Shortwave infrared polymethine fluorophores matched to excitation lasers enable non-invasive, multicolour in vivo imaging in real time

High-resolution, multiplexed experiments are a staple in cellular imaging. Analogous experiments in animals are challenging, however, due to substantial scattering and autofluorescence in tissue at visible (350–700 nm) and near-infrared (700–1,000 nm) wavelengths. Here, we enable real-time, non-inva...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature chemistry 2020-12, Vol.12 (12), p.1123-1130
Hauptverfasser: Cosco, Emily D., Spearman, Anthony L., Ramakrishnan, Shyam, Lingg, Jakob G. P., Saccomano, Mara, Pengshung, Monica, Arús, Bernardo A., Wong, Kelly C. Y., Glasl, Sarah, Ntziachristos, Vasilis, Warmer, Martin, McLaughlin, Ryan R., Bruns, Oliver T., Sletten, Ellen M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1130
container_issue 12
container_start_page 1123
container_title Nature chemistry
container_volume 12
creator Cosco, Emily D.
Spearman, Anthony L.
Ramakrishnan, Shyam
Lingg, Jakob G. P.
Saccomano, Mara
Pengshung, Monica
Arús, Bernardo A.
Wong, Kelly C. Y.
Glasl, Sarah
Ntziachristos, Vasilis
Warmer, Martin
McLaughlin, Ryan R.
Bruns, Oliver T.
Sletten, Ellen M.
description High-resolution, multiplexed experiments are a staple in cellular imaging. Analogous experiments in animals are challenging, however, due to substantial scattering and autofluorescence in tissue at visible (350–700 nm) and near-infrared (700–1,000 nm) wavelengths. Here, we enable real-time, non-invasive multicolour imaging experiments in animals through the design of optical contrast agents for the shortwave infrared (SWIR, 1,000–2,000 nm) region and complementary advances in imaging technologies. We developed tunable, SWIR-emissive flavylium polymethine dyes and established relationships between structure and photophysical properties for this class of bright SWIR contrast agents. In parallel, we designed an imaging system with variable near-infrared/SWIR excitation and single-channel detection, facilitating video-rate multicolour SWIR imaging for optically guided surgery and imaging of awake and moving mice with multiplexed detection. Optimized dyes matched to 980 nm and 1,064 nm lasers, combined with the clinically approved indocyanine green, enabled real-time, three-colour imaging with high temporal and spatial resolutions. Conducting high-resolution, multiplexed imaging in living mammals is challenging because of considerable scattering and autofluorescence in tissue at visible and near-infrared wavelengths. Now, real-time, non-invasive multicolour imaging experiments in live animals have been achieved through the design of optical contrast agents for the shortwave infrared (SWIR, 1,000–2,000 nm) region and the introduction of excitation multiplexing with single-channel SWIR detection.
doi_str_mv 10.1038/s41557-020-00554-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2452500404</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2473209697</sourcerecordid><originalsourceid>FETCH-LOGICAL-c522t-27c0c5c781ed0d6749dc5129c2e8e2b901362bca82afd613ec5755e3135eee963</originalsourceid><addsrcrecordid>eNp9kctu1DAUhi0EoqXwAiwqS2xYNNSXnHiyrCooSJVYUNaWxzmZceXYU9sJ9AV47rpMaaUuWPn2nd8-_gh5z9knzuTqNLccQDVMsIYxgLaBF-SQK4CmlW3_8nEu2QF5k_M1Yx1I3r0mB3VLqV7AIfnzYxtT-WUWpC6MySQc6C762wnL1gWko59jirsKYaaTKXZbgRIp_raumOJioN5kTJliMGuPNMTQuLCY7BY8odPsi7PRxznVfLq4JVI3mY0Lm_t1QuNpcRO-Ja9G4zO-exiPyM8vn6_OvzaX3y--nZ9dNhaEKI1QllmwasVxYEOn2n6wwEVvBa5QrHvGZSfW1qyEGYeOS7RQvwAll4CIfSePyMd97i7Fmxlz0ZPLFr03AeOctWhBAGMtayv64Rl6XbsI9XWVUlKwvutVpcSesinmnHDUu1QbTLeaM31vSe8t6WpJ_7WkoRYdP0TP6wmHx5J_Wiog90CuR2GD6enu_8TeAT6On5o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473209697</pqid></control><display><type>article</type><title>Shortwave infrared polymethine fluorophores matched to excitation lasers enable non-invasive, multicolour in vivo imaging in real time</title><source>MEDLINE</source><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Cosco, Emily D. ; Spearman, Anthony L. ; Ramakrishnan, Shyam ; Lingg, Jakob G. P. ; Saccomano, Mara ; Pengshung, Monica ; Arús, Bernardo A. ; Wong, Kelly C. Y. ; Glasl, Sarah ; Ntziachristos, Vasilis ; Warmer, Martin ; McLaughlin, Ryan R. ; Bruns, Oliver T. ; Sletten, Ellen M.</creator><creatorcontrib>Cosco, Emily D. ; Spearman, Anthony L. ; Ramakrishnan, Shyam ; Lingg, Jakob G. P. ; Saccomano, Mara ; Pengshung, Monica ; Arús, Bernardo A. ; Wong, Kelly C. Y. ; Glasl, Sarah ; Ntziachristos, Vasilis ; Warmer, Martin ; McLaughlin, Ryan R. ; Bruns, Oliver T. ; Sletten, Ellen M.</creatorcontrib><description>High-resolution, multiplexed experiments are a staple in cellular imaging. Analogous experiments in animals are challenging, however, due to substantial scattering and autofluorescence in tissue at visible (350–700 nm) and near-infrared (700–1,000 nm) wavelengths. Here, we enable real-time, non-invasive multicolour imaging experiments in animals through the design of optical contrast agents for the shortwave infrared (SWIR, 1,000–2,000 nm) region and complementary advances in imaging technologies. We developed tunable, SWIR-emissive flavylium polymethine dyes and established relationships between structure and photophysical properties for this class of bright SWIR contrast agents. In parallel, we designed an imaging system with variable near-infrared/SWIR excitation and single-channel detection, facilitating video-rate multicolour SWIR imaging for optically guided surgery and imaging of awake and moving mice with multiplexed detection. Optimized dyes matched to 980 nm and 1,064 nm lasers, combined with the clinically approved indocyanine green, enabled real-time, three-colour imaging with high temporal and spatial resolutions. Conducting high-resolution, multiplexed imaging in living mammals is challenging because of considerable scattering and autofluorescence in tissue at visible and near-infrared wavelengths. Now, real-time, non-invasive multicolour imaging experiments in live animals have been achieved through the design of optical contrast agents for the shortwave infrared (SWIR, 1,000–2,000 nm) region and the introduction of excitation multiplexing with single-channel SWIR detection.</description><identifier>ISSN: 1755-4330</identifier><identifier>EISSN: 1755-4349</identifier><identifier>DOI: 10.1038/s41557-020-00554-5</identifier><identifier>PMID: 33077925</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/1647/245/2226 ; 639/638/403 ; 639/638/440/527/1989 ; 639/638/92/96 ; Analytical Chemistry ; Animals ; Benzopyrans - chemical synthesis ; Benzopyrans - chemistry ; Benzopyrans - radiation effects ; Biochemistry ; Chemical compounds ; Chemistry ; Chemistry and Materials Science ; Chemistry/Food Science ; Contrast agents ; Contrast media ; Contrast Media - chemical synthesis ; Contrast Media - chemistry ; Contrast Media - radiation effects ; Dyes ; Excitation ; Experiments ; Female ; Fluorescence ; Fluorescent Dyes - chemical synthesis ; Fluorescent Dyes - chemistry ; Fluorescent Dyes - radiation effects ; Fluorophores ; High resolution ; I.R. radiation ; Image resolution ; Infrared Rays ; Inorganic Chemistry ; Lasers ; Mice, Nude ; Multiplexing ; Near infrared radiation ; Optical Imaging - instrumentation ; Optical Imaging - methods ; Organic Chemistry ; Physical Chemistry ; Real time ; Scattering ; Short wave radiation ; Surgery ; Wavelengths</subject><ispartof>Nature chemistry, 2020-12, Vol.12 (12), p.1123-1130</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c522t-27c0c5c781ed0d6749dc5129c2e8e2b901362bca82afd613ec5755e3135eee963</citedby><cites>FETCH-LOGICAL-c522t-27c0c5c781ed0d6749dc5129c2e8e2b901362bca82afd613ec5755e3135eee963</cites><orcidid>0000-0001-6132-7793 ; 0000-0001-6907-1091 ; 0000-0002-0049-7278 ; 0000-0002-9988-0233 ; 0000-0001-5155-9013 ; 0000-0002-5738-0126</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41557-020-00554-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41557-020-00554-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33077925$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cosco, Emily D.</creatorcontrib><creatorcontrib>Spearman, Anthony L.</creatorcontrib><creatorcontrib>Ramakrishnan, Shyam</creatorcontrib><creatorcontrib>Lingg, Jakob G. P.</creatorcontrib><creatorcontrib>Saccomano, Mara</creatorcontrib><creatorcontrib>Pengshung, Monica</creatorcontrib><creatorcontrib>Arús, Bernardo A.</creatorcontrib><creatorcontrib>Wong, Kelly C. Y.</creatorcontrib><creatorcontrib>Glasl, Sarah</creatorcontrib><creatorcontrib>Ntziachristos, Vasilis</creatorcontrib><creatorcontrib>Warmer, Martin</creatorcontrib><creatorcontrib>McLaughlin, Ryan R.</creatorcontrib><creatorcontrib>Bruns, Oliver T.</creatorcontrib><creatorcontrib>Sletten, Ellen M.</creatorcontrib><title>Shortwave infrared polymethine fluorophores matched to excitation lasers enable non-invasive, multicolour in vivo imaging in real time</title><title>Nature chemistry</title><addtitle>Nat. Chem</addtitle><addtitle>Nat Chem</addtitle><description>High-resolution, multiplexed experiments are a staple in cellular imaging. Analogous experiments in animals are challenging, however, due to substantial scattering and autofluorescence in tissue at visible (350–700 nm) and near-infrared (700–1,000 nm) wavelengths. Here, we enable real-time, non-invasive multicolour imaging experiments in animals through the design of optical contrast agents for the shortwave infrared (SWIR, 1,000–2,000 nm) region and complementary advances in imaging technologies. We developed tunable, SWIR-emissive flavylium polymethine dyes and established relationships between structure and photophysical properties for this class of bright SWIR contrast agents. In parallel, we designed an imaging system with variable near-infrared/SWIR excitation and single-channel detection, facilitating video-rate multicolour SWIR imaging for optically guided surgery and imaging of awake and moving mice with multiplexed detection. Optimized dyes matched to 980 nm and 1,064 nm lasers, combined with the clinically approved indocyanine green, enabled real-time, three-colour imaging with high temporal and spatial resolutions. Conducting high-resolution, multiplexed imaging in living mammals is challenging because of considerable scattering and autofluorescence in tissue at visible and near-infrared wavelengths. Now, real-time, non-invasive multicolour imaging experiments in live animals have been achieved through the design of optical contrast agents for the shortwave infrared (SWIR, 1,000–2,000 nm) region and the introduction of excitation multiplexing with single-channel SWIR detection.</description><subject>631/1647/245/2226</subject><subject>639/638/403</subject><subject>639/638/440/527/1989</subject><subject>639/638/92/96</subject><subject>Analytical Chemistry</subject><subject>Animals</subject><subject>Benzopyrans - chemical synthesis</subject><subject>Benzopyrans - chemistry</subject><subject>Benzopyrans - radiation effects</subject><subject>Biochemistry</subject><subject>Chemical compounds</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Contrast agents</subject><subject>Contrast media</subject><subject>Contrast Media - chemical synthesis</subject><subject>Contrast Media - chemistry</subject><subject>Contrast Media - radiation effects</subject><subject>Dyes</subject><subject>Excitation</subject><subject>Experiments</subject><subject>Female</subject><subject>Fluorescence</subject><subject>Fluorescent Dyes - chemical synthesis</subject><subject>Fluorescent Dyes - chemistry</subject><subject>Fluorescent Dyes - radiation effects</subject><subject>Fluorophores</subject><subject>High resolution</subject><subject>I.R. radiation</subject><subject>Image resolution</subject><subject>Infrared Rays</subject><subject>Inorganic Chemistry</subject><subject>Lasers</subject><subject>Mice, Nude</subject><subject>Multiplexing</subject><subject>Near infrared radiation</subject><subject>Optical Imaging - instrumentation</subject><subject>Optical Imaging - methods</subject><subject>Organic Chemistry</subject><subject>Physical Chemistry</subject><subject>Real time</subject><subject>Scattering</subject><subject>Short wave radiation</subject><subject>Surgery</subject><subject>Wavelengths</subject><issn>1755-4330</issn><issn>1755-4349</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kctu1DAUhi0EoqXwAiwqS2xYNNSXnHiyrCooSJVYUNaWxzmZceXYU9sJ9AV47rpMaaUuWPn2nd8-_gh5z9knzuTqNLccQDVMsIYxgLaBF-SQK4CmlW3_8nEu2QF5k_M1Yx1I3r0mB3VLqV7AIfnzYxtT-WUWpC6MySQc6C762wnL1gWko59jirsKYaaTKXZbgRIp_raumOJioN5kTJliMGuPNMTQuLCY7BY8odPsi7PRxznVfLq4JVI3mY0Lm_t1QuNpcRO-Ja9G4zO-exiPyM8vn6_OvzaX3y--nZ9dNhaEKI1QllmwasVxYEOn2n6wwEVvBa5QrHvGZSfW1qyEGYeOS7RQvwAll4CIfSePyMd97i7Fmxlz0ZPLFr03AeOctWhBAGMtayv64Rl6XbsI9XWVUlKwvutVpcSesinmnHDUu1QbTLeaM31vSe8t6WpJ_7WkoRYdP0TP6wmHx5J_Wiog90CuR2GD6enu_8TeAT6On5o</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Cosco, Emily D.</creator><creator>Spearman, Anthony L.</creator><creator>Ramakrishnan, Shyam</creator><creator>Lingg, Jakob G. P.</creator><creator>Saccomano, Mara</creator><creator>Pengshung, Monica</creator><creator>Arús, Bernardo A.</creator><creator>Wong, Kelly C. Y.</creator><creator>Glasl, Sarah</creator><creator>Ntziachristos, Vasilis</creator><creator>Warmer, Martin</creator><creator>McLaughlin, Ryan R.</creator><creator>Bruns, Oliver T.</creator><creator>Sletten, Ellen M.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6132-7793</orcidid><orcidid>https://orcid.org/0000-0001-6907-1091</orcidid><orcidid>https://orcid.org/0000-0002-0049-7278</orcidid><orcidid>https://orcid.org/0000-0002-9988-0233</orcidid><orcidid>https://orcid.org/0000-0001-5155-9013</orcidid><orcidid>https://orcid.org/0000-0002-5738-0126</orcidid></search><sort><creationdate>20201201</creationdate><title>Shortwave infrared polymethine fluorophores matched to excitation lasers enable non-invasive, multicolour in vivo imaging in real time</title><author>Cosco, Emily D. ; Spearman, Anthony L. ; Ramakrishnan, Shyam ; Lingg, Jakob G. P. ; Saccomano, Mara ; Pengshung, Monica ; Arús, Bernardo A. ; Wong, Kelly C. Y. ; Glasl, Sarah ; Ntziachristos, Vasilis ; Warmer, Martin ; McLaughlin, Ryan R. ; Bruns, Oliver T. ; Sletten, Ellen M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c522t-27c0c5c781ed0d6749dc5129c2e8e2b901362bca82afd613ec5755e3135eee963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/1647/245/2226</topic><topic>639/638/403</topic><topic>639/638/440/527/1989</topic><topic>639/638/92/96</topic><topic>Analytical Chemistry</topic><topic>Animals</topic><topic>Benzopyrans - chemical synthesis</topic><topic>Benzopyrans - chemistry</topic><topic>Benzopyrans - radiation effects</topic><topic>Biochemistry</topic><topic>Chemical compounds</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Contrast agents</topic><topic>Contrast media</topic><topic>Contrast Media - chemical synthesis</topic><topic>Contrast Media - chemistry</topic><topic>Contrast Media - radiation effects</topic><topic>Dyes</topic><topic>Excitation</topic><topic>Experiments</topic><topic>Female</topic><topic>Fluorescence</topic><topic>Fluorescent Dyes - chemical synthesis</topic><topic>Fluorescent Dyes - chemistry</topic><topic>Fluorescent Dyes - radiation effects</topic><topic>Fluorophores</topic><topic>High resolution</topic><topic>I.R. radiation</topic><topic>Image resolution</topic><topic>Infrared Rays</topic><topic>Inorganic Chemistry</topic><topic>Lasers</topic><topic>Mice, Nude</topic><topic>Multiplexing</topic><topic>Near infrared radiation</topic><topic>Optical Imaging - instrumentation</topic><topic>Optical Imaging - methods</topic><topic>Organic Chemistry</topic><topic>Physical Chemistry</topic><topic>Real time</topic><topic>Scattering</topic><topic>Short wave radiation</topic><topic>Surgery</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cosco, Emily D.</creatorcontrib><creatorcontrib>Spearman, Anthony L.</creatorcontrib><creatorcontrib>Ramakrishnan, Shyam</creatorcontrib><creatorcontrib>Lingg, Jakob G. P.</creatorcontrib><creatorcontrib>Saccomano, Mara</creatorcontrib><creatorcontrib>Pengshung, Monica</creatorcontrib><creatorcontrib>Arús, Bernardo A.</creatorcontrib><creatorcontrib>Wong, Kelly C. Y.</creatorcontrib><creatorcontrib>Glasl, Sarah</creatorcontrib><creatorcontrib>Ntziachristos, Vasilis</creatorcontrib><creatorcontrib>Warmer, Martin</creatorcontrib><creatorcontrib>McLaughlin, Ryan R.</creatorcontrib><creatorcontrib>Bruns, Oliver T.</creatorcontrib><creatorcontrib>Sletten, Ellen M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Chemoreception Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Nature chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cosco, Emily D.</au><au>Spearman, Anthony L.</au><au>Ramakrishnan, Shyam</au><au>Lingg, Jakob G. P.</au><au>Saccomano, Mara</au><au>Pengshung, Monica</au><au>Arús, Bernardo A.</au><au>Wong, Kelly C. Y.</au><au>Glasl, Sarah</au><au>Ntziachristos, Vasilis</au><au>Warmer, Martin</au><au>McLaughlin, Ryan R.</au><au>Bruns, Oliver T.</au><au>Sletten, Ellen M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shortwave infrared polymethine fluorophores matched to excitation lasers enable non-invasive, multicolour in vivo imaging in real time</atitle><jtitle>Nature chemistry</jtitle><stitle>Nat. Chem</stitle><addtitle>Nat Chem</addtitle><date>2020-12-01</date><risdate>2020</risdate><volume>12</volume><issue>12</issue><spage>1123</spage><epage>1130</epage><pages>1123-1130</pages><issn>1755-4330</issn><eissn>1755-4349</eissn><abstract>High-resolution, multiplexed experiments are a staple in cellular imaging. Analogous experiments in animals are challenging, however, due to substantial scattering and autofluorescence in tissue at visible (350–700 nm) and near-infrared (700–1,000 nm) wavelengths. Here, we enable real-time, non-invasive multicolour imaging experiments in animals through the design of optical contrast agents for the shortwave infrared (SWIR, 1,000–2,000 nm) region and complementary advances in imaging technologies. We developed tunable, SWIR-emissive flavylium polymethine dyes and established relationships between structure and photophysical properties for this class of bright SWIR contrast agents. In parallel, we designed an imaging system with variable near-infrared/SWIR excitation and single-channel detection, facilitating video-rate multicolour SWIR imaging for optically guided surgery and imaging of awake and moving mice with multiplexed detection. Optimized dyes matched to 980 nm and 1,064 nm lasers, combined with the clinically approved indocyanine green, enabled real-time, three-colour imaging with high temporal and spatial resolutions. Conducting high-resolution, multiplexed imaging in living mammals is challenging because of considerable scattering and autofluorescence in tissue at visible and near-infrared wavelengths. Now, real-time, non-invasive multicolour imaging experiments in live animals have been achieved through the design of optical contrast agents for the shortwave infrared (SWIR, 1,000–2,000 nm) region and the introduction of excitation multiplexing with single-channel SWIR detection.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33077925</pmid><doi>10.1038/s41557-020-00554-5</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-6132-7793</orcidid><orcidid>https://orcid.org/0000-0001-6907-1091</orcidid><orcidid>https://orcid.org/0000-0002-0049-7278</orcidid><orcidid>https://orcid.org/0000-0002-9988-0233</orcidid><orcidid>https://orcid.org/0000-0001-5155-9013</orcidid><orcidid>https://orcid.org/0000-0002-5738-0126</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1755-4330
ispartof Nature chemistry, 2020-12, Vol.12 (12), p.1123-1130
issn 1755-4330
1755-4349
language eng
recordid cdi_proquest_miscellaneous_2452500404
source MEDLINE; Nature Journals Online; SpringerLink Journals - AutoHoldings
subjects 631/1647/245/2226
639/638/403
639/638/440/527/1989
639/638/92/96
Analytical Chemistry
Animals
Benzopyrans - chemical synthesis
Benzopyrans - chemistry
Benzopyrans - radiation effects
Biochemistry
Chemical compounds
Chemistry
Chemistry and Materials Science
Chemistry/Food Science
Contrast agents
Contrast media
Contrast Media - chemical synthesis
Contrast Media - chemistry
Contrast Media - radiation effects
Dyes
Excitation
Experiments
Female
Fluorescence
Fluorescent Dyes - chemical synthesis
Fluorescent Dyes - chemistry
Fluorescent Dyes - radiation effects
Fluorophores
High resolution
I.R. radiation
Image resolution
Infrared Rays
Inorganic Chemistry
Lasers
Mice, Nude
Multiplexing
Near infrared radiation
Optical Imaging - instrumentation
Optical Imaging - methods
Organic Chemistry
Physical Chemistry
Real time
Scattering
Short wave radiation
Surgery
Wavelengths
title Shortwave infrared polymethine fluorophores matched to excitation lasers enable non-invasive, multicolour in vivo imaging in real time
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T18%3A29%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shortwave%20infrared%20polymethine%20fluorophores%20matched%20to%20excitation%20lasers%20enable%20non-invasive,%20multicolour%20in%20vivo%20imaging%20in%20real%20time&rft.jtitle=Nature%20chemistry&rft.au=Cosco,%20Emily%20D.&rft.date=2020-12-01&rft.volume=12&rft.issue=12&rft.spage=1123&rft.epage=1130&rft.pages=1123-1130&rft.issn=1755-4330&rft.eissn=1755-4349&rft_id=info:doi/10.1038/s41557-020-00554-5&rft_dat=%3Cproquest_cross%3E2473209697%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2473209697&rft_id=info:pmid/33077925&rfr_iscdi=true