Fostering reproducibility and generalizability in machine learning for clinical prediction modeling in spine surgery
As the use of machine learning algorithms in the development of clinical prediction models has increased, researchers are becoming more aware of the deleterious effects that stem from the lack of reporting standards. One of the most obvious consequences is the insufficient reproducibility found in c...
Gespeichert in:
Veröffentlicht in: | The spine journal 2021-10, Vol.21 (10), p.1610-1616 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1616 |
---|---|
container_issue | 10 |
container_start_page | 1610 |
container_title | The spine journal |
container_volume | 21 |
creator | Azad, Tej D. Ehresman, Jeff Ahmed, Ali Karim Staartjes, Victor E. Lubelski, Daniel Stienen, Martin N. Veeravagu, Anand Ratliff, John K. |
description | As the use of machine learning algorithms in the development of clinical prediction models has increased, researchers are becoming more aware of the deleterious effects that stem from the lack of reporting standards. One of the most obvious consequences is the insufficient reproducibility found in current prediction models. In an attempt to characterize methods to improve reproducibility and to allow for better clinical performance, we utilize a previously proposed taxonomy that separates reproducibility into 3 components: technical, statistical, and conceptual reproducibility. By following this framework, we discuss common errors that lead to poor reproducibility, highlight the importance of generalizability when evaluating a ML model's performance, and provide suggestions to optimize generalizability to ensure adequate performance. These efforts are a necessity before such models are applied to patient care. |
doi_str_mv | 10.1016/j.spinee.2020.10.006 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2451848595</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1529943020311438</els_id><sourcerecordid>2451848595</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-828ffb03184590a1d84910a5e2e215dab804f4851597271bbc5db07a5668bee53</originalsourceid><addsrcrecordid>eNp9kDFPwzAQhSMEEqXwDxg8siTYTpw4CxKqKCBVYoHZcuxLceXawU6Qyq_HoZ2Zznp6753vy7JbgguCSX2_K-JgHEBBMZ2lAuP6LFsQ3vCc1CU9T29G27ytSnyZXcW4wxjzhtBFNq59HCEYt0UBhuD1pExnrBkPSDqNtuAgSGt-5Ek0Du2l-kzbkAUZ3BzsfUDKGmeUtGgIoI0ajU9Gr8HOhhT6-yCKU9hCOFxnF720EW5Oc5l9rJ_eVy_55u35dfW4yVVZtmPOKe_7DpeEV6zFkmhetQRLBhQoYVp2HFd9xRlhbUMb0nWK6Q43ktU17wBYuczujr3psK8J4ij2JiqwVjrwUxS0Yqmbs3a2VkerCj7GAL0YgtnLcBAEixmy2IkjZDFDntUEOcUejjFIZ3wbCCIqA04lBgHUKLQ3_xf8Ai3tieE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2451848595</pqid></control><display><type>article</type><title>Fostering reproducibility and generalizability in machine learning for clinical prediction modeling in spine surgery</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Azad, Tej D. ; Ehresman, Jeff ; Ahmed, Ali Karim ; Staartjes, Victor E. ; Lubelski, Daniel ; Stienen, Martin N. ; Veeravagu, Anand ; Ratliff, John K.</creator><creatorcontrib>Azad, Tej D. ; Ehresman, Jeff ; Ahmed, Ali Karim ; Staartjes, Victor E. ; Lubelski, Daniel ; Stienen, Martin N. ; Veeravagu, Anand ; Ratliff, John K.</creatorcontrib><description>As the use of machine learning algorithms in the development of clinical prediction models has increased, researchers are becoming more aware of the deleterious effects that stem from the lack of reporting standards. One of the most obvious consequences is the insufficient reproducibility found in current prediction models. In an attempt to characterize methods to improve reproducibility and to allow for better clinical performance, we utilize a previously proposed taxonomy that separates reproducibility into 3 components: technical, statistical, and conceptual reproducibility. By following this framework, we discuss common errors that lead to poor reproducibility, highlight the importance of generalizability when evaluating a ML model's performance, and provide suggestions to optimize generalizability to ensure adequate performance. These efforts are a necessity before such models are applied to patient care.</description><identifier>ISSN: 1529-9430</identifier><identifier>EISSN: 1878-1632</identifier><identifier>DOI: 10.1016/j.spinee.2020.10.006</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Machine learning ; Overfitting ; Predictive modeling ; Reproducibility</subject><ispartof>The spine journal, 2021-10, Vol.21 (10), p.1610-1616</ispartof><rights>2020 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-828ffb03184590a1d84910a5e2e215dab804f4851597271bbc5db07a5668bee53</citedby><cites>FETCH-LOGICAL-c339t-828ffb03184590a1d84910a5e2e215dab804f4851597271bbc5db07a5668bee53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.spinee.2020.10.006$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Azad, Tej D.</creatorcontrib><creatorcontrib>Ehresman, Jeff</creatorcontrib><creatorcontrib>Ahmed, Ali Karim</creatorcontrib><creatorcontrib>Staartjes, Victor E.</creatorcontrib><creatorcontrib>Lubelski, Daniel</creatorcontrib><creatorcontrib>Stienen, Martin N.</creatorcontrib><creatorcontrib>Veeravagu, Anand</creatorcontrib><creatorcontrib>Ratliff, John K.</creatorcontrib><title>Fostering reproducibility and generalizability in machine learning for clinical prediction modeling in spine surgery</title><title>The spine journal</title><description>As the use of machine learning algorithms in the development of clinical prediction models has increased, researchers are becoming more aware of the deleterious effects that stem from the lack of reporting standards. One of the most obvious consequences is the insufficient reproducibility found in current prediction models. In an attempt to characterize methods to improve reproducibility and to allow for better clinical performance, we utilize a previously proposed taxonomy that separates reproducibility into 3 components: technical, statistical, and conceptual reproducibility. By following this framework, we discuss common errors that lead to poor reproducibility, highlight the importance of generalizability when evaluating a ML model's performance, and provide suggestions to optimize generalizability to ensure adequate performance. These efforts are a necessity before such models are applied to patient care.</description><subject>Machine learning</subject><subject>Overfitting</subject><subject>Predictive modeling</subject><subject>Reproducibility</subject><issn>1529-9430</issn><issn>1878-1632</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kDFPwzAQhSMEEqXwDxg8siTYTpw4CxKqKCBVYoHZcuxLceXawU6Qyq_HoZ2Zznp6753vy7JbgguCSX2_K-JgHEBBMZ2lAuP6LFsQ3vCc1CU9T29G27ytSnyZXcW4wxjzhtBFNq59HCEYt0UBhuD1pExnrBkPSDqNtuAgSGt-5Ek0Du2l-kzbkAUZ3BzsfUDKGmeUtGgIoI0ajU9Gr8HOhhT6-yCKU9hCOFxnF720EW5Oc5l9rJ_eVy_55u35dfW4yVVZtmPOKe_7DpeEV6zFkmhetQRLBhQoYVp2HFd9xRlhbUMb0nWK6Q43ktU17wBYuczujr3psK8J4ij2JiqwVjrwUxS0Yqmbs3a2VkerCj7GAL0YgtnLcBAEixmy2IkjZDFDntUEOcUejjFIZ3wbCCIqA04lBgHUKLQ3_xf8Ai3tieE</recordid><startdate>202110</startdate><enddate>202110</enddate><creator>Azad, Tej D.</creator><creator>Ehresman, Jeff</creator><creator>Ahmed, Ali Karim</creator><creator>Staartjes, Victor E.</creator><creator>Lubelski, Daniel</creator><creator>Stienen, Martin N.</creator><creator>Veeravagu, Anand</creator><creator>Ratliff, John K.</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202110</creationdate><title>Fostering reproducibility and generalizability in machine learning for clinical prediction modeling in spine surgery</title><author>Azad, Tej D. ; Ehresman, Jeff ; Ahmed, Ali Karim ; Staartjes, Victor E. ; Lubelski, Daniel ; Stienen, Martin N. ; Veeravagu, Anand ; Ratliff, John K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-828ffb03184590a1d84910a5e2e215dab804f4851597271bbc5db07a5668bee53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Machine learning</topic><topic>Overfitting</topic><topic>Predictive modeling</topic><topic>Reproducibility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Azad, Tej D.</creatorcontrib><creatorcontrib>Ehresman, Jeff</creatorcontrib><creatorcontrib>Ahmed, Ali Karim</creatorcontrib><creatorcontrib>Staartjes, Victor E.</creatorcontrib><creatorcontrib>Lubelski, Daniel</creatorcontrib><creatorcontrib>Stienen, Martin N.</creatorcontrib><creatorcontrib>Veeravagu, Anand</creatorcontrib><creatorcontrib>Ratliff, John K.</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The spine journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Azad, Tej D.</au><au>Ehresman, Jeff</au><au>Ahmed, Ali Karim</au><au>Staartjes, Victor E.</au><au>Lubelski, Daniel</au><au>Stienen, Martin N.</au><au>Veeravagu, Anand</au><au>Ratliff, John K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fostering reproducibility and generalizability in machine learning for clinical prediction modeling in spine surgery</atitle><jtitle>The spine journal</jtitle><date>2021-10</date><risdate>2021</risdate><volume>21</volume><issue>10</issue><spage>1610</spage><epage>1616</epage><pages>1610-1616</pages><issn>1529-9430</issn><eissn>1878-1632</eissn><abstract>As the use of machine learning algorithms in the development of clinical prediction models has increased, researchers are becoming more aware of the deleterious effects that stem from the lack of reporting standards. One of the most obvious consequences is the insufficient reproducibility found in current prediction models. In an attempt to characterize methods to improve reproducibility and to allow for better clinical performance, we utilize a previously proposed taxonomy that separates reproducibility into 3 components: technical, statistical, and conceptual reproducibility. By following this framework, we discuss common errors that lead to poor reproducibility, highlight the importance of generalizability when evaluating a ML model's performance, and provide suggestions to optimize generalizability to ensure adequate performance. These efforts are a necessity before such models are applied to patient care.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.spinee.2020.10.006</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1529-9430 |
ispartof | The spine journal, 2021-10, Vol.21 (10), p.1610-1616 |
issn | 1529-9430 1878-1632 |
language | eng |
recordid | cdi_proquest_miscellaneous_2451848595 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Machine learning Overfitting Predictive modeling Reproducibility |
title | Fostering reproducibility and generalizability in machine learning for clinical prediction modeling in spine surgery |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T08%3A38%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fostering%20reproducibility%20and%20generalizability%20in%20machine%20learning%20for%20clinical%20prediction%20modeling%20in%20spine%20surgery&rft.jtitle=The%20spine%20journal&rft.au=Azad,%20Tej%20D.&rft.date=2021-10&rft.volume=21&rft.issue=10&rft.spage=1610&rft.epage=1616&rft.pages=1610-1616&rft.issn=1529-9430&rft.eissn=1878-1632&rft_id=info:doi/10.1016/j.spinee.2020.10.006&rft_dat=%3Cproquest_cross%3E2451848595%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2451848595&rft_id=info:pmid/&rft_els_id=S1529943020311438&rfr_iscdi=true |