Polycystin-1 mitigates damage and regulates CTGF expression through AKT activation during cardiac ischemia/reperfusion
During ischemia/reperfusion (I/R), cardiomyocytes activate pathways that regulate cell survival and death and release factors that modulate fibroblast-to-myofibroblast differentiation. The mechanisms underlying these effects are not fully understood. Polycystin1 (PC1) is a mechanosensor crucial for...
Gespeichert in:
Veröffentlicht in: | Biochimica et biophysica acta. Molecular basis of disease 2021-01, Vol.1867 (1), p.165986-165986, Article 165986 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | During ischemia/reperfusion (I/R), cardiomyocytes activate pathways that regulate cell survival and death and release factors that modulate fibroblast-to-myofibroblast differentiation. The mechanisms underlying these effects are not fully understood. Polycystin1 (PC1) is a mechanosensor crucial for cardiac function. This work aims to assess the role of PC1 in cardiomyocyte survival, its role in profibrotic factor expression in cardiomyocytes, and its paracrine effects on I/R-induced cardiac fibroblast function.
In vivo and ex vivo I/R and simulated in vitro I/R (sI/R) were induced in wild-type and PC1-knockout (PC1 KO) mice and PC1-knockdown (siPC1) neonatal rat ventricular myocytes (NRVM), respectively. Neonatal rat cardiac fibroblasts (NRCF) were stimulated with conditioned medium (CM) derived from NRVM or siPC1-NRVM supernatant after reperfusion and fibroblast-to-myofibroblast differentiation evaluated. Infarcts were larger in PC1-KO mice subjected to in vivo and ex vivo I/R, and necrosis rates were higher in siPC1-NRVM than control after sI/R. PC1 activated the pro-survival AKT protein during sI/R and induced PC1-AKT-pathway-dependent CTGF expression. Furthermore, conditioned media from sI/R-NRVM induced PC1-dependent fibroblast-to-myofibroblast differentiation in NRCF.
This novel evidence shows that PC1 mitigates cardiac damage during I/R, likely through AKT activation, and regulates CTGF expression in cardiomyocytes via AKT. Moreover, PC1-NRVM regulates fibroblast-to-myofibroblast differentiation during sI/R. PC1, therefore, may emerge as a new key regulator of I/R injury-induced cardiac remodeling.
[Display omitted]
•Polycystin-1-cardiomyocytes mitigate cardiac ischemia/reperfusion-induced injury.•Polycystin-1 increases CTGF-cardiomyocytes expression during I/R through AKT pathway.•Cardiomyocyte profibrotic factors during I/R are regulated by polycystin-1. |
---|---|
ISSN: | 0925-4439 1879-260X |
DOI: | 10.1016/j.bbadis.2020.165986 |