Shortwave infrared polymethine fluorophores matched to excitation lasers enable non-invasive, multicolour in vivo imaging in real time
High-resolution, multiplexed experiments are a staple in cellular imaging. Analogous experiments in animals are challenging, however, due to substantial scattering and autofluorescence in tissue at visible (350–700 nm) and near-infrared (700–1,000 nm) wavelengths. Here, we enable real-time, non-inva...
Gespeichert in:
Veröffentlicht in: | Nature chemistry 2020-12, Vol.12 (12), p.1123-1130 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1130 |
---|---|
container_issue | 12 |
container_start_page | 1123 |
container_title | Nature chemistry |
container_volume | 12 |
creator | Cosco, Emily D. Spearman, Anthony L. Ramakrishnan, Shyam Lingg, Jakob G. P. Saccomano, Mara Pengshung, Monica Arús, Bernardo A. Wong, Kelly C. Y. Glasl, Sarah Ntziachristos, Vasilis Warmer, Martin McLaughlin, Ryan R. Bruns, Oliver T. Sletten, Ellen M. |
description | High-resolution, multiplexed experiments are a staple in cellular imaging. Analogous experiments in animals are challenging, however, due to substantial scattering and autofluorescence in tissue at visible (350–700 nm) and near-infrared (700–1,000 nm) wavelengths. Here, we enable real-time, non-invasive multicolour imaging experiments in animals through the design of optical contrast agents for the shortwave infrared (SWIR, 1,000–2,000 nm) region and complementary advances in imaging technologies. We developed tunable, SWIR-emissive flavylium polymethine dyes and established relationships between structure and photophysical properties for this class of bright SWIR contrast agents. In parallel, we designed an imaging system with variable near-infrared/SWIR excitation and single-channel detection, facilitating video-rate multicolour SWIR imaging for optically guided surgery and imaging of awake and moving mice with multiplexed detection. Optimized dyes matched to 980 nm and 1,064 nm lasers, combined with the clinically approved indocyanine green, enabled real-time, three-colour imaging with high temporal and spatial resolutions.
Conducting high-resolution, multiplexed imaging in living mammals is challenging because of considerable scattering and autofluorescence in tissue at visible and near-infrared wavelengths. Now, real-time, non-invasive multicolour imaging experiments in live animals have been achieved through the design of optical contrast agents for the shortwave infrared (SWIR, 1,000–2,000 nm) region and the introduction of excitation multiplexing with single-channel SWIR detection. |
doi_str_mv | 10.1038/s41557-020-00554-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2452500404</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2473209697</sourcerecordid><originalsourceid>FETCH-LOGICAL-c522t-27c0c5c781ed0d6749dc5129c2e8e2b901362bca82afd613ec5755e3135eee963</originalsourceid><addsrcrecordid>eNp9kctu1DAUhi0EoqXwAiwqS2xYNNSXnHiyrCooSJVYUNaWxzmZceXYU9sJ9AV47rpMaaUuWPn2nd8-_gh5z9knzuTqNLccQDVMsIYxgLaBF-SQK4CmlW3_8nEu2QF5k_M1Yx1I3r0mB3VLqV7AIfnzYxtT-WUWpC6MySQc6C762wnL1gWko59jirsKYaaTKXZbgRIp_raumOJioN5kTJliMGuPNMTQuLCY7BY8odPsi7PRxznVfLq4JVI3mY0Lm_t1QuNpcRO-Ja9G4zO-exiPyM8vn6_OvzaX3y--nZ9dNhaEKI1QllmwasVxYEOn2n6wwEVvBa5QrHvGZSfW1qyEGYeOS7RQvwAll4CIfSePyMd97i7Fmxlz0ZPLFr03AeOctWhBAGMtayv64Rl6XbsI9XWVUlKwvutVpcSesinmnHDUu1QbTLeaM31vSe8t6WpJ_7WkoRYdP0TP6wmHx5J_Wiog90CuR2GD6enu_8TeAT6On5o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473209697</pqid></control><display><type>article</type><title>Shortwave infrared polymethine fluorophores matched to excitation lasers enable non-invasive, multicolour in vivo imaging in real time</title><source>MEDLINE</source><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Cosco, Emily D. ; Spearman, Anthony L. ; Ramakrishnan, Shyam ; Lingg, Jakob G. P. ; Saccomano, Mara ; Pengshung, Monica ; Arús, Bernardo A. ; Wong, Kelly C. Y. ; Glasl, Sarah ; Ntziachristos, Vasilis ; Warmer, Martin ; McLaughlin, Ryan R. ; Bruns, Oliver T. ; Sletten, Ellen M.</creator><creatorcontrib>Cosco, Emily D. ; Spearman, Anthony L. ; Ramakrishnan, Shyam ; Lingg, Jakob G. P. ; Saccomano, Mara ; Pengshung, Monica ; Arús, Bernardo A. ; Wong, Kelly C. Y. ; Glasl, Sarah ; Ntziachristos, Vasilis ; Warmer, Martin ; McLaughlin, Ryan R. ; Bruns, Oliver T. ; Sletten, Ellen M.</creatorcontrib><description>High-resolution, multiplexed experiments are a staple in cellular imaging. Analogous experiments in animals are challenging, however, due to substantial scattering and autofluorescence in tissue at visible (350–700 nm) and near-infrared (700–1,000 nm) wavelengths. Here, we enable real-time, non-invasive multicolour imaging experiments in animals through the design of optical contrast agents for the shortwave infrared (SWIR, 1,000–2,000 nm) region and complementary advances in imaging technologies. We developed tunable, SWIR-emissive flavylium polymethine dyes and established relationships between structure and photophysical properties for this class of bright SWIR contrast agents. In parallel, we designed an imaging system with variable near-infrared/SWIR excitation and single-channel detection, facilitating video-rate multicolour SWIR imaging for optically guided surgery and imaging of awake and moving mice with multiplexed detection. Optimized dyes matched to 980 nm and 1,064 nm lasers, combined with the clinically approved indocyanine green, enabled real-time, three-colour imaging with high temporal and spatial resolutions.
Conducting high-resolution, multiplexed imaging in living mammals is challenging because of considerable scattering and autofluorescence in tissue at visible and near-infrared wavelengths. Now, real-time, non-invasive multicolour imaging experiments in live animals have been achieved through the design of optical contrast agents for the shortwave infrared (SWIR, 1,000–2,000 nm) region and the introduction of excitation multiplexing with single-channel SWIR detection.</description><identifier>ISSN: 1755-4330</identifier><identifier>EISSN: 1755-4349</identifier><identifier>DOI: 10.1038/s41557-020-00554-5</identifier><identifier>PMID: 33077925</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/1647/245/2226 ; 639/638/403 ; 639/638/440/527/1989 ; 639/638/92/96 ; Analytical Chemistry ; Animals ; Benzopyrans - chemical synthesis ; Benzopyrans - chemistry ; Benzopyrans - radiation effects ; Biochemistry ; Chemical compounds ; Chemistry ; Chemistry and Materials Science ; Chemistry/Food Science ; Contrast agents ; Contrast media ; Contrast Media - chemical synthesis ; Contrast Media - chemistry ; Contrast Media - radiation effects ; Dyes ; Excitation ; Experiments ; Female ; Fluorescence ; Fluorescent Dyes - chemical synthesis ; Fluorescent Dyes - chemistry ; Fluorescent Dyes - radiation effects ; Fluorophores ; High resolution ; I.R. radiation ; Image resolution ; Infrared Rays ; Inorganic Chemistry ; Lasers ; Mice, Nude ; Multiplexing ; Near infrared radiation ; Optical Imaging - instrumentation ; Optical Imaging - methods ; Organic Chemistry ; Physical Chemistry ; Real time ; Scattering ; Short wave radiation ; Surgery ; Wavelengths</subject><ispartof>Nature chemistry, 2020-12, Vol.12 (12), p.1123-1130</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c522t-27c0c5c781ed0d6749dc5129c2e8e2b901362bca82afd613ec5755e3135eee963</citedby><cites>FETCH-LOGICAL-c522t-27c0c5c781ed0d6749dc5129c2e8e2b901362bca82afd613ec5755e3135eee963</cites><orcidid>0000-0001-6132-7793 ; 0000-0001-6907-1091 ; 0000-0002-0049-7278 ; 0000-0002-9988-0233 ; 0000-0001-5155-9013 ; 0000-0002-5738-0126</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41557-020-00554-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41557-020-00554-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33077925$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cosco, Emily D.</creatorcontrib><creatorcontrib>Spearman, Anthony L.</creatorcontrib><creatorcontrib>Ramakrishnan, Shyam</creatorcontrib><creatorcontrib>Lingg, Jakob G. P.</creatorcontrib><creatorcontrib>Saccomano, Mara</creatorcontrib><creatorcontrib>Pengshung, Monica</creatorcontrib><creatorcontrib>Arús, Bernardo A.</creatorcontrib><creatorcontrib>Wong, Kelly C. Y.</creatorcontrib><creatorcontrib>Glasl, Sarah</creatorcontrib><creatorcontrib>Ntziachristos, Vasilis</creatorcontrib><creatorcontrib>Warmer, Martin</creatorcontrib><creatorcontrib>McLaughlin, Ryan R.</creatorcontrib><creatorcontrib>Bruns, Oliver T.</creatorcontrib><creatorcontrib>Sletten, Ellen M.</creatorcontrib><title>Shortwave infrared polymethine fluorophores matched to excitation lasers enable non-invasive, multicolour in vivo imaging in real time</title><title>Nature chemistry</title><addtitle>Nat. Chem</addtitle><addtitle>Nat Chem</addtitle><description>High-resolution, multiplexed experiments are a staple in cellular imaging. Analogous experiments in animals are challenging, however, due to substantial scattering and autofluorescence in tissue at visible (350–700 nm) and near-infrared (700–1,000 nm) wavelengths. Here, we enable real-time, non-invasive multicolour imaging experiments in animals through the design of optical contrast agents for the shortwave infrared (SWIR, 1,000–2,000 nm) region and complementary advances in imaging technologies. We developed tunable, SWIR-emissive flavylium polymethine dyes and established relationships between structure and photophysical properties for this class of bright SWIR contrast agents. In parallel, we designed an imaging system with variable near-infrared/SWIR excitation and single-channel detection, facilitating video-rate multicolour SWIR imaging for optically guided surgery and imaging of awake and moving mice with multiplexed detection. Optimized dyes matched to 980 nm and 1,064 nm lasers, combined with the clinically approved indocyanine green, enabled real-time, three-colour imaging with high temporal and spatial resolutions.
Conducting high-resolution, multiplexed imaging in living mammals is challenging because of considerable scattering and autofluorescence in tissue at visible and near-infrared wavelengths. Now, real-time, non-invasive multicolour imaging experiments in live animals have been achieved through the design of optical contrast agents for the shortwave infrared (SWIR, 1,000–2,000 nm) region and the introduction of excitation multiplexing with single-channel SWIR detection.</description><subject>631/1647/245/2226</subject><subject>639/638/403</subject><subject>639/638/440/527/1989</subject><subject>639/638/92/96</subject><subject>Analytical Chemistry</subject><subject>Animals</subject><subject>Benzopyrans - chemical synthesis</subject><subject>Benzopyrans - chemistry</subject><subject>Benzopyrans - radiation effects</subject><subject>Biochemistry</subject><subject>Chemical compounds</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Contrast agents</subject><subject>Contrast media</subject><subject>Contrast Media - chemical synthesis</subject><subject>Contrast Media - chemistry</subject><subject>Contrast Media - radiation effects</subject><subject>Dyes</subject><subject>Excitation</subject><subject>Experiments</subject><subject>Female</subject><subject>Fluorescence</subject><subject>Fluorescent Dyes - chemical synthesis</subject><subject>Fluorescent Dyes - chemistry</subject><subject>Fluorescent Dyes - radiation effects</subject><subject>Fluorophores</subject><subject>High resolution</subject><subject>I.R. radiation</subject><subject>Image resolution</subject><subject>Infrared Rays</subject><subject>Inorganic Chemistry</subject><subject>Lasers</subject><subject>Mice, Nude</subject><subject>Multiplexing</subject><subject>Near infrared radiation</subject><subject>Optical Imaging - instrumentation</subject><subject>Optical Imaging - methods</subject><subject>Organic Chemistry</subject><subject>Physical Chemistry</subject><subject>Real time</subject><subject>Scattering</subject><subject>Short wave radiation</subject><subject>Surgery</subject><subject>Wavelengths</subject><issn>1755-4330</issn><issn>1755-4349</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kctu1DAUhi0EoqXwAiwqS2xYNNSXnHiyrCooSJVYUNaWxzmZceXYU9sJ9AV47rpMaaUuWPn2nd8-_gh5z9knzuTqNLccQDVMsIYxgLaBF-SQK4CmlW3_8nEu2QF5k_M1Yx1I3r0mB3VLqV7AIfnzYxtT-WUWpC6MySQc6C762wnL1gWko59jirsKYaaTKXZbgRIp_raumOJioN5kTJliMGuPNMTQuLCY7BY8odPsi7PRxznVfLq4JVI3mY0Lm_t1QuNpcRO-Ja9G4zO-exiPyM8vn6_OvzaX3y--nZ9dNhaEKI1QllmwasVxYEOn2n6wwEVvBa5QrHvGZSfW1qyEGYeOS7RQvwAll4CIfSePyMd97i7Fmxlz0ZPLFr03AeOctWhBAGMtayv64Rl6XbsI9XWVUlKwvutVpcSesinmnHDUu1QbTLeaM31vSe8t6WpJ_7WkoRYdP0TP6wmHx5J_Wiog90CuR2GD6enu_8TeAT6On5o</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Cosco, Emily D.</creator><creator>Spearman, Anthony L.</creator><creator>Ramakrishnan, Shyam</creator><creator>Lingg, Jakob G. P.</creator><creator>Saccomano, Mara</creator><creator>Pengshung, Monica</creator><creator>Arús, Bernardo A.</creator><creator>Wong, Kelly C. Y.</creator><creator>Glasl, Sarah</creator><creator>Ntziachristos, Vasilis</creator><creator>Warmer, Martin</creator><creator>McLaughlin, Ryan R.</creator><creator>Bruns, Oliver T.</creator><creator>Sletten, Ellen M.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6132-7793</orcidid><orcidid>https://orcid.org/0000-0001-6907-1091</orcidid><orcidid>https://orcid.org/0000-0002-0049-7278</orcidid><orcidid>https://orcid.org/0000-0002-9988-0233</orcidid><orcidid>https://orcid.org/0000-0001-5155-9013</orcidid><orcidid>https://orcid.org/0000-0002-5738-0126</orcidid></search><sort><creationdate>20201201</creationdate><title>Shortwave infrared polymethine fluorophores matched to excitation lasers enable non-invasive, multicolour in vivo imaging in real time</title><author>Cosco, Emily D. ; Spearman, Anthony L. ; Ramakrishnan, Shyam ; Lingg, Jakob G. P. ; Saccomano, Mara ; Pengshung, Monica ; Arús, Bernardo A. ; Wong, Kelly C. Y. ; Glasl, Sarah ; Ntziachristos, Vasilis ; Warmer, Martin ; McLaughlin, Ryan R. ; Bruns, Oliver T. ; Sletten, Ellen M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c522t-27c0c5c781ed0d6749dc5129c2e8e2b901362bca82afd613ec5755e3135eee963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/1647/245/2226</topic><topic>639/638/403</topic><topic>639/638/440/527/1989</topic><topic>639/638/92/96</topic><topic>Analytical Chemistry</topic><topic>Animals</topic><topic>Benzopyrans - chemical synthesis</topic><topic>Benzopyrans - chemistry</topic><topic>Benzopyrans - radiation effects</topic><topic>Biochemistry</topic><topic>Chemical compounds</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Contrast agents</topic><topic>Contrast media</topic><topic>Contrast Media - chemical synthesis</topic><topic>Contrast Media - chemistry</topic><topic>Contrast Media - radiation effects</topic><topic>Dyes</topic><topic>Excitation</topic><topic>Experiments</topic><topic>Female</topic><topic>Fluorescence</topic><topic>Fluorescent Dyes - chemical synthesis</topic><topic>Fluorescent Dyes - chemistry</topic><topic>Fluorescent Dyes - radiation effects</topic><topic>Fluorophores</topic><topic>High resolution</topic><topic>I.R. radiation</topic><topic>Image resolution</topic><topic>Infrared Rays</topic><topic>Inorganic Chemistry</topic><topic>Lasers</topic><topic>Mice, Nude</topic><topic>Multiplexing</topic><topic>Near infrared radiation</topic><topic>Optical Imaging - instrumentation</topic><topic>Optical Imaging - methods</topic><topic>Organic Chemistry</topic><topic>Physical Chemistry</topic><topic>Real time</topic><topic>Scattering</topic><topic>Short wave radiation</topic><topic>Surgery</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cosco, Emily D.</creatorcontrib><creatorcontrib>Spearman, Anthony L.</creatorcontrib><creatorcontrib>Ramakrishnan, Shyam</creatorcontrib><creatorcontrib>Lingg, Jakob G. P.</creatorcontrib><creatorcontrib>Saccomano, Mara</creatorcontrib><creatorcontrib>Pengshung, Monica</creatorcontrib><creatorcontrib>Arús, Bernardo A.</creatorcontrib><creatorcontrib>Wong, Kelly C. Y.</creatorcontrib><creatorcontrib>Glasl, Sarah</creatorcontrib><creatorcontrib>Ntziachristos, Vasilis</creatorcontrib><creatorcontrib>Warmer, Martin</creatorcontrib><creatorcontrib>McLaughlin, Ryan R.</creatorcontrib><creatorcontrib>Bruns, Oliver T.</creatorcontrib><creatorcontrib>Sletten, Ellen M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Chemoreception Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Nature chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cosco, Emily D.</au><au>Spearman, Anthony L.</au><au>Ramakrishnan, Shyam</au><au>Lingg, Jakob G. P.</au><au>Saccomano, Mara</au><au>Pengshung, Monica</au><au>Arús, Bernardo A.</au><au>Wong, Kelly C. Y.</au><au>Glasl, Sarah</au><au>Ntziachristos, Vasilis</au><au>Warmer, Martin</au><au>McLaughlin, Ryan R.</au><au>Bruns, Oliver T.</au><au>Sletten, Ellen M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shortwave infrared polymethine fluorophores matched to excitation lasers enable non-invasive, multicolour in vivo imaging in real time</atitle><jtitle>Nature chemistry</jtitle><stitle>Nat. Chem</stitle><addtitle>Nat Chem</addtitle><date>2020-12-01</date><risdate>2020</risdate><volume>12</volume><issue>12</issue><spage>1123</spage><epage>1130</epage><pages>1123-1130</pages><issn>1755-4330</issn><eissn>1755-4349</eissn><abstract>High-resolution, multiplexed experiments are a staple in cellular imaging. Analogous experiments in animals are challenging, however, due to substantial scattering and autofluorescence in tissue at visible (350–700 nm) and near-infrared (700–1,000 nm) wavelengths. Here, we enable real-time, non-invasive multicolour imaging experiments in animals through the design of optical contrast agents for the shortwave infrared (SWIR, 1,000–2,000 nm) region and complementary advances in imaging technologies. We developed tunable, SWIR-emissive flavylium polymethine dyes and established relationships between structure and photophysical properties for this class of bright SWIR contrast agents. In parallel, we designed an imaging system with variable near-infrared/SWIR excitation and single-channel detection, facilitating video-rate multicolour SWIR imaging for optically guided surgery and imaging of awake and moving mice with multiplexed detection. Optimized dyes matched to 980 nm and 1,064 nm lasers, combined with the clinically approved indocyanine green, enabled real-time, three-colour imaging with high temporal and spatial resolutions.
Conducting high-resolution, multiplexed imaging in living mammals is challenging because of considerable scattering and autofluorescence in tissue at visible and near-infrared wavelengths. Now, real-time, non-invasive multicolour imaging experiments in live animals have been achieved through the design of optical contrast agents for the shortwave infrared (SWIR, 1,000–2,000 nm) region and the introduction of excitation multiplexing with single-channel SWIR detection.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33077925</pmid><doi>10.1038/s41557-020-00554-5</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-6132-7793</orcidid><orcidid>https://orcid.org/0000-0001-6907-1091</orcidid><orcidid>https://orcid.org/0000-0002-0049-7278</orcidid><orcidid>https://orcid.org/0000-0002-9988-0233</orcidid><orcidid>https://orcid.org/0000-0001-5155-9013</orcidid><orcidid>https://orcid.org/0000-0002-5738-0126</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1755-4330 |
ispartof | Nature chemistry, 2020-12, Vol.12 (12), p.1123-1130 |
issn | 1755-4330 1755-4349 |
language | eng |
recordid | cdi_proquest_miscellaneous_2452500404 |
source | MEDLINE; Nature Journals Online; SpringerLink Journals - AutoHoldings |
subjects | 631/1647/245/2226 639/638/403 639/638/440/527/1989 639/638/92/96 Analytical Chemistry Animals Benzopyrans - chemical synthesis Benzopyrans - chemistry Benzopyrans - radiation effects Biochemistry Chemical compounds Chemistry Chemistry and Materials Science Chemistry/Food Science Contrast agents Contrast media Contrast Media - chemical synthesis Contrast Media - chemistry Contrast Media - radiation effects Dyes Excitation Experiments Female Fluorescence Fluorescent Dyes - chemical synthesis Fluorescent Dyes - chemistry Fluorescent Dyes - radiation effects Fluorophores High resolution I.R. radiation Image resolution Infrared Rays Inorganic Chemistry Lasers Mice, Nude Multiplexing Near infrared radiation Optical Imaging - instrumentation Optical Imaging - methods Organic Chemistry Physical Chemistry Real time Scattering Short wave radiation Surgery Wavelengths |
title | Shortwave infrared polymethine fluorophores matched to excitation lasers enable non-invasive, multicolour in vivo imaging in real time |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T18%3A29%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shortwave%20infrared%20polymethine%20fluorophores%20matched%20to%20excitation%20lasers%20enable%20non-invasive,%20multicolour%20in%20vivo%20imaging%20in%20real%20time&rft.jtitle=Nature%20chemistry&rft.au=Cosco,%20Emily%20D.&rft.date=2020-12-01&rft.volume=12&rft.issue=12&rft.spage=1123&rft.epage=1130&rft.pages=1123-1130&rft.issn=1755-4330&rft.eissn=1755-4349&rft_id=info:doi/10.1038/s41557-020-00554-5&rft_dat=%3Cproquest_cross%3E2473209697%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2473209697&rft_id=info:pmid/33077925&rfr_iscdi=true |