Electrochemical synthesis and characterization of poly(thionine)-deep eutectic solvent/carbon nanotube–modified electrodes and application to electrochemical sensing
Electropolymerization of thionine (TH) on multiwalled carbon nanotube (MWCNT)–modified glassy carbon electrodes (GCE) in ethaline deep eutectic solvent (DES) was carried out for the first time, to prepare poly(thionine) (PTH) films with different nanostructured morphologies. PTH films were formed on...
Gespeichert in:
Veröffentlicht in: | Mikrochimica acta (1966) 2020-11, Vol.187 (11), p.609-609, Article 609 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 609 |
---|---|
container_issue | 11 |
container_start_page | 609 |
container_title | Mikrochimica acta (1966) |
container_volume | 187 |
creator | Dalkıran, Berna Fernandes, Isabel P. G. David, Melinda Brett, Christopher M. A. |
description | Electropolymerization of thionine (TH) on multiwalled carbon nanotube (MWCNT)–modified glassy carbon electrodes (GCE) in ethaline deep eutectic solvent (DES) was carried out for the first time, to prepare poly(thionine) (PTH) films with different nanostructured morphologies. PTH films were formed on MWCNT/GCE by potential cycling electropolymerization in ethaline with the addition of different acid dopants CH
3
COOH, HClO
4
, HNO
3
, H
2
SO
4
and HCl, acetic acid being the best. The electropolymerization process was monitored with an electrochemical quartz crystal microbalance. The polymerization scan rate was a key factor affecting the electrochemical and morphological properties of the PTH
Ethaline
-CH
3
COOH/MWCNT/GCE; electrodeposition at 200 mV s
−1
showing the best performance. The PTH/MWCNT/GCE platform was characterized using cyclic and differential pulse voltammetry, electrochemical impedance spectroscopy and scanning electron microscopy. The analytical characteristics of the PTH films were evaluated for sensing of ascorbic acid and biosensing of uric acid. The developed sensor exhibited a low detection limit (1.1 μM), wide linear range (2.8–3010 μM) and high sensitivity (1134 μA cm
−2
mM
−1
) for ascorbic acid. After immobilization of uricase, UOx, on PTH/MWCNT/GCE, the biosensor was successfully applied to the determination of uric acid, with fast response (˂ 7 s), good sensitivity (450 μA cm
−2
mM
−1
, wide linear range (0.48–279 μM) and low detection limit (58.9 nM), better than in the literature and than with PTH prepared in aqueous solution. The determination of uric acid in synthetic urine samples was successfully tested and the mean analytical recovery was 100.8 ± 1.4%. This is a promising approach for the determination of uric acid in real samples.
Graphical abstract |
doi_str_mv | 10.1007/s00604-020-04588-x |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2451855471</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A715055990</galeid><sourcerecordid>A715055990</sourcerecordid><originalsourceid>FETCH-LOGICAL-c508t-674ed6d1cc60276407f00a518554f38900ebe50ccc14124eb0d51d6cc487f0473</originalsourceid><addsrcrecordid>eNp9ksFu1DAQhiMEokvhBTigSFzKIe04sePkWFUtIFXiAmfLsSe7rhI72A7q9sQ78BB9L54E76ZlBULIB8ueb_4Zj_8se03glADwswBQAy2ghAIoa5ri9km2IrSqCwa8epqtAMq6qGpeHmUvQrgBILwu6fPsqKqA8baFVXZ_OaCK3qkNjkbJIQ9bGzcYTMil1bnaSC9VRG_uZDTO5q7PJzdsT-ImnYzFd4VGnHKcY5IxKg9u-IY2ninpu4RbaV2cO_z5_cfotOkN6hyXihqXEnKahlR5rx7dY_TQD9pg7Ppl9qyXQ8BXD_tx9uXq8vPFh-L60_uPF-fXhWLQxKLmFHWtiVI1lLymwHsAyUjDGO2rpgXADhkopQglJcUONCO6Voo2iaS8Os5OFt3Ju68zhihGExQOg7To5iBKuohxktC3f6E3bvY2dbenqrZtaXWg1nJAYWzvYproTlScc8KAsfQPiTr9B5WW3o3BWexNuv8joVwSlHcheOzF5M0o_VYQEDt3iMUdIrlD7N0hblPSm4eO525E_Tvl0Q4JqBYgpJBdoz886T-yvwD7IMkM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2451399943</pqid></control><display><type>article</type><title>Electrochemical synthesis and characterization of poly(thionine)-deep eutectic solvent/carbon nanotube–modified electrodes and application to electrochemical sensing</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Dalkıran, Berna ; Fernandes, Isabel P. G. ; David, Melinda ; Brett, Christopher M. A.</creator><creatorcontrib>Dalkıran, Berna ; Fernandes, Isabel P. G. ; David, Melinda ; Brett, Christopher M. A.</creatorcontrib><description>Electropolymerization of thionine (TH) on multiwalled carbon nanotube (MWCNT)–modified glassy carbon electrodes (GCE) in ethaline deep eutectic solvent (DES) was carried out for the first time, to prepare poly(thionine) (PTH) films with different nanostructured morphologies. PTH films were formed on MWCNT/GCE by potential cycling electropolymerization in ethaline with the addition of different acid dopants CH
3
COOH, HClO
4
, HNO
3
, H
2
SO
4
and HCl, acetic acid being the best. The electropolymerization process was monitored with an electrochemical quartz crystal microbalance. The polymerization scan rate was a key factor affecting the electrochemical and morphological properties of the PTH
Ethaline
-CH
3
COOH/MWCNT/GCE; electrodeposition at 200 mV s
−1
showing the best performance. The PTH/MWCNT/GCE platform was characterized using cyclic and differential pulse voltammetry, electrochemical impedance spectroscopy and scanning electron microscopy. The analytical characteristics of the PTH films were evaluated for sensing of ascorbic acid and biosensing of uric acid. The developed sensor exhibited a low detection limit (1.1 μM), wide linear range (2.8–3010 μM) and high sensitivity (1134 μA cm
−2
mM
−1
) for ascorbic acid. After immobilization of uricase, UOx, on PTH/MWCNT/GCE, the biosensor was successfully applied to the determination of uric acid, with fast response (˂ 7 s), good sensitivity (450 μA cm
−2
mM
−1
, wide linear range (0.48–279 μM) and low detection limit (58.9 nM), better than in the literature and than with PTH prepared in aqueous solution. The determination of uric acid in synthetic urine samples was successfully tested and the mean analytical recovery was 100.8 ± 1.4%. This is a promising approach for the determination of uric acid in real samples.
Graphical abstract</description><identifier>ISSN: 0026-3672</identifier><identifier>EISSN: 1436-5073</identifier><identifier>DOI: 10.1007/s00604-020-04588-x</identifier><identifier>PMID: 33057990</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Acetic Acid ; Analytical Chemistry ; Aqueous solutions ; Ascorbic acid ; Ascorbic Acid - analysis ; Biosensing Techniques - instrumentation ; Biosensing Techniques - methods ; Biosensors ; Carbon ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Choline - chemistry ; Deep Eutectic Solvents - chemistry ; Detectors ; Electric properties ; Electrochemical analysis ; Electrochemical impedance spectroscopy ; Electrochemical reactions ; Electrochemical Techniques - instrumentation ; Electrochemical Techniques - methods ; Electrodes ; Enzymes, Immobilized - chemistry ; Ethylene Glycol - chemistry ; Glassy carbon ; Limit of Detection ; Microbalances ; Microengineering ; Morphology ; Multi wall carbon nanotubes ; Nanochemistry ; Nanotechnology ; Nanotubes ; Nanotubes, Carbon - chemistry ; Organic acids ; Original Paper ; Phenothiazines - chemistry ; Polymerization ; Polymers - chemistry ; Quartz crystals ; Sensitivity ; Solvents ; Sulfuric acid ; Urate Oxidase - chemistry ; Uric acid ; Uric Acid - chemistry ; Uric Acid - urine</subject><ispartof>Mikrochimica acta (1966), 2020-11, Vol.187 (11), p.609-609, Article 609</ispartof><rights>Springer-Verlag GmbH Austria, part of Springer Nature 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Springer-Verlag GmbH Austria, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c508t-674ed6d1cc60276407f00a518554f38900ebe50ccc14124eb0d51d6cc487f0473</citedby><cites>FETCH-LOGICAL-c508t-674ed6d1cc60276407f00a518554f38900ebe50ccc14124eb0d51d6cc487f0473</cites><orcidid>0000-0002-1972-4434</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00604-020-04588-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00604-020-04588-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33057990$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dalkıran, Berna</creatorcontrib><creatorcontrib>Fernandes, Isabel P. G.</creatorcontrib><creatorcontrib>David, Melinda</creatorcontrib><creatorcontrib>Brett, Christopher M. A.</creatorcontrib><title>Electrochemical synthesis and characterization of poly(thionine)-deep eutectic solvent/carbon nanotube–modified electrodes and application to electrochemical sensing</title><title>Mikrochimica acta (1966)</title><addtitle>Microchim Acta</addtitle><addtitle>Mikrochim Acta</addtitle><description>Electropolymerization of thionine (TH) on multiwalled carbon nanotube (MWCNT)–modified glassy carbon electrodes (GCE) in ethaline deep eutectic solvent (DES) was carried out for the first time, to prepare poly(thionine) (PTH) films with different nanostructured morphologies. PTH films were formed on MWCNT/GCE by potential cycling electropolymerization in ethaline with the addition of different acid dopants CH
3
COOH, HClO
4
, HNO
3
, H
2
SO
4
and HCl, acetic acid being the best. The electropolymerization process was monitored with an electrochemical quartz crystal microbalance. The polymerization scan rate was a key factor affecting the electrochemical and morphological properties of the PTH
Ethaline
-CH
3
COOH/MWCNT/GCE; electrodeposition at 200 mV s
−1
showing the best performance. The PTH/MWCNT/GCE platform was characterized using cyclic and differential pulse voltammetry, electrochemical impedance spectroscopy and scanning electron microscopy. The analytical characteristics of the PTH films were evaluated for sensing of ascorbic acid and biosensing of uric acid. The developed sensor exhibited a low detection limit (1.1 μM), wide linear range (2.8–3010 μM) and high sensitivity (1134 μA cm
−2
mM
−1
) for ascorbic acid. After immobilization of uricase, UOx, on PTH/MWCNT/GCE, the biosensor was successfully applied to the determination of uric acid, with fast response (˂ 7 s), good sensitivity (450 μA cm
−2
mM
−1
, wide linear range (0.48–279 μM) and low detection limit (58.9 nM), better than in the literature and than with PTH prepared in aqueous solution. The determination of uric acid in synthetic urine samples was successfully tested and the mean analytical recovery was 100.8 ± 1.4%. This is a promising approach for the determination of uric acid in real samples.
Graphical abstract</description><subject>Acetic Acid</subject><subject>Analytical Chemistry</subject><subject>Aqueous solutions</subject><subject>Ascorbic acid</subject><subject>Ascorbic Acid - analysis</subject><subject>Biosensing Techniques - instrumentation</subject><subject>Biosensing Techniques - methods</subject><subject>Biosensors</subject><subject>Carbon</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Choline - chemistry</subject><subject>Deep Eutectic Solvents - chemistry</subject><subject>Detectors</subject><subject>Electric properties</subject><subject>Electrochemical analysis</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Electrochemical reactions</subject><subject>Electrochemical Techniques - instrumentation</subject><subject>Electrochemical Techniques - methods</subject><subject>Electrodes</subject><subject>Enzymes, Immobilized - chemistry</subject><subject>Ethylene Glycol - chemistry</subject><subject>Glassy carbon</subject><subject>Limit of Detection</subject><subject>Microbalances</subject><subject>Microengineering</subject><subject>Morphology</subject><subject>Multi wall carbon nanotubes</subject><subject>Nanochemistry</subject><subject>Nanotechnology</subject><subject>Nanotubes</subject><subject>Nanotubes, Carbon - chemistry</subject><subject>Organic acids</subject><subject>Original Paper</subject><subject>Phenothiazines - chemistry</subject><subject>Polymerization</subject><subject>Polymers - chemistry</subject><subject>Quartz crystals</subject><subject>Sensitivity</subject><subject>Solvents</subject><subject>Sulfuric acid</subject><subject>Urate Oxidase - chemistry</subject><subject>Uric acid</subject><subject>Uric Acid - chemistry</subject><subject>Uric Acid - urine</subject><issn>0026-3672</issn><issn>1436-5073</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9ksFu1DAQhiMEokvhBTigSFzKIe04sePkWFUtIFXiAmfLsSe7rhI72A7q9sQ78BB9L54E76ZlBULIB8ueb_4Zj_8se03glADwswBQAy2ghAIoa5ri9km2IrSqCwa8epqtAMq6qGpeHmUvQrgBILwu6fPsqKqA8baFVXZ_OaCK3qkNjkbJIQ9bGzcYTMil1bnaSC9VRG_uZDTO5q7PJzdsT-ImnYzFd4VGnHKcY5IxKg9u-IY2ninpu4RbaV2cO_z5_cfotOkN6hyXihqXEnKahlR5rx7dY_TQD9pg7Ppl9qyXQ8BXD_tx9uXq8vPFh-L60_uPF-fXhWLQxKLmFHWtiVI1lLymwHsAyUjDGO2rpgXADhkopQglJcUONCO6Voo2iaS8Os5OFt3Ju68zhihGExQOg7To5iBKuohxktC3f6E3bvY2dbenqrZtaXWg1nJAYWzvYproTlScc8KAsfQPiTr9B5WW3o3BWexNuv8joVwSlHcheOzF5M0o_VYQEDt3iMUdIrlD7N0hblPSm4eO525E_Tvl0Q4JqBYgpJBdoz886T-yvwD7IMkM</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Dalkıran, Berna</creator><creator>Fernandes, Isabel P. G.</creator><creator>David, Melinda</creator><creator>Brett, Christopher M. A.</creator><general>Springer Vienna</general><general>Springer</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1972-4434</orcidid></search><sort><creationdate>20201101</creationdate><title>Electrochemical synthesis and characterization of poly(thionine)-deep eutectic solvent/carbon nanotube–modified electrodes and application to electrochemical sensing</title><author>Dalkıran, Berna ; Fernandes, Isabel P. G. ; David, Melinda ; Brett, Christopher M. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c508t-674ed6d1cc60276407f00a518554f38900ebe50ccc14124eb0d51d6cc487f0473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acetic Acid</topic><topic>Analytical Chemistry</topic><topic>Aqueous solutions</topic><topic>Ascorbic acid</topic><topic>Ascorbic Acid - analysis</topic><topic>Biosensing Techniques - instrumentation</topic><topic>Biosensing Techniques - methods</topic><topic>Biosensors</topic><topic>Carbon</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Choline - chemistry</topic><topic>Deep Eutectic Solvents - chemistry</topic><topic>Detectors</topic><topic>Electric properties</topic><topic>Electrochemical analysis</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Electrochemical reactions</topic><topic>Electrochemical Techniques - instrumentation</topic><topic>Electrochemical Techniques - methods</topic><topic>Electrodes</topic><topic>Enzymes, Immobilized - chemistry</topic><topic>Ethylene Glycol - chemistry</topic><topic>Glassy carbon</topic><topic>Limit of Detection</topic><topic>Microbalances</topic><topic>Microengineering</topic><topic>Morphology</topic><topic>Multi wall carbon nanotubes</topic><topic>Nanochemistry</topic><topic>Nanotechnology</topic><topic>Nanotubes</topic><topic>Nanotubes, Carbon - chemistry</topic><topic>Organic acids</topic><topic>Original Paper</topic><topic>Phenothiazines - chemistry</topic><topic>Polymerization</topic><topic>Polymers - chemistry</topic><topic>Quartz crystals</topic><topic>Sensitivity</topic><topic>Solvents</topic><topic>Sulfuric acid</topic><topic>Urate Oxidase - chemistry</topic><topic>Uric acid</topic><topic>Uric Acid - chemistry</topic><topic>Uric Acid - urine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dalkıran, Berna</creatorcontrib><creatorcontrib>Fernandes, Isabel P. G.</creatorcontrib><creatorcontrib>David, Melinda</creatorcontrib><creatorcontrib>Brett, Christopher M. A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Mikrochimica acta (1966)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dalkıran, Berna</au><au>Fernandes, Isabel P. G.</au><au>David, Melinda</au><au>Brett, Christopher M. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrochemical synthesis and characterization of poly(thionine)-deep eutectic solvent/carbon nanotube–modified electrodes and application to electrochemical sensing</atitle><jtitle>Mikrochimica acta (1966)</jtitle><stitle>Microchim Acta</stitle><addtitle>Mikrochim Acta</addtitle><date>2020-11-01</date><risdate>2020</risdate><volume>187</volume><issue>11</issue><spage>609</spage><epage>609</epage><pages>609-609</pages><artnum>609</artnum><issn>0026-3672</issn><eissn>1436-5073</eissn><abstract>Electropolymerization of thionine (TH) on multiwalled carbon nanotube (MWCNT)–modified glassy carbon electrodes (GCE) in ethaline deep eutectic solvent (DES) was carried out for the first time, to prepare poly(thionine) (PTH) films with different nanostructured morphologies. PTH films were formed on MWCNT/GCE by potential cycling electropolymerization in ethaline with the addition of different acid dopants CH
3
COOH, HClO
4
, HNO
3
, H
2
SO
4
and HCl, acetic acid being the best. The electropolymerization process was monitored with an electrochemical quartz crystal microbalance. The polymerization scan rate was a key factor affecting the electrochemical and morphological properties of the PTH
Ethaline
-CH
3
COOH/MWCNT/GCE; electrodeposition at 200 mV s
−1
showing the best performance. The PTH/MWCNT/GCE platform was characterized using cyclic and differential pulse voltammetry, electrochemical impedance spectroscopy and scanning electron microscopy. The analytical characteristics of the PTH films were evaluated for sensing of ascorbic acid and biosensing of uric acid. The developed sensor exhibited a low detection limit (1.1 μM), wide linear range (2.8–3010 μM) and high sensitivity (1134 μA cm
−2
mM
−1
) for ascorbic acid. After immobilization of uricase, UOx, on PTH/MWCNT/GCE, the biosensor was successfully applied to the determination of uric acid, with fast response (˂ 7 s), good sensitivity (450 μA cm
−2
mM
−1
, wide linear range (0.48–279 μM) and low detection limit (58.9 nM), better than in the literature and than with PTH prepared in aqueous solution. The determination of uric acid in synthetic urine samples was successfully tested and the mean analytical recovery was 100.8 ± 1.4%. This is a promising approach for the determination of uric acid in real samples.
Graphical abstract</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><pmid>33057990</pmid><doi>10.1007/s00604-020-04588-x</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-1972-4434</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0026-3672 |
ispartof | Mikrochimica acta (1966), 2020-11, Vol.187 (11), p.609-609, Article 609 |
issn | 0026-3672 1436-5073 |
language | eng |
recordid | cdi_proquest_miscellaneous_2451855471 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Acetic Acid Analytical Chemistry Aqueous solutions Ascorbic acid Ascorbic Acid - analysis Biosensing Techniques - instrumentation Biosensing Techniques - methods Biosensors Carbon Characterization and Evaluation of Materials Chemistry Chemistry and Materials Science Choline - chemistry Deep Eutectic Solvents - chemistry Detectors Electric properties Electrochemical analysis Electrochemical impedance spectroscopy Electrochemical reactions Electrochemical Techniques - instrumentation Electrochemical Techniques - methods Electrodes Enzymes, Immobilized - chemistry Ethylene Glycol - chemistry Glassy carbon Limit of Detection Microbalances Microengineering Morphology Multi wall carbon nanotubes Nanochemistry Nanotechnology Nanotubes Nanotubes, Carbon - chemistry Organic acids Original Paper Phenothiazines - chemistry Polymerization Polymers - chemistry Quartz crystals Sensitivity Solvents Sulfuric acid Urate Oxidase - chemistry Uric acid Uric Acid - chemistry Uric Acid - urine |
title | Electrochemical synthesis and characterization of poly(thionine)-deep eutectic solvent/carbon nanotube–modified electrodes and application to electrochemical sensing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T22%3A55%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrochemical%20synthesis%20and%20characterization%20of%20poly(thionine)-deep%20eutectic%20solvent/carbon%20nanotube%E2%80%93modified%20electrodes%20and%20application%20to%20electrochemical%20sensing&rft.jtitle=Mikrochimica%20acta%20(1966)&rft.au=Dalk%C4%B1ran,%20Berna&rft.date=2020-11-01&rft.volume=187&rft.issue=11&rft.spage=609&rft.epage=609&rft.pages=609-609&rft.artnum=609&rft.issn=0026-3672&rft.eissn=1436-5073&rft_id=info:doi/10.1007/s00604-020-04588-x&rft_dat=%3Cgale_proqu%3EA715055990%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2451399943&rft_id=info:pmid/33057990&rft_galeid=A715055990&rfr_iscdi=true |