A Diet‐Dependent Microbiota Profile Associated with Incident Type 2 Diabetes: From the CORDIOPREV Study

Scope The differences between the baseline gut microbiota of patients who developed type 2 diabetes (T2D) consuming a low‐fat (LF) or a Mediterranean (Med) diet are explored and risk scores are developed to predict the individual risk of developing T2D associated with the consumption of LF or Med di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular nutrition & food research 2020-12, Vol.64 (23), p.e2000730-n/a
Hauptverfasser: Camargo, Antonio, Vals‐Delgado, Cristina, Alcala‐Diaz, Juan F., Villasanta‐Gonzalez, Alejandro, Gomez‐Delgado, Francisco, Haro, Carmen, Leon‐Acuña, Ana, Cardelo, Magdalena P., Torres‐Peña, Jose D., Guler, Ipek, Malagon, Maria M., Ordovas, Jose M., Perez‐Martinez, Pablo, Delgado‐Lista, Javier, Lopez‐Miranda, Jose
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 23
container_start_page e2000730
container_title Molecular nutrition & food research
container_volume 64
creator Camargo, Antonio
Vals‐Delgado, Cristina
Alcala‐Diaz, Juan F.
Villasanta‐Gonzalez, Alejandro
Gomez‐Delgado, Francisco
Haro, Carmen
Leon‐Acuña, Ana
Cardelo, Magdalena P.
Torres‐Peña, Jose D.
Guler, Ipek
Malagon, Maria M.
Ordovas, Jose M.
Perez‐Martinez, Pablo
Delgado‐Lista, Javier
Lopez‐Miranda, Jose
description Scope The differences between the baseline gut microbiota of patients who developed type 2 diabetes (T2D) consuming a low‐fat (LF) or a Mediterranean (Med) diet are explored and risk scores are developed to predict the individual risk of developing T2D associated with the consumption of LF or Med diet. Methods and Results All the patients from the CORDIOPREV study without T2D at baseline (n = 462) whose fecal sample are available, are included. Gut microbiota is analyzed by 16S sequencing and the risk of T2D after a median follow‐up of 60 months assessed by Cox analysis. Linear discriminant analysis effect size (LEfSe) analysis shows a different baseline gut microbiota in patients who developed T2D consuming LF and Med diets. A higher abundance of Paraprevotella, and lower Gammaproteobacteria and B. uniformis are associated with T2D risk when an LF diet is consumed. In contrast, higher abundances of Saccharibacteria, Betaproteobacteria, and Prevotella are associated with T2D risk when a Med diet is consumed. Conclusion The results suggest that different interactions between the microbiome and dietary patterns may partially determine the risk of T2D development, which may be used for selecting personalized dietary models to prevent T2D. Gut microbiome may play a role in the different responses to dietary interventions. The results suggest that different interactions between the microbiome and dietary patterns may partially determine the risk of type 2 diabetes development according to the diet who is going to be consumed, which may be used for selecting personalized dietary models to prevent type 2 diabetes.
doi_str_mv 10.1002/mnfr.202000730
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2451858949</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2465953492</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3855-ea5c1c13501ebd45ed433a4a5ba78c4ab95a9332a2ba94d0fb8c44b860f485363</originalsourceid><addsrcrecordid>eNqFkE1PwkAQhhujiYhePW_ixQu4u7NbWm-EDyUBIYhem207DUugxd0lpDd_gr_RX-IixoMXTzOZPO-byRME14y2GaX8blMWps0pp5R2gJ4EDRYyaAkGcPq7c3keXFi7ohQYF9AIdJf0NbrP948-brHMsXRkojNTpbpyisxMVeg1kq61VaaVw5zstVuSUZnpb3ZRb5Fw36FSdGjvydBUG-KWSHrTeX80nc0Hr-TZ7fL6Mjgr1Nri1c9sBi_DwaL32BpPH0a97riVQSRlC5XMWMZAUoZpLiTmAkAJJVPViTKh0liqGIArnqpY5LRI_VWkUUgLEUkIoRncHnu3pnrboXXJRtsM12tVYrWzCReSRTKKRezRmz_oqtqZ0n_nqVDGEkTMPdU-Ut6KtQaLZGv0Rpk6YTQ5mE8O5pNf8z4gjoG9V1f_QyeTp-EcolDCF5F0hf8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2465953492</pqid></control><display><type>article</type><title>A Diet‐Dependent Microbiota Profile Associated with Incident Type 2 Diabetes: From the CORDIOPREV Study</title><source>Wiley Journals</source><creator>Camargo, Antonio ; Vals‐Delgado, Cristina ; Alcala‐Diaz, Juan F. ; Villasanta‐Gonzalez, Alejandro ; Gomez‐Delgado, Francisco ; Haro, Carmen ; Leon‐Acuña, Ana ; Cardelo, Magdalena P. ; Torres‐Peña, Jose D. ; Guler, Ipek ; Malagon, Maria M. ; Ordovas, Jose M. ; Perez‐Martinez, Pablo ; Delgado‐Lista, Javier ; Lopez‐Miranda, Jose</creator><creatorcontrib>Camargo, Antonio ; Vals‐Delgado, Cristina ; Alcala‐Diaz, Juan F. ; Villasanta‐Gonzalez, Alejandro ; Gomez‐Delgado, Francisco ; Haro, Carmen ; Leon‐Acuña, Ana ; Cardelo, Magdalena P. ; Torres‐Peña, Jose D. ; Guler, Ipek ; Malagon, Maria M. ; Ordovas, Jose M. ; Perez‐Martinez, Pablo ; Delgado‐Lista, Javier ; Lopez‐Miranda, Jose</creatorcontrib><description>Scope The differences between the baseline gut microbiota of patients who developed type 2 diabetes (T2D) consuming a low‐fat (LF) or a Mediterranean (Med) diet are explored and risk scores are developed to predict the individual risk of developing T2D associated with the consumption of LF or Med diet. Methods and Results All the patients from the CORDIOPREV study without T2D at baseline (n = 462) whose fecal sample are available, are included. Gut microbiota is analyzed by 16S sequencing and the risk of T2D after a median follow‐up of 60 months assessed by Cox analysis. Linear discriminant analysis effect size (LEfSe) analysis shows a different baseline gut microbiota in patients who developed T2D consuming LF and Med diets. A higher abundance of Paraprevotella, and lower Gammaproteobacteria and B. uniformis are associated with T2D risk when an LF diet is consumed. In contrast, higher abundances of Saccharibacteria, Betaproteobacteria, and Prevotella are associated with T2D risk when a Med diet is consumed. Conclusion The results suggest that different interactions between the microbiome and dietary patterns may partially determine the risk of T2D development, which may be used for selecting personalized dietary models to prevent T2D. Gut microbiome may play a role in the different responses to dietary interventions. The results suggest that different interactions between the microbiome and dietary patterns may partially determine the risk of type 2 diabetes development according to the diet who is going to be consumed, which may be used for selecting personalized dietary models to prevent type 2 diabetes.</description><identifier>ISSN: 1613-4125</identifier><identifier>EISSN: 1613-4133</identifier><identifier>DOI: 10.1002/mnfr.202000730</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>CORDIOPREV ; Diabetes ; Diabetes mellitus ; Diabetes mellitus (non-insulin dependent) ; Diet ; Discriminant analysis ; intestinal microbiota ; Intestinal microflora ; Microbiomes ; Microbiota ; predictive model ; Risk ; type 2 diabetes</subject><ispartof>Molecular nutrition &amp; food research, 2020-12, Vol.64 (23), p.e2000730-n/a</ispartof><rights>2020 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3855-ea5c1c13501ebd45ed433a4a5ba78c4ab95a9332a2ba94d0fb8c44b860f485363</citedby><cites>FETCH-LOGICAL-c3855-ea5c1c13501ebd45ed433a4a5ba78c4ab95a9332a2ba94d0fb8c44b860f485363</cites><orcidid>0000-0002-0415-4184 ; 0000-0002-8844-0718</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmnfr.202000730$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmnfr.202000730$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Camargo, Antonio</creatorcontrib><creatorcontrib>Vals‐Delgado, Cristina</creatorcontrib><creatorcontrib>Alcala‐Diaz, Juan F.</creatorcontrib><creatorcontrib>Villasanta‐Gonzalez, Alejandro</creatorcontrib><creatorcontrib>Gomez‐Delgado, Francisco</creatorcontrib><creatorcontrib>Haro, Carmen</creatorcontrib><creatorcontrib>Leon‐Acuña, Ana</creatorcontrib><creatorcontrib>Cardelo, Magdalena P.</creatorcontrib><creatorcontrib>Torres‐Peña, Jose D.</creatorcontrib><creatorcontrib>Guler, Ipek</creatorcontrib><creatorcontrib>Malagon, Maria M.</creatorcontrib><creatorcontrib>Ordovas, Jose M.</creatorcontrib><creatorcontrib>Perez‐Martinez, Pablo</creatorcontrib><creatorcontrib>Delgado‐Lista, Javier</creatorcontrib><creatorcontrib>Lopez‐Miranda, Jose</creatorcontrib><title>A Diet‐Dependent Microbiota Profile Associated with Incident Type 2 Diabetes: From the CORDIOPREV Study</title><title>Molecular nutrition &amp; food research</title><description>Scope The differences between the baseline gut microbiota of patients who developed type 2 diabetes (T2D) consuming a low‐fat (LF) or a Mediterranean (Med) diet are explored and risk scores are developed to predict the individual risk of developing T2D associated with the consumption of LF or Med diet. Methods and Results All the patients from the CORDIOPREV study without T2D at baseline (n = 462) whose fecal sample are available, are included. Gut microbiota is analyzed by 16S sequencing and the risk of T2D after a median follow‐up of 60 months assessed by Cox analysis. Linear discriminant analysis effect size (LEfSe) analysis shows a different baseline gut microbiota in patients who developed T2D consuming LF and Med diets. A higher abundance of Paraprevotella, and lower Gammaproteobacteria and B. uniformis are associated with T2D risk when an LF diet is consumed. In contrast, higher abundances of Saccharibacteria, Betaproteobacteria, and Prevotella are associated with T2D risk when a Med diet is consumed. Conclusion The results suggest that different interactions between the microbiome and dietary patterns may partially determine the risk of T2D development, which may be used for selecting personalized dietary models to prevent T2D. Gut microbiome may play a role in the different responses to dietary interventions. The results suggest that different interactions between the microbiome and dietary patterns may partially determine the risk of type 2 diabetes development according to the diet who is going to be consumed, which may be used for selecting personalized dietary models to prevent type 2 diabetes.</description><subject>CORDIOPREV</subject><subject>Diabetes</subject><subject>Diabetes mellitus</subject><subject>Diabetes mellitus (non-insulin dependent)</subject><subject>Diet</subject><subject>Discriminant analysis</subject><subject>intestinal microbiota</subject><subject>Intestinal microflora</subject><subject>Microbiomes</subject><subject>Microbiota</subject><subject>predictive model</subject><subject>Risk</subject><subject>type 2 diabetes</subject><issn>1613-4125</issn><issn>1613-4133</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkE1PwkAQhhujiYhePW_ixQu4u7NbWm-EDyUBIYhem207DUugxd0lpDd_gr_RX-IixoMXTzOZPO-byRME14y2GaX8blMWps0pp5R2gJ4EDRYyaAkGcPq7c3keXFi7ohQYF9AIdJf0NbrP948-brHMsXRkojNTpbpyisxMVeg1kq61VaaVw5zstVuSUZnpb3ZRb5Fw36FSdGjvydBUG-KWSHrTeX80nc0Hr-TZ7fL6Mjgr1Nri1c9sBi_DwaL32BpPH0a97riVQSRlC5XMWMZAUoZpLiTmAkAJJVPViTKh0liqGIArnqpY5LRI_VWkUUgLEUkIoRncHnu3pnrboXXJRtsM12tVYrWzCReSRTKKRezRmz_oqtqZ0n_nqVDGEkTMPdU-Ut6KtQaLZGv0Rpk6YTQ5mE8O5pNf8z4gjoG9V1f_QyeTp-EcolDCF5F0hf8</recordid><startdate>202012</startdate><enddate>202012</enddate><creator>Camargo, Antonio</creator><creator>Vals‐Delgado, Cristina</creator><creator>Alcala‐Diaz, Juan F.</creator><creator>Villasanta‐Gonzalez, Alejandro</creator><creator>Gomez‐Delgado, Francisco</creator><creator>Haro, Carmen</creator><creator>Leon‐Acuña, Ana</creator><creator>Cardelo, Magdalena P.</creator><creator>Torres‐Peña, Jose D.</creator><creator>Guler, Ipek</creator><creator>Malagon, Maria M.</creator><creator>Ordovas, Jose M.</creator><creator>Perez‐Martinez, Pablo</creator><creator>Delgado‐Lista, Javier</creator><creator>Lopez‐Miranda, Jose</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7T5</scope><scope>7T7</scope><scope>7TK</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0415-4184</orcidid><orcidid>https://orcid.org/0000-0002-8844-0718</orcidid></search><sort><creationdate>202012</creationdate><title>A Diet‐Dependent Microbiota Profile Associated with Incident Type 2 Diabetes: From the CORDIOPREV Study</title><author>Camargo, Antonio ; Vals‐Delgado, Cristina ; Alcala‐Diaz, Juan F. ; Villasanta‐Gonzalez, Alejandro ; Gomez‐Delgado, Francisco ; Haro, Carmen ; Leon‐Acuña, Ana ; Cardelo, Magdalena P. ; Torres‐Peña, Jose D. ; Guler, Ipek ; Malagon, Maria M. ; Ordovas, Jose M. ; Perez‐Martinez, Pablo ; Delgado‐Lista, Javier ; Lopez‐Miranda, Jose</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3855-ea5c1c13501ebd45ed433a4a5ba78c4ab95a9332a2ba94d0fb8c44b860f485363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>CORDIOPREV</topic><topic>Diabetes</topic><topic>Diabetes mellitus</topic><topic>Diabetes mellitus (non-insulin dependent)</topic><topic>Diet</topic><topic>Discriminant analysis</topic><topic>intestinal microbiota</topic><topic>Intestinal microflora</topic><topic>Microbiomes</topic><topic>Microbiota</topic><topic>predictive model</topic><topic>Risk</topic><topic>type 2 diabetes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Camargo, Antonio</creatorcontrib><creatorcontrib>Vals‐Delgado, Cristina</creatorcontrib><creatorcontrib>Alcala‐Diaz, Juan F.</creatorcontrib><creatorcontrib>Villasanta‐Gonzalez, Alejandro</creatorcontrib><creatorcontrib>Gomez‐Delgado, Francisco</creatorcontrib><creatorcontrib>Haro, Carmen</creatorcontrib><creatorcontrib>Leon‐Acuña, Ana</creatorcontrib><creatorcontrib>Cardelo, Magdalena P.</creatorcontrib><creatorcontrib>Torres‐Peña, Jose D.</creatorcontrib><creatorcontrib>Guler, Ipek</creatorcontrib><creatorcontrib>Malagon, Maria M.</creatorcontrib><creatorcontrib>Ordovas, Jose M.</creatorcontrib><creatorcontrib>Perez‐Martinez, Pablo</creatorcontrib><creatorcontrib>Delgado‐Lista, Javier</creatorcontrib><creatorcontrib>Lopez‐Miranda, Jose</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular nutrition &amp; food research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Camargo, Antonio</au><au>Vals‐Delgado, Cristina</au><au>Alcala‐Diaz, Juan F.</au><au>Villasanta‐Gonzalez, Alejandro</au><au>Gomez‐Delgado, Francisco</au><au>Haro, Carmen</au><au>Leon‐Acuña, Ana</au><au>Cardelo, Magdalena P.</au><au>Torres‐Peña, Jose D.</au><au>Guler, Ipek</au><au>Malagon, Maria M.</au><au>Ordovas, Jose M.</au><au>Perez‐Martinez, Pablo</au><au>Delgado‐Lista, Javier</au><au>Lopez‐Miranda, Jose</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Diet‐Dependent Microbiota Profile Associated with Incident Type 2 Diabetes: From the CORDIOPREV Study</atitle><jtitle>Molecular nutrition &amp; food research</jtitle><date>2020-12</date><risdate>2020</risdate><volume>64</volume><issue>23</issue><spage>e2000730</spage><epage>n/a</epage><pages>e2000730-n/a</pages><issn>1613-4125</issn><eissn>1613-4133</eissn><abstract>Scope The differences between the baseline gut microbiota of patients who developed type 2 diabetes (T2D) consuming a low‐fat (LF) or a Mediterranean (Med) diet are explored and risk scores are developed to predict the individual risk of developing T2D associated with the consumption of LF or Med diet. Methods and Results All the patients from the CORDIOPREV study without T2D at baseline (n = 462) whose fecal sample are available, are included. Gut microbiota is analyzed by 16S sequencing and the risk of T2D after a median follow‐up of 60 months assessed by Cox analysis. Linear discriminant analysis effect size (LEfSe) analysis shows a different baseline gut microbiota in patients who developed T2D consuming LF and Med diets. A higher abundance of Paraprevotella, and lower Gammaproteobacteria and B. uniformis are associated with T2D risk when an LF diet is consumed. In contrast, higher abundances of Saccharibacteria, Betaproteobacteria, and Prevotella are associated with T2D risk when a Med diet is consumed. Conclusion The results suggest that different interactions between the microbiome and dietary patterns may partially determine the risk of T2D development, which may be used for selecting personalized dietary models to prevent T2D. Gut microbiome may play a role in the different responses to dietary interventions. The results suggest that different interactions between the microbiome and dietary patterns may partially determine the risk of type 2 diabetes development according to the diet who is going to be consumed, which may be used for selecting personalized dietary models to prevent type 2 diabetes.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mnfr.202000730</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-0415-4184</orcidid><orcidid>https://orcid.org/0000-0002-8844-0718</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1613-4125
ispartof Molecular nutrition & food research, 2020-12, Vol.64 (23), p.e2000730-n/a
issn 1613-4125
1613-4133
language eng
recordid cdi_proquest_miscellaneous_2451858949
source Wiley Journals
subjects CORDIOPREV
Diabetes
Diabetes mellitus
Diabetes mellitus (non-insulin dependent)
Diet
Discriminant analysis
intestinal microbiota
Intestinal microflora
Microbiomes
Microbiota
predictive model
Risk
type 2 diabetes
title A Diet‐Dependent Microbiota Profile Associated with Incident Type 2 Diabetes: From the CORDIOPREV Study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T03%3A11%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Diet%E2%80%90Dependent%20Microbiota%20Profile%20Associated%20with%20Incident%20Type%202%20Diabetes:%20From%20the%20CORDIOPREV%20Study&rft.jtitle=Molecular%20nutrition%20&%20food%20research&rft.au=Camargo,%20Antonio&rft.date=2020-12&rft.volume=64&rft.issue=23&rft.spage=e2000730&rft.epage=n/a&rft.pages=e2000730-n/a&rft.issn=1613-4125&rft.eissn=1613-4133&rft_id=info:doi/10.1002/mnfr.202000730&rft_dat=%3Cproquest_cross%3E2465953492%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2465953492&rft_id=info:pmid/&rfr_iscdi=true