, but magnoflorine exerted a better fungicidal efficiency against
T. rubrum
than
T. mentagrophyte
. Magnoflorine inhibited the conidia germination and hyphal growth, and changed the mycelial morphology such as deformation growth, surface peeling, and cytoplasmic contraction in
T. rubrum
. Magnoflorine had no significant effect on cell wall integrity. However, magnoflorine destroyed the fungal cell membrane of
T. rubrum
through increasing the nucleic acid leakage, reducing the activities of squalene epoxidase and CYP51 enzyme, and decreasing the content of ergosterol in hyphae. Our study supported the potential use of magnoflorine as an antifungal agent against
T. rubrum
and made contributions to the clinical application of magnoflorine against fungi.</description><identifier>ISSN: 0021-8820</identifier><identifier>EISSN: 1881-1469</identifier><identifier>DOI: 10.1038/s41429-020-00380-4</identifier><identifier>PMID: 33082529</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>14 ; 14/28 ; 631/378/193 ; 692/699 ; Antibiotics ; Antifungal agents ; Athletes foot ; Bacteriology ; Biomedical and Life Sciences ; Bioorganic Chemistry ; Drinking water ; Fungi ; Life Sciences ; Medicinal Chemistry ; Microbiology ; Morphology ; Nucleic acids ; Organic Chemistry</subject><ispartof>Journal of antibiotics, 2021-03, Vol.74 (3), p.206-214</ispartof><rights>The Author(s), under exclusive licence to the Japan Antibiotics Research Association 2020</rights><rights>The Author(s), under exclusive licence to the Japan Antibiotics Research Association 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3144-a3c80c0e9603d50ea05feaaac783def358548a290067456abeb6976daf8461143</citedby><cites>FETCH-LOGICAL-c3144-a3c80c0e9603d50ea05feaaac783def358548a290067456abeb6976daf8461143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33082529$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Luo, Nanxuan</creatorcontrib><creatorcontrib>Jin, Liang</creatorcontrib><creatorcontrib>Yang, Changqing</creatorcontrib><creatorcontrib>Zhu, Yurong</creatorcontrib><creatorcontrib>Ye, Xiaoli</creatorcontrib><creatorcontrib>Li, Xuegang</creatorcontrib><creatorcontrib>Zhang, Baoshun</creatorcontrib><title>Antifungal activity and potential mechanism of magnoflorine against Trichophyton rubrum</title><title>Journal of antibiotics</title><addtitle>J Antibiot</addtitle><addtitle>J Antibiot (Tokyo)</addtitle><description>Coptis alkaloids show potent antifungal activity against
Trichophyton rubrum (T. rubrum)
, which was a Tinea pedis fungus, but little of the literature was reported to investigate the antifungal activity of magnoflorine against it. Meanwhile, the potential mechanism of magnoflorine against
T. rubrum
is unknown. In the present study, we found that Coptis alkaloids, especially magnoflorine had significant antifungal activities against
T. rubrum
and
Trichophyton mentagrophyte (T. mentagrophyte)
. The MIC values of magnoflorine against
T. rubrum
and
T. mentagrophyte
were both 62.5 μg ml
−1
, but magnoflorine exerted a better fungicidal efficiency against
T. rubrum
than
T. mentagrophyte
. Magnoflorine inhibited the conidia germination and hyphal growth, and changed the mycelial morphology such as deformation growth, surface peeling, and cytoplasmic contraction in
T. rubrum
. Magnoflorine had no significant effect on cell wall integrity. However, magnoflorine destroyed the fungal cell membrane of
T. rubrum
through increasing the nucleic acid leakage, reducing the activities of squalene epoxidase and CYP51 enzyme, and decreasing the content of ergosterol in hyphae. Our study supported the potential use of magnoflorine as an antifungal agent against
T. rubrum
and made contributions to the clinical application of magnoflorine against fungi.</description><subject>14</subject><subject>14/28</subject><subject>631/378/193</subject><subject>692/699</subject><subject>Antibiotics</subject><subject>Antifungal agents</subject><subject>Athletes foot</subject><subject>Bacteriology</subject><subject>Biomedical and Life Sciences</subject><subject>Bioorganic Chemistry</subject><subject>Drinking water</subject><subject>Fungi</subject><subject>Life Sciences</subject><subject>Medicinal Chemistry</subject><subject>Microbiology</subject><subject>Morphology</subject><subject>Nucleic acids</subject><subject>Organic Chemistry</subject><issn>0021-8820</issn><issn>1881-1469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kMtKxDAUhoMoOl5ewIUU3LipnlzapksRbyC4UVyGM2k6k6FNxqQV5u3NOKOCCyEQkvPlPycfIacULilweRUFFazOgUEO6Qy52CETKiXNqSjrXTIBYDSXksEBOYxxkaCKV3KfHHAOkhWsnpC3azfYdnQz7DLUg_2wwypD12RLP5hUSte90XN0NvaZb7MeZ863nQ_WmQxnaF0cspdg9dwv56vBuyyM0zD2x2SvxS6ak-1-RF7vbl9uHvKn5_vHm-unXHMqRI5cS9Bg6hJ4U4BBKFqDiLqSvDEtL2QhJLIaoKxEUeLUTMu6KhtspSgpFfyIXGxyl8G_jyYOqrdRm65DZ_wYFRPpm1VdSkjo-R904cfg0nSJkhUteFqJYhtKBx9jMK1aBttjWCkKaq1dbbSrpF19aVfrKc620eO0N83Pk2_PCeAbIKaSm5nw2_uf2E_nF42d</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Luo, Nanxuan</creator><creator>Jin, Liang</creator><creator>Yang, Changqing</creator><creator>Zhu, Yurong</creator><creator>Ye, Xiaoli</creator><creator>Li, Xuegang</creator><creator>Zhang, Baoshun</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7T5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20210301</creationdate><title>Antifungal activity and potential mechanism of magnoflorine against Trichophyton rubrum</title><author>Luo, Nanxuan ; Jin, Liang ; Yang, Changqing ; Zhu, Yurong ; Ye, Xiaoli ; Li, Xuegang ; Zhang, Baoshun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3144-a3c80c0e9603d50ea05feaaac783def358548a290067456abeb6976daf8461143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>14</topic><topic>14/28</topic><topic>631/378/193</topic><topic>692/699</topic><topic>Antibiotics</topic><topic>Antifungal agents</topic><topic>Athletes foot</topic><topic>Bacteriology</topic><topic>Biomedical and Life Sciences</topic><topic>Bioorganic Chemistry</topic><topic>Drinking water</topic><topic>Fungi</topic><topic>Life Sciences</topic><topic>Medicinal Chemistry</topic><topic>Microbiology</topic><topic>Morphology</topic><topic>Nucleic acids</topic><topic>Organic Chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Nanxuan</creatorcontrib><creatorcontrib>Jin, Liang</creatorcontrib><creatorcontrib>Yang, Changqing</creatorcontrib><creatorcontrib>Zhu, Yurong</creatorcontrib><creatorcontrib>Ye, Xiaoli</creatorcontrib><creatorcontrib>Li, Xuegang</creatorcontrib><creatorcontrib>Zhang, Baoshun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Immunology Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of antibiotics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Nanxuan</au><au>Jin, Liang</au><au>Yang, Changqing</au><au>Zhu, Yurong</au><au>Ye, Xiaoli</au><au>Li, Xuegang</au><au>Zhang, Baoshun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Antifungal activity and potential mechanism of magnoflorine against Trichophyton rubrum</atitle><jtitle>Journal of antibiotics</jtitle><stitle>J Antibiot</stitle><addtitle>J Antibiot (Tokyo)</addtitle><date>2021-03-01</date><risdate>2021</risdate><volume>74</volume><issue>3</issue><spage>206</spage><epage>214</epage><pages>206-214</pages><issn>0021-8820</issn><eissn>1881-1469</eissn><abstract>Coptis alkaloids show potent antifungal activity against
Trichophyton rubrum (T. rubrum)
, which was a Tinea pedis fungus, but little of the literature was reported to investigate the antifungal activity of magnoflorine against it. Meanwhile, the potential mechanism of magnoflorine against
T. rubrum
is unknown. In the present study, we found that Coptis alkaloids, especially magnoflorine had significant antifungal activities against
T. rubrum
and
Trichophyton mentagrophyte (T. mentagrophyte)
. The MIC values of magnoflorine against
T. rubrum
and
T. mentagrophyte
were both 62.5 μg ml
−1
, but magnoflorine exerted a better fungicidal efficiency against
T. rubrum
than
T. mentagrophyte
. Magnoflorine inhibited the conidia germination and hyphal growth, and changed the mycelial morphology such as deformation growth, surface peeling, and cytoplasmic contraction in
T. rubrum
. Magnoflorine had no significant effect on cell wall integrity. However, magnoflorine destroyed the fungal cell membrane of
T. rubrum
through increasing the nucleic acid leakage, reducing the activities of squalene epoxidase and CYP51 enzyme, and decreasing the content of ergosterol in hyphae. Our study supported the potential use of magnoflorine as an antifungal agent against
T. rubrum
and made contributions to the clinical application of magnoflorine against fungi.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33082529</pmid><doi>10.1038/s41429-020-00380-4</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8820 |
ispartof | Journal of antibiotics, 2021-03, Vol.74 (3), p.206-214 |
issn | 0021-8820 1881-1469 |
language | eng |
recordid | cdi_proquest_miscellaneous_2452979680 |
source | Alma/SFX Local Collection |
subjects | 14 14/28 631/378/193 692/699 Antibiotics Antifungal agents Athletes foot Bacteriology Biomedical and Life Sciences Bioorganic Chemistry Drinking water Fungi Life Sciences Medicinal Chemistry Microbiology Morphology Nucleic acids Organic Chemistry |
title | Antifungal activity and potential mechanism of magnoflorine against Trichophyton rubrum |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T00%3A10%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Antifungal%20activity%20and%20potential%20mechanism%20of%20magnoflorine%20against%20Trichophyton%20rubrum&rft.jtitle=Journal%20of%20antibiotics&rft.au=Luo,%20Nanxuan&rft.date=2021-03-01&rft.volume=74&rft.issue=3&rft.spage=206&rft.epage=214&rft.pages=206-214&rft.issn=0021-8820&rft.eissn=1881-1469&rft_id=info:doi/10.1038/s41429-020-00380-4&rft_dat=%3Cproquest_cross%3E2487153153%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2487153153&rft_id=info:pmid/33082529&rfr_iscdi=true |