Fostering reproducibility and generalizability in machine learning for clinical prediction modeling in spine surgery

As the use of machine learning algorithms in the development of clinical prediction models has increased, researchers are becoming more aware of the deleterious effects that stem from the lack of reporting standards. One of the most obvious consequences is the insufficient reproducibility found in c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The spine journal 2021-10, Vol.21 (10), p.1610-1616
Hauptverfasser: Azad, Tej D., Ehresman, Jeff, Ahmed, Ali Karim, Staartjes, Victor E., Lubelski, Daniel, Stienen, Martin N., Veeravagu, Anand, Ratliff, John K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1616
container_issue 10
container_start_page 1610
container_title The spine journal
container_volume 21
creator Azad, Tej D.
Ehresman, Jeff
Ahmed, Ali Karim
Staartjes, Victor E.
Lubelski, Daniel
Stienen, Martin N.
Veeravagu, Anand
Ratliff, John K.
description As the use of machine learning algorithms in the development of clinical prediction models has increased, researchers are becoming more aware of the deleterious effects that stem from the lack of reporting standards. One of the most obvious consequences is the insufficient reproducibility found in current prediction models. In an attempt to characterize methods to improve reproducibility and to allow for better clinical performance, we utilize a previously proposed taxonomy that separates reproducibility into 3 components: technical, statistical, and conceptual reproducibility. By following this framework, we discuss common errors that lead to poor reproducibility, highlight the importance of generalizability when evaluating a ML model's performance, and provide suggestions to optimize generalizability to ensure adequate performance. These efforts are a necessity before such models are applied to patient care.
doi_str_mv 10.1016/j.spinee.2020.10.006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2451848595</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1529943020311438</els_id><sourcerecordid>2451848595</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-828ffb03184590a1d84910a5e2e215dab804f4851597271bbc5db07a5668bee53</originalsourceid><addsrcrecordid>eNp9kDFPwzAQhSMEEqXwDxg8siTYTpw4CxKqKCBVYoHZcuxLceXawU6Qyq_HoZ2Zznp6753vy7JbgguCSX2_K-JgHEBBMZ2lAuP6LFsQ3vCc1CU9T29G27ytSnyZXcW4wxjzhtBFNq59HCEYt0UBhuD1pExnrBkPSDqNtuAgSGt-5Ek0Du2l-kzbkAUZ3BzsfUDKGmeUtGgIoI0ajU9Gr8HOhhT6-yCKU9hCOFxnF720EW5Oc5l9rJ_eVy_55u35dfW4yVVZtmPOKe_7DpeEV6zFkmhetQRLBhQoYVp2HFd9xRlhbUMb0nWK6Q43ktU17wBYuczujr3psK8J4ij2JiqwVjrwUxS0Yqmbs3a2VkerCj7GAL0YgtnLcBAEixmy2IkjZDFDntUEOcUejjFIZ3wbCCIqA04lBgHUKLQ3_xf8Ai3tieE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2451848595</pqid></control><display><type>article</type><title>Fostering reproducibility and generalizability in machine learning for clinical prediction modeling in spine surgery</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Azad, Tej D. ; Ehresman, Jeff ; Ahmed, Ali Karim ; Staartjes, Victor E. ; Lubelski, Daniel ; Stienen, Martin N. ; Veeravagu, Anand ; Ratliff, John K.</creator><creatorcontrib>Azad, Tej D. ; Ehresman, Jeff ; Ahmed, Ali Karim ; Staartjes, Victor E. ; Lubelski, Daniel ; Stienen, Martin N. ; Veeravagu, Anand ; Ratliff, John K.</creatorcontrib><description>As the use of machine learning algorithms in the development of clinical prediction models has increased, researchers are becoming more aware of the deleterious effects that stem from the lack of reporting standards. One of the most obvious consequences is the insufficient reproducibility found in current prediction models. In an attempt to characterize methods to improve reproducibility and to allow for better clinical performance, we utilize a previously proposed taxonomy that separates reproducibility into 3 components: technical, statistical, and conceptual reproducibility. By following this framework, we discuss common errors that lead to poor reproducibility, highlight the importance of generalizability when evaluating a ML model's performance, and provide suggestions to optimize generalizability to ensure adequate performance. These efforts are a necessity before such models are applied to patient care.</description><identifier>ISSN: 1529-9430</identifier><identifier>EISSN: 1878-1632</identifier><identifier>DOI: 10.1016/j.spinee.2020.10.006</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Machine learning ; Overfitting ; Predictive modeling ; Reproducibility</subject><ispartof>The spine journal, 2021-10, Vol.21 (10), p.1610-1616</ispartof><rights>2020 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-828ffb03184590a1d84910a5e2e215dab804f4851597271bbc5db07a5668bee53</citedby><cites>FETCH-LOGICAL-c339t-828ffb03184590a1d84910a5e2e215dab804f4851597271bbc5db07a5668bee53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.spinee.2020.10.006$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Azad, Tej D.</creatorcontrib><creatorcontrib>Ehresman, Jeff</creatorcontrib><creatorcontrib>Ahmed, Ali Karim</creatorcontrib><creatorcontrib>Staartjes, Victor E.</creatorcontrib><creatorcontrib>Lubelski, Daniel</creatorcontrib><creatorcontrib>Stienen, Martin N.</creatorcontrib><creatorcontrib>Veeravagu, Anand</creatorcontrib><creatorcontrib>Ratliff, John K.</creatorcontrib><title>Fostering reproducibility and generalizability in machine learning for clinical prediction modeling in spine surgery</title><title>The spine journal</title><description>As the use of machine learning algorithms in the development of clinical prediction models has increased, researchers are becoming more aware of the deleterious effects that stem from the lack of reporting standards. One of the most obvious consequences is the insufficient reproducibility found in current prediction models. In an attempt to characterize methods to improve reproducibility and to allow for better clinical performance, we utilize a previously proposed taxonomy that separates reproducibility into 3 components: technical, statistical, and conceptual reproducibility. By following this framework, we discuss common errors that lead to poor reproducibility, highlight the importance of generalizability when evaluating a ML model's performance, and provide suggestions to optimize generalizability to ensure adequate performance. These efforts are a necessity before such models are applied to patient care.</description><subject>Machine learning</subject><subject>Overfitting</subject><subject>Predictive modeling</subject><subject>Reproducibility</subject><issn>1529-9430</issn><issn>1878-1632</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kDFPwzAQhSMEEqXwDxg8siTYTpw4CxKqKCBVYoHZcuxLceXawU6Qyq_HoZ2Zznp6753vy7JbgguCSX2_K-JgHEBBMZ2lAuP6LFsQ3vCc1CU9T29G27ytSnyZXcW4wxjzhtBFNq59HCEYt0UBhuD1pExnrBkPSDqNtuAgSGt-5Ek0Du2l-kzbkAUZ3BzsfUDKGmeUtGgIoI0ajU9Gr8HOhhT6-yCKU9hCOFxnF720EW5Oc5l9rJ_eVy_55u35dfW4yVVZtmPOKe_7DpeEV6zFkmhetQRLBhQoYVp2HFd9xRlhbUMb0nWK6Q43ktU17wBYuczujr3psK8J4ij2JiqwVjrwUxS0Yqmbs3a2VkerCj7GAL0YgtnLcBAEixmy2IkjZDFDntUEOcUejjFIZ3wbCCIqA04lBgHUKLQ3_xf8Ai3tieE</recordid><startdate>202110</startdate><enddate>202110</enddate><creator>Azad, Tej D.</creator><creator>Ehresman, Jeff</creator><creator>Ahmed, Ali Karim</creator><creator>Staartjes, Victor E.</creator><creator>Lubelski, Daniel</creator><creator>Stienen, Martin N.</creator><creator>Veeravagu, Anand</creator><creator>Ratliff, John K.</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202110</creationdate><title>Fostering reproducibility and generalizability in machine learning for clinical prediction modeling in spine surgery</title><author>Azad, Tej D. ; Ehresman, Jeff ; Ahmed, Ali Karim ; Staartjes, Victor E. ; Lubelski, Daniel ; Stienen, Martin N. ; Veeravagu, Anand ; Ratliff, John K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-828ffb03184590a1d84910a5e2e215dab804f4851597271bbc5db07a5668bee53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Machine learning</topic><topic>Overfitting</topic><topic>Predictive modeling</topic><topic>Reproducibility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Azad, Tej D.</creatorcontrib><creatorcontrib>Ehresman, Jeff</creatorcontrib><creatorcontrib>Ahmed, Ali Karim</creatorcontrib><creatorcontrib>Staartjes, Victor E.</creatorcontrib><creatorcontrib>Lubelski, Daniel</creatorcontrib><creatorcontrib>Stienen, Martin N.</creatorcontrib><creatorcontrib>Veeravagu, Anand</creatorcontrib><creatorcontrib>Ratliff, John K.</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The spine journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Azad, Tej D.</au><au>Ehresman, Jeff</au><au>Ahmed, Ali Karim</au><au>Staartjes, Victor E.</au><au>Lubelski, Daniel</au><au>Stienen, Martin N.</au><au>Veeravagu, Anand</au><au>Ratliff, John K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fostering reproducibility and generalizability in machine learning for clinical prediction modeling in spine surgery</atitle><jtitle>The spine journal</jtitle><date>2021-10</date><risdate>2021</risdate><volume>21</volume><issue>10</issue><spage>1610</spage><epage>1616</epage><pages>1610-1616</pages><issn>1529-9430</issn><eissn>1878-1632</eissn><abstract>As the use of machine learning algorithms in the development of clinical prediction models has increased, researchers are becoming more aware of the deleterious effects that stem from the lack of reporting standards. One of the most obvious consequences is the insufficient reproducibility found in current prediction models. In an attempt to characterize methods to improve reproducibility and to allow for better clinical performance, we utilize a previously proposed taxonomy that separates reproducibility into 3 components: technical, statistical, and conceptual reproducibility. By following this framework, we discuss common errors that lead to poor reproducibility, highlight the importance of generalizability when evaluating a ML model's performance, and provide suggestions to optimize generalizability to ensure adequate performance. These efforts are a necessity before such models are applied to patient care.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.spinee.2020.10.006</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1529-9430
ispartof The spine journal, 2021-10, Vol.21 (10), p.1610-1616
issn 1529-9430
1878-1632
language eng
recordid cdi_proquest_miscellaneous_2451848595
source Elsevier ScienceDirect Journals Complete
subjects Machine learning
Overfitting
Predictive modeling
Reproducibility
title Fostering reproducibility and generalizability in machine learning for clinical prediction modeling in spine surgery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T08%3A38%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fostering%20reproducibility%20and%20generalizability%20in%20machine%20learning%20for%20clinical%20prediction%20modeling%20in%20spine%20surgery&rft.jtitle=The%20spine%20journal&rft.au=Azad,%20Tej%20D.&rft.date=2021-10&rft.volume=21&rft.issue=10&rft.spage=1610&rft.epage=1616&rft.pages=1610-1616&rft.issn=1529-9430&rft.eissn=1878-1632&rft_id=info:doi/10.1016/j.spinee.2020.10.006&rft_dat=%3Cproquest_cross%3E2451848595%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2451848595&rft_id=info:pmid/&rft_els_id=S1529943020311438&rfr_iscdi=true