Surface coordination layer passivates oxidation of copper

Owing to its high thermal and electrical conductivities, its ductility and its overall non-toxicity 1 – 3 , copper is widely used in daily applications and in industry, particularly in anti-oxidation technologies. However, many widespread anti-oxidation techniques, such as alloying and electroplatin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2020-10, Vol.586 (7829), p.390-394
Hauptverfasser: Peng, Jian, Chen, Bili, Wang, Zhichang, Guo, Jing, Wu, Binghui, Hao, Shuqiang, Zhang, Qinghua, Gu, Lin, Zhou, Qin, Liu, Zhi, Hong, Shuqin, You, Sifan, Fu, Ang, Shi, Zaifa, Xie, Hao, Cao, Duanyun, Lin, Chang-Jian, Fu, Gang, Zheng, Lan-Sun, Jiang, Ying, Zheng, Nanfeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 394
container_issue 7829
container_start_page 390
container_title Nature (London)
container_volume 586
creator Peng, Jian
Chen, Bili
Wang, Zhichang
Guo, Jing
Wu, Binghui
Hao, Shuqiang
Zhang, Qinghua
Gu, Lin
Zhou, Qin
Liu, Zhi
Hong, Shuqin
You, Sifan
Fu, Ang
Shi, Zaifa
Xie, Hao
Cao, Duanyun
Lin, Chang-Jian
Fu, Gang
Zheng, Lan-Sun
Jiang, Ying
Zheng, Nanfeng
description Owing to its high thermal and electrical conductivities, its ductility and its overall non-toxicity 1 – 3 , copper is widely used in daily applications and in industry, particularly in anti-oxidation technologies. However, many widespread anti-oxidation techniques, such as alloying and electroplating 1 , 2 , often degrade some physical properties (for example, thermal and electrical conductivities and colour) and introduce harmful elements such as chromium and nickel. Although efforts have been made to develop surface passivation technologies using organic molecules, inorganic materials or carbon-based materials as oxidation inhibitors 4 – 12 , their large-scale application has had limited success. We have previously reported the solvothermal synthesis of highly air-stable copper nanosheets using formate as a reducing agent 13 . Here we report that a solvothermal treatment of copper in the presence of sodium formate leads to crystallographic reconstruction of the copper surface and formation of an ultrathin surface coordination layer. We reveal that the surface modification does not affect the electrical or thermal conductivities of the bulk copper, but introduces high oxidation resistance in air, salt spray and alkaline conditions. We also develop a rapid room-temperature electrochemical synthesis protocol, with the resulting materials demonstrating similarly strong passivation performance. We further improve the oxidation resistance of the copper surfaces by introducing alkanethiol ligands to coordinate with steps or defect sites that are not protected by the passivation layer. We demonstrate that the mild treatment conditions make this technology applicable to the preparation of air-stable copper materials in different forms, including foils, nanowires, nanoparticles and bulk pastes. We expect that the technology developed in this work will help to expand the industrial applications of copper. High oxidation resistance, without degradation of thermal or electrical conductivity, is achieved in copper using surface modification by a solvothermal or electrochemical treatment with sodium formate and formation of a thin surface coordination layer.
doi_str_mv 10.1038/s41586-020-2783-x
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2451846336</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A638458741</galeid><sourcerecordid>A638458741</sourcerecordid><originalsourceid>FETCH-LOGICAL-c640t-8a0431403b1328690242516fdfef6da0553f5241c2092d32aee315f9c4f471983</originalsourceid><addsrcrecordid>eNp10l1rFDEUBuAgit1Wf4A3suhNRaaefE7mcln8KBQFW_EypJmTJWV2Mk1mZPvvzbLVurIlF4Gc5xxC8hLyisIZBa4_ZEGlVhUwqFitebV5QmZU1KoSStdPyQyA6Qo0V0fkOOcbAJC0Fs_JEecga8b4jDSXU_LW4dzFmNrQ2zHEft7ZO0zzweYcftkR8zxuQrsrRV_oMGB6QZ5522V8eb-fkB-fPl4tv1QX3z6fLxcXlVMCxkpbEJwK4NeUM60aYIJJqnzr0avWgpTcSyaoY9CwljOLyKn0jRNe1LTR_ISc7uYOKd5OmEezDtlh19ke45QNE5JqoThXhb79j97EKfXldlslqG4aDg9qZTs0ofdxTNZth5qF4lpIXQtaVHVArbDHZLvYow_leM-_OeDdEG7Nv-jsACqrxXVwB6e-22soZsTNuLJTzub88vu-ff-4XVz9XH7d13SnXYo5J_RmSGFt052hYLbpMrt0mZIus02X2ZSe1_fvO12vsf3b8SdOBbAdyKXUrzA9fMDjU38D5o3TZg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454189930</pqid></control><display><type>article</type><title>Surface coordination layer passivates oxidation of copper</title><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Peng, Jian ; Chen, Bili ; Wang, Zhichang ; Guo, Jing ; Wu, Binghui ; Hao, Shuqiang ; Zhang, Qinghua ; Gu, Lin ; Zhou, Qin ; Liu, Zhi ; Hong, Shuqin ; You, Sifan ; Fu, Ang ; Shi, Zaifa ; Xie, Hao ; Cao, Duanyun ; Lin, Chang-Jian ; Fu, Gang ; Zheng, Lan-Sun ; Jiang, Ying ; Zheng, Nanfeng</creator><creatorcontrib>Peng, Jian ; Chen, Bili ; Wang, Zhichang ; Guo, Jing ; Wu, Binghui ; Hao, Shuqiang ; Zhang, Qinghua ; Gu, Lin ; Zhou, Qin ; Liu, Zhi ; Hong, Shuqin ; You, Sifan ; Fu, Ang ; Shi, Zaifa ; Xie, Hao ; Cao, Duanyun ; Lin, Chang-Jian ; Fu, Gang ; Zheng, Lan-Sun ; Jiang, Ying ; Zheng, Nanfeng</creatorcontrib><description>Owing to its high thermal and electrical conductivities, its ductility and its overall non-toxicity 1 – 3 , copper is widely used in daily applications and in industry, particularly in anti-oxidation technologies. However, many widespread anti-oxidation techniques, such as alloying and electroplating 1 , 2 , often degrade some physical properties (for example, thermal and electrical conductivities and colour) and introduce harmful elements such as chromium and nickel. Although efforts have been made to develop surface passivation technologies using organic molecules, inorganic materials or carbon-based materials as oxidation inhibitors 4 – 12 , their large-scale application has had limited success. We have previously reported the solvothermal synthesis of highly air-stable copper nanosheets using formate as a reducing agent 13 . Here we report that a solvothermal treatment of copper in the presence of sodium formate leads to crystallographic reconstruction of the copper surface and formation of an ultrathin surface coordination layer. We reveal that the surface modification does not affect the electrical or thermal conductivities of the bulk copper, but introduces high oxidation resistance in air, salt spray and alkaline conditions. We also develop a rapid room-temperature electrochemical synthesis protocol, with the resulting materials demonstrating similarly strong passivation performance. We further improve the oxidation resistance of the copper surfaces by introducing alkanethiol ligands to coordinate with steps or defect sites that are not protected by the passivation layer. We demonstrate that the mild treatment conditions make this technology applicable to the preparation of air-stable copper materials in different forms, including foils, nanowires, nanoparticles and bulk pastes. We expect that the technology developed in this work will help to expand the industrial applications of copper. High oxidation resistance, without degradation of thermal or electrical conductivity, is achieved in copper using surface modification by a solvothermal or electrochemical treatment with sodium formate and formation of a thin surface coordination layer.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-020-2783-x</identifier><identifier>PMID: 33057223</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>119/118 ; 140/133 ; 140/146 ; 639/638/298 ; 639/638/542 ; Alkanes ; Annealing ; Chemical properties ; Chemical synthesis ; Chromium ; Coordination ; Copper ; Corrosion ; Crystallography ; Ductility ; Electrical resistivity ; Electrochemistry ; Foils ; Fourier transforms ; Graphene ; Humanities and Social Sciences ; Industrial applications ; Inorganic materials ; Ligands ; Microscopy ; multidisciplinary ; Nanoparticles ; Nanotechnology ; Nanowires ; Nickel ; Observations ; Organic chemistry ; Oxidation ; Oxidation resistance ; Oxidation-reduction reaction ; Passivity ; Pastes ; Physical properties ; Room temperature ; Science ; Science (multidisciplinary) ; Sodium ; Sodium formate</subject><ispartof>Nature (London), 2020-10, Vol.586 (7829), p.390-394</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>COPYRIGHT 2020 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Oct 15, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c640t-8a0431403b1328690242516fdfef6da0553f5241c2092d32aee315f9c4f471983</citedby><cites>FETCH-LOGICAL-c640t-8a0431403b1328690242516fdfef6da0553f5241c2092d32aee315f9c4f471983</cites><orcidid>0000-0001-9879-4790 ; 0000-0003-3141-2190 ; 0000-0002-7504-031X ; 0000-0002-0488-9076 ; 0000-0002-6887-5503 ; 0000-0002-3989-959X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-020-2783-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-020-2783-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33057223$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Peng, Jian</creatorcontrib><creatorcontrib>Chen, Bili</creatorcontrib><creatorcontrib>Wang, Zhichang</creatorcontrib><creatorcontrib>Guo, Jing</creatorcontrib><creatorcontrib>Wu, Binghui</creatorcontrib><creatorcontrib>Hao, Shuqiang</creatorcontrib><creatorcontrib>Zhang, Qinghua</creatorcontrib><creatorcontrib>Gu, Lin</creatorcontrib><creatorcontrib>Zhou, Qin</creatorcontrib><creatorcontrib>Liu, Zhi</creatorcontrib><creatorcontrib>Hong, Shuqin</creatorcontrib><creatorcontrib>You, Sifan</creatorcontrib><creatorcontrib>Fu, Ang</creatorcontrib><creatorcontrib>Shi, Zaifa</creatorcontrib><creatorcontrib>Xie, Hao</creatorcontrib><creatorcontrib>Cao, Duanyun</creatorcontrib><creatorcontrib>Lin, Chang-Jian</creatorcontrib><creatorcontrib>Fu, Gang</creatorcontrib><creatorcontrib>Zheng, Lan-Sun</creatorcontrib><creatorcontrib>Jiang, Ying</creatorcontrib><creatorcontrib>Zheng, Nanfeng</creatorcontrib><title>Surface coordination layer passivates oxidation of copper</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Owing to its high thermal and electrical conductivities, its ductility and its overall non-toxicity 1 – 3 , copper is widely used in daily applications and in industry, particularly in anti-oxidation technologies. However, many widespread anti-oxidation techniques, such as alloying and electroplating 1 , 2 , often degrade some physical properties (for example, thermal and electrical conductivities and colour) and introduce harmful elements such as chromium and nickel. Although efforts have been made to develop surface passivation technologies using organic molecules, inorganic materials or carbon-based materials as oxidation inhibitors 4 – 12 , their large-scale application has had limited success. We have previously reported the solvothermal synthesis of highly air-stable copper nanosheets using formate as a reducing agent 13 . Here we report that a solvothermal treatment of copper in the presence of sodium formate leads to crystallographic reconstruction of the copper surface and formation of an ultrathin surface coordination layer. We reveal that the surface modification does not affect the electrical or thermal conductivities of the bulk copper, but introduces high oxidation resistance in air, salt spray and alkaline conditions. We also develop a rapid room-temperature electrochemical synthesis protocol, with the resulting materials demonstrating similarly strong passivation performance. We further improve the oxidation resistance of the copper surfaces by introducing alkanethiol ligands to coordinate with steps or defect sites that are not protected by the passivation layer. We demonstrate that the mild treatment conditions make this technology applicable to the preparation of air-stable copper materials in different forms, including foils, nanowires, nanoparticles and bulk pastes. We expect that the technology developed in this work will help to expand the industrial applications of copper. High oxidation resistance, without degradation of thermal or electrical conductivity, is achieved in copper using surface modification by a solvothermal or electrochemical treatment with sodium formate and formation of a thin surface coordination layer.</description><subject>119/118</subject><subject>140/133</subject><subject>140/146</subject><subject>639/638/298</subject><subject>639/638/542</subject><subject>Alkanes</subject><subject>Annealing</subject><subject>Chemical properties</subject><subject>Chemical synthesis</subject><subject>Chromium</subject><subject>Coordination</subject><subject>Copper</subject><subject>Corrosion</subject><subject>Crystallography</subject><subject>Ductility</subject><subject>Electrical resistivity</subject><subject>Electrochemistry</subject><subject>Foils</subject><subject>Fourier transforms</subject><subject>Graphene</subject><subject>Humanities and Social Sciences</subject><subject>Industrial applications</subject><subject>Inorganic materials</subject><subject>Ligands</subject><subject>Microscopy</subject><subject>multidisciplinary</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Nanowires</subject><subject>Nickel</subject><subject>Observations</subject><subject>Organic chemistry</subject><subject>Oxidation</subject><subject>Oxidation resistance</subject><subject>Oxidation-reduction reaction</subject><subject>Passivity</subject><subject>Pastes</subject><subject>Physical properties</subject><subject>Room temperature</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Sodium</subject><subject>Sodium formate</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp10l1rFDEUBuAgit1Wf4A3suhNRaaefE7mcln8KBQFW_EypJmTJWV2Mk1mZPvvzbLVurIlF4Gc5xxC8hLyisIZBa4_ZEGlVhUwqFitebV5QmZU1KoSStdPyQyA6Qo0V0fkOOcbAJC0Fs_JEecga8b4jDSXU_LW4dzFmNrQ2zHEft7ZO0zzweYcftkR8zxuQrsrRV_oMGB6QZ5522V8eb-fkB-fPl4tv1QX3z6fLxcXlVMCxkpbEJwK4NeUM60aYIJJqnzr0avWgpTcSyaoY9CwljOLyKn0jRNe1LTR_ISc7uYOKd5OmEezDtlh19ke45QNE5JqoThXhb79j97EKfXldlslqG4aDg9qZTs0ofdxTNZth5qF4lpIXQtaVHVArbDHZLvYow_leM-_OeDdEG7Nv-jsACqrxXVwB6e-22soZsTNuLJTzub88vu-ff-4XVz9XH7d13SnXYo5J_RmSGFt052hYLbpMrt0mZIus02X2ZSe1_fvO12vsf3b8SdOBbAdyKXUrzA9fMDjU38D5o3TZg</recordid><startdate>20201015</startdate><enddate>20201015</enddate><creator>Peng, Jian</creator><creator>Chen, Bili</creator><creator>Wang, Zhichang</creator><creator>Guo, Jing</creator><creator>Wu, Binghui</creator><creator>Hao, Shuqiang</creator><creator>Zhang, Qinghua</creator><creator>Gu, Lin</creator><creator>Zhou, Qin</creator><creator>Liu, Zhi</creator><creator>Hong, Shuqin</creator><creator>You, Sifan</creator><creator>Fu, Ang</creator><creator>Shi, Zaifa</creator><creator>Xie, Hao</creator><creator>Cao, Duanyun</creator><creator>Lin, Chang-Jian</creator><creator>Fu, Gang</creator><creator>Zheng, Lan-Sun</creator><creator>Jiang, Ying</creator><creator>Zheng, Nanfeng</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9879-4790</orcidid><orcidid>https://orcid.org/0000-0003-3141-2190</orcidid><orcidid>https://orcid.org/0000-0002-7504-031X</orcidid><orcidid>https://orcid.org/0000-0002-0488-9076</orcidid><orcidid>https://orcid.org/0000-0002-6887-5503</orcidid><orcidid>https://orcid.org/0000-0002-3989-959X</orcidid></search><sort><creationdate>20201015</creationdate><title>Surface coordination layer passivates oxidation of copper</title><author>Peng, Jian ; Chen, Bili ; Wang, Zhichang ; Guo, Jing ; Wu, Binghui ; Hao, Shuqiang ; Zhang, Qinghua ; Gu, Lin ; Zhou, Qin ; Liu, Zhi ; Hong, Shuqin ; You, Sifan ; Fu, Ang ; Shi, Zaifa ; Xie, Hao ; Cao, Duanyun ; Lin, Chang-Jian ; Fu, Gang ; Zheng, Lan-Sun ; Jiang, Ying ; Zheng, Nanfeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c640t-8a0431403b1328690242516fdfef6da0553f5241c2092d32aee315f9c4f471983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>119/118</topic><topic>140/133</topic><topic>140/146</topic><topic>639/638/298</topic><topic>639/638/542</topic><topic>Alkanes</topic><topic>Annealing</topic><topic>Chemical properties</topic><topic>Chemical synthesis</topic><topic>Chromium</topic><topic>Coordination</topic><topic>Copper</topic><topic>Corrosion</topic><topic>Crystallography</topic><topic>Ductility</topic><topic>Electrical resistivity</topic><topic>Electrochemistry</topic><topic>Foils</topic><topic>Fourier transforms</topic><topic>Graphene</topic><topic>Humanities and Social Sciences</topic><topic>Industrial applications</topic><topic>Inorganic materials</topic><topic>Ligands</topic><topic>Microscopy</topic><topic>multidisciplinary</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Nanowires</topic><topic>Nickel</topic><topic>Observations</topic><topic>Organic chemistry</topic><topic>Oxidation</topic><topic>Oxidation resistance</topic><topic>Oxidation-reduction reaction</topic><topic>Passivity</topic><topic>Pastes</topic><topic>Physical properties</topic><topic>Room temperature</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Sodium</topic><topic>Sodium formate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peng, Jian</creatorcontrib><creatorcontrib>Chen, Bili</creatorcontrib><creatorcontrib>Wang, Zhichang</creatorcontrib><creatorcontrib>Guo, Jing</creatorcontrib><creatorcontrib>Wu, Binghui</creatorcontrib><creatorcontrib>Hao, Shuqiang</creatorcontrib><creatorcontrib>Zhang, Qinghua</creatorcontrib><creatorcontrib>Gu, Lin</creatorcontrib><creatorcontrib>Zhou, Qin</creatorcontrib><creatorcontrib>Liu, Zhi</creatorcontrib><creatorcontrib>Hong, Shuqin</creatorcontrib><creatorcontrib>You, Sifan</creatorcontrib><creatorcontrib>Fu, Ang</creatorcontrib><creatorcontrib>Shi, Zaifa</creatorcontrib><creatorcontrib>Xie, Hao</creatorcontrib><creatorcontrib>Cao, Duanyun</creatorcontrib><creatorcontrib>Lin, Chang-Jian</creatorcontrib><creatorcontrib>Fu, Gang</creatorcontrib><creatorcontrib>Zheng, Lan-Sun</creatorcontrib><creatorcontrib>Jiang, Ying</creatorcontrib><creatorcontrib>Zheng, Nanfeng</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peng, Jian</au><au>Chen, Bili</au><au>Wang, Zhichang</au><au>Guo, Jing</au><au>Wu, Binghui</au><au>Hao, Shuqiang</au><au>Zhang, Qinghua</au><au>Gu, Lin</au><au>Zhou, Qin</au><au>Liu, Zhi</au><au>Hong, Shuqin</au><au>You, Sifan</au><au>Fu, Ang</au><au>Shi, Zaifa</au><au>Xie, Hao</au><au>Cao, Duanyun</au><au>Lin, Chang-Jian</au><au>Fu, Gang</au><au>Zheng, Lan-Sun</au><au>Jiang, Ying</au><au>Zheng, Nanfeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface coordination layer passivates oxidation of copper</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2020-10-15</date><risdate>2020</risdate><volume>586</volume><issue>7829</issue><spage>390</spage><epage>394</epage><pages>390-394</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>Owing to its high thermal and electrical conductivities, its ductility and its overall non-toxicity 1 – 3 , copper is widely used in daily applications and in industry, particularly in anti-oxidation technologies. However, many widespread anti-oxidation techniques, such as alloying and electroplating 1 , 2 , often degrade some physical properties (for example, thermal and electrical conductivities and colour) and introduce harmful elements such as chromium and nickel. Although efforts have been made to develop surface passivation technologies using organic molecules, inorganic materials or carbon-based materials as oxidation inhibitors 4 – 12 , their large-scale application has had limited success. We have previously reported the solvothermal synthesis of highly air-stable copper nanosheets using formate as a reducing agent 13 . Here we report that a solvothermal treatment of copper in the presence of sodium formate leads to crystallographic reconstruction of the copper surface and formation of an ultrathin surface coordination layer. We reveal that the surface modification does not affect the electrical or thermal conductivities of the bulk copper, but introduces high oxidation resistance in air, salt spray and alkaline conditions. We also develop a rapid room-temperature electrochemical synthesis protocol, with the resulting materials demonstrating similarly strong passivation performance. We further improve the oxidation resistance of the copper surfaces by introducing alkanethiol ligands to coordinate with steps or defect sites that are not protected by the passivation layer. We demonstrate that the mild treatment conditions make this technology applicable to the preparation of air-stable copper materials in different forms, including foils, nanowires, nanoparticles and bulk pastes. We expect that the technology developed in this work will help to expand the industrial applications of copper. High oxidation resistance, without degradation of thermal or electrical conductivity, is achieved in copper using surface modification by a solvothermal or electrochemical treatment with sodium formate and formation of a thin surface coordination layer.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33057223</pmid><doi>10.1038/s41586-020-2783-x</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-9879-4790</orcidid><orcidid>https://orcid.org/0000-0003-3141-2190</orcidid><orcidid>https://orcid.org/0000-0002-7504-031X</orcidid><orcidid>https://orcid.org/0000-0002-0488-9076</orcidid><orcidid>https://orcid.org/0000-0002-6887-5503</orcidid><orcidid>https://orcid.org/0000-0002-3989-959X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2020-10, Vol.586 (7829), p.390-394
issn 0028-0836
1476-4687
language eng
recordid cdi_proquest_miscellaneous_2451846336
source SpringerLink Journals; Nature Journals Online
subjects 119/118
140/133
140/146
639/638/298
639/638/542
Alkanes
Annealing
Chemical properties
Chemical synthesis
Chromium
Coordination
Copper
Corrosion
Crystallography
Ductility
Electrical resistivity
Electrochemistry
Foils
Fourier transforms
Graphene
Humanities and Social Sciences
Industrial applications
Inorganic materials
Ligands
Microscopy
multidisciplinary
Nanoparticles
Nanotechnology
Nanowires
Nickel
Observations
Organic chemistry
Oxidation
Oxidation resistance
Oxidation-reduction reaction
Passivity
Pastes
Physical properties
Room temperature
Science
Science (multidisciplinary)
Sodium
Sodium formate
title Surface coordination layer passivates oxidation of copper
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T19%3A30%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%20coordination%20layer%20passivates%20oxidation%20of%20copper&rft.jtitle=Nature%20(London)&rft.au=Peng,%20Jian&rft.date=2020-10-15&rft.volume=586&rft.issue=7829&rft.spage=390&rft.epage=394&rft.pages=390-394&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-020-2783-x&rft_dat=%3Cgale_proqu%3EA638458741%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454189930&rft_id=info:pmid/33057223&rft_galeid=A638458741&rfr_iscdi=true