Surface coordination layer passivates oxidation of copper
Owing to its high thermal and electrical conductivities, its ductility and its overall non-toxicity 1 – 3 , copper is widely used in daily applications and in industry, particularly in anti-oxidation technologies. However, many widespread anti-oxidation techniques, such as alloying and electroplatin...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2020-10, Vol.586 (7829), p.390-394 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 394 |
---|---|
container_issue | 7829 |
container_start_page | 390 |
container_title | Nature (London) |
container_volume | 586 |
creator | Peng, Jian Chen, Bili Wang, Zhichang Guo, Jing Wu, Binghui Hao, Shuqiang Zhang, Qinghua Gu, Lin Zhou, Qin Liu, Zhi Hong, Shuqin You, Sifan Fu, Ang Shi, Zaifa Xie, Hao Cao, Duanyun Lin, Chang-Jian Fu, Gang Zheng, Lan-Sun Jiang, Ying Zheng, Nanfeng |
description | Owing to its high thermal and electrical conductivities, its ductility and its overall non-toxicity
1
–
3
, copper is widely used in daily applications and in industry, particularly in anti-oxidation technologies. However, many widespread anti-oxidation techniques, such as alloying and electroplating
1
,
2
, often degrade some physical properties (for example, thermal and electrical conductivities and colour) and introduce harmful elements such as chromium and nickel. Although efforts have been made to develop surface passivation technologies using organic molecules, inorganic materials or carbon-based materials as oxidation inhibitors
4
–
12
, their large-scale application has had limited success. We have previously reported the solvothermal synthesis of highly air-stable copper nanosheets using formate as a reducing agent
13
. Here we report that a solvothermal treatment of copper in the presence of sodium formate leads to crystallographic reconstruction of the copper surface and formation of an ultrathin surface coordination layer. We reveal that the surface modification does not affect the electrical or thermal conductivities of the bulk copper, but introduces high oxidation resistance in air, salt spray and alkaline conditions. We also develop a rapid room-temperature electrochemical synthesis protocol, with the resulting materials demonstrating similarly strong passivation performance. We further improve the oxidation resistance of the copper surfaces by introducing alkanethiol ligands to coordinate with steps or defect sites that are not protected by the passivation layer. We demonstrate that the mild treatment conditions make this technology applicable to the preparation of air-stable copper materials in different forms, including foils, nanowires, nanoparticles and bulk pastes. We expect that the technology developed in this work will help to expand the industrial applications of copper.
High oxidation resistance, without degradation of thermal or electrical conductivity, is achieved in copper using surface modification by a solvothermal or electrochemical treatment with sodium formate and formation of a thin surface coordination layer. |
doi_str_mv | 10.1038/s41586-020-2783-x |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2451846336</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A638458741</galeid><sourcerecordid>A638458741</sourcerecordid><originalsourceid>FETCH-LOGICAL-c640t-8a0431403b1328690242516fdfef6da0553f5241c2092d32aee315f9c4f471983</originalsourceid><addsrcrecordid>eNp10l1rFDEUBuAgit1Wf4A3suhNRaaefE7mcln8KBQFW_EypJmTJWV2Mk1mZPvvzbLVurIlF4Gc5xxC8hLyisIZBa4_ZEGlVhUwqFitebV5QmZU1KoSStdPyQyA6Qo0V0fkOOcbAJC0Fs_JEecga8b4jDSXU_LW4dzFmNrQ2zHEft7ZO0zzweYcftkR8zxuQrsrRV_oMGB6QZ5522V8eb-fkB-fPl4tv1QX3z6fLxcXlVMCxkpbEJwK4NeUM60aYIJJqnzr0avWgpTcSyaoY9CwljOLyKn0jRNe1LTR_ISc7uYOKd5OmEezDtlh19ke45QNE5JqoThXhb79j97EKfXldlslqG4aDg9qZTs0ofdxTNZth5qF4lpIXQtaVHVArbDHZLvYow_leM-_OeDdEG7Nv-jsACqrxXVwB6e-22soZsTNuLJTzub88vu-ff-4XVz9XH7d13SnXYo5J_RmSGFt052hYLbpMrt0mZIus02X2ZSe1_fvO12vsf3b8SdOBbAdyKXUrzA9fMDjU38D5o3TZg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454189930</pqid></control><display><type>article</type><title>Surface coordination layer passivates oxidation of copper</title><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Peng, Jian ; Chen, Bili ; Wang, Zhichang ; Guo, Jing ; Wu, Binghui ; Hao, Shuqiang ; Zhang, Qinghua ; Gu, Lin ; Zhou, Qin ; Liu, Zhi ; Hong, Shuqin ; You, Sifan ; Fu, Ang ; Shi, Zaifa ; Xie, Hao ; Cao, Duanyun ; Lin, Chang-Jian ; Fu, Gang ; Zheng, Lan-Sun ; Jiang, Ying ; Zheng, Nanfeng</creator><creatorcontrib>Peng, Jian ; Chen, Bili ; Wang, Zhichang ; Guo, Jing ; Wu, Binghui ; Hao, Shuqiang ; Zhang, Qinghua ; Gu, Lin ; Zhou, Qin ; Liu, Zhi ; Hong, Shuqin ; You, Sifan ; Fu, Ang ; Shi, Zaifa ; Xie, Hao ; Cao, Duanyun ; Lin, Chang-Jian ; Fu, Gang ; Zheng, Lan-Sun ; Jiang, Ying ; Zheng, Nanfeng</creatorcontrib><description>Owing to its high thermal and electrical conductivities, its ductility and its overall non-toxicity
1
–
3
, copper is widely used in daily applications and in industry, particularly in anti-oxidation technologies. However, many widespread anti-oxidation techniques, such as alloying and electroplating
1
,
2
, often degrade some physical properties (for example, thermal and electrical conductivities and colour) and introduce harmful elements such as chromium and nickel. Although efforts have been made to develop surface passivation technologies using organic molecules, inorganic materials or carbon-based materials as oxidation inhibitors
4
–
12
, their large-scale application has had limited success. We have previously reported the solvothermal synthesis of highly air-stable copper nanosheets using formate as a reducing agent
13
. Here we report that a solvothermal treatment of copper in the presence of sodium formate leads to crystallographic reconstruction of the copper surface and formation of an ultrathin surface coordination layer. We reveal that the surface modification does not affect the electrical or thermal conductivities of the bulk copper, but introduces high oxidation resistance in air, salt spray and alkaline conditions. We also develop a rapid room-temperature electrochemical synthesis protocol, with the resulting materials demonstrating similarly strong passivation performance. We further improve the oxidation resistance of the copper surfaces by introducing alkanethiol ligands to coordinate with steps or defect sites that are not protected by the passivation layer. We demonstrate that the mild treatment conditions make this technology applicable to the preparation of air-stable copper materials in different forms, including foils, nanowires, nanoparticles and bulk pastes. We expect that the technology developed in this work will help to expand the industrial applications of copper.
High oxidation resistance, without degradation of thermal or electrical conductivity, is achieved in copper using surface modification by a solvothermal or electrochemical treatment with sodium formate and formation of a thin surface coordination layer.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-020-2783-x</identifier><identifier>PMID: 33057223</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>119/118 ; 140/133 ; 140/146 ; 639/638/298 ; 639/638/542 ; Alkanes ; Annealing ; Chemical properties ; Chemical synthesis ; Chromium ; Coordination ; Copper ; Corrosion ; Crystallography ; Ductility ; Electrical resistivity ; Electrochemistry ; Foils ; Fourier transforms ; Graphene ; Humanities and Social Sciences ; Industrial applications ; Inorganic materials ; Ligands ; Microscopy ; multidisciplinary ; Nanoparticles ; Nanotechnology ; Nanowires ; Nickel ; Observations ; Organic chemistry ; Oxidation ; Oxidation resistance ; Oxidation-reduction reaction ; Passivity ; Pastes ; Physical properties ; Room temperature ; Science ; Science (multidisciplinary) ; Sodium ; Sodium formate</subject><ispartof>Nature (London), 2020-10, Vol.586 (7829), p.390-394</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>COPYRIGHT 2020 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Oct 15, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c640t-8a0431403b1328690242516fdfef6da0553f5241c2092d32aee315f9c4f471983</citedby><cites>FETCH-LOGICAL-c640t-8a0431403b1328690242516fdfef6da0553f5241c2092d32aee315f9c4f471983</cites><orcidid>0000-0001-9879-4790 ; 0000-0003-3141-2190 ; 0000-0002-7504-031X ; 0000-0002-0488-9076 ; 0000-0002-6887-5503 ; 0000-0002-3989-959X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-020-2783-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-020-2783-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33057223$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Peng, Jian</creatorcontrib><creatorcontrib>Chen, Bili</creatorcontrib><creatorcontrib>Wang, Zhichang</creatorcontrib><creatorcontrib>Guo, Jing</creatorcontrib><creatorcontrib>Wu, Binghui</creatorcontrib><creatorcontrib>Hao, Shuqiang</creatorcontrib><creatorcontrib>Zhang, Qinghua</creatorcontrib><creatorcontrib>Gu, Lin</creatorcontrib><creatorcontrib>Zhou, Qin</creatorcontrib><creatorcontrib>Liu, Zhi</creatorcontrib><creatorcontrib>Hong, Shuqin</creatorcontrib><creatorcontrib>You, Sifan</creatorcontrib><creatorcontrib>Fu, Ang</creatorcontrib><creatorcontrib>Shi, Zaifa</creatorcontrib><creatorcontrib>Xie, Hao</creatorcontrib><creatorcontrib>Cao, Duanyun</creatorcontrib><creatorcontrib>Lin, Chang-Jian</creatorcontrib><creatorcontrib>Fu, Gang</creatorcontrib><creatorcontrib>Zheng, Lan-Sun</creatorcontrib><creatorcontrib>Jiang, Ying</creatorcontrib><creatorcontrib>Zheng, Nanfeng</creatorcontrib><title>Surface coordination layer passivates oxidation of copper</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Owing to its high thermal and electrical conductivities, its ductility and its overall non-toxicity
1
–
3
, copper is widely used in daily applications and in industry, particularly in anti-oxidation technologies. However, many widespread anti-oxidation techniques, such as alloying and electroplating
1
,
2
, often degrade some physical properties (for example, thermal and electrical conductivities and colour) and introduce harmful elements such as chromium and nickel. Although efforts have been made to develop surface passivation technologies using organic molecules, inorganic materials or carbon-based materials as oxidation inhibitors
4
–
12
, their large-scale application has had limited success. We have previously reported the solvothermal synthesis of highly air-stable copper nanosheets using formate as a reducing agent
13
. Here we report that a solvothermal treatment of copper in the presence of sodium formate leads to crystallographic reconstruction of the copper surface and formation of an ultrathin surface coordination layer. We reveal that the surface modification does not affect the electrical or thermal conductivities of the bulk copper, but introduces high oxidation resistance in air, salt spray and alkaline conditions. We also develop a rapid room-temperature electrochemical synthesis protocol, with the resulting materials demonstrating similarly strong passivation performance. We further improve the oxidation resistance of the copper surfaces by introducing alkanethiol ligands to coordinate with steps or defect sites that are not protected by the passivation layer. We demonstrate that the mild treatment conditions make this technology applicable to the preparation of air-stable copper materials in different forms, including foils, nanowires, nanoparticles and bulk pastes. We expect that the technology developed in this work will help to expand the industrial applications of copper.
High oxidation resistance, without degradation of thermal or electrical conductivity, is achieved in copper using surface modification by a solvothermal or electrochemical treatment with sodium formate and formation of a thin surface coordination layer.</description><subject>119/118</subject><subject>140/133</subject><subject>140/146</subject><subject>639/638/298</subject><subject>639/638/542</subject><subject>Alkanes</subject><subject>Annealing</subject><subject>Chemical properties</subject><subject>Chemical synthesis</subject><subject>Chromium</subject><subject>Coordination</subject><subject>Copper</subject><subject>Corrosion</subject><subject>Crystallography</subject><subject>Ductility</subject><subject>Electrical resistivity</subject><subject>Electrochemistry</subject><subject>Foils</subject><subject>Fourier transforms</subject><subject>Graphene</subject><subject>Humanities and Social Sciences</subject><subject>Industrial applications</subject><subject>Inorganic materials</subject><subject>Ligands</subject><subject>Microscopy</subject><subject>multidisciplinary</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Nanowires</subject><subject>Nickel</subject><subject>Observations</subject><subject>Organic chemistry</subject><subject>Oxidation</subject><subject>Oxidation resistance</subject><subject>Oxidation-reduction reaction</subject><subject>Passivity</subject><subject>Pastes</subject><subject>Physical properties</subject><subject>Room temperature</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Sodium</subject><subject>Sodium formate</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp10l1rFDEUBuAgit1Wf4A3suhNRaaefE7mcln8KBQFW_EypJmTJWV2Mk1mZPvvzbLVurIlF4Gc5xxC8hLyisIZBa4_ZEGlVhUwqFitebV5QmZU1KoSStdPyQyA6Qo0V0fkOOcbAJC0Fs_JEecga8b4jDSXU_LW4dzFmNrQ2zHEft7ZO0zzweYcftkR8zxuQrsrRV_oMGB6QZ5522V8eb-fkB-fPl4tv1QX3z6fLxcXlVMCxkpbEJwK4NeUM60aYIJJqnzr0avWgpTcSyaoY9CwljOLyKn0jRNe1LTR_ISc7uYOKd5OmEezDtlh19ke45QNE5JqoThXhb79j97EKfXldlslqG4aDg9qZTs0ofdxTNZth5qF4lpIXQtaVHVArbDHZLvYow_leM-_OeDdEG7Nv-jsACqrxXVwB6e-22soZsTNuLJTzub88vu-ff-4XVz9XH7d13SnXYo5J_RmSGFt052hYLbpMrt0mZIus02X2ZSe1_fvO12vsf3b8SdOBbAdyKXUrzA9fMDjU38D5o3TZg</recordid><startdate>20201015</startdate><enddate>20201015</enddate><creator>Peng, Jian</creator><creator>Chen, Bili</creator><creator>Wang, Zhichang</creator><creator>Guo, Jing</creator><creator>Wu, Binghui</creator><creator>Hao, Shuqiang</creator><creator>Zhang, Qinghua</creator><creator>Gu, Lin</creator><creator>Zhou, Qin</creator><creator>Liu, Zhi</creator><creator>Hong, Shuqin</creator><creator>You, Sifan</creator><creator>Fu, Ang</creator><creator>Shi, Zaifa</creator><creator>Xie, Hao</creator><creator>Cao, Duanyun</creator><creator>Lin, Chang-Jian</creator><creator>Fu, Gang</creator><creator>Zheng, Lan-Sun</creator><creator>Jiang, Ying</creator><creator>Zheng, Nanfeng</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9879-4790</orcidid><orcidid>https://orcid.org/0000-0003-3141-2190</orcidid><orcidid>https://orcid.org/0000-0002-7504-031X</orcidid><orcidid>https://orcid.org/0000-0002-0488-9076</orcidid><orcidid>https://orcid.org/0000-0002-6887-5503</orcidid><orcidid>https://orcid.org/0000-0002-3989-959X</orcidid></search><sort><creationdate>20201015</creationdate><title>Surface coordination layer passivates oxidation of copper</title><author>Peng, Jian ; Chen, Bili ; Wang, Zhichang ; Guo, Jing ; Wu, Binghui ; Hao, Shuqiang ; Zhang, Qinghua ; Gu, Lin ; Zhou, Qin ; Liu, Zhi ; Hong, Shuqin ; You, Sifan ; Fu, Ang ; Shi, Zaifa ; Xie, Hao ; Cao, Duanyun ; Lin, Chang-Jian ; Fu, Gang ; Zheng, Lan-Sun ; Jiang, Ying ; Zheng, Nanfeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c640t-8a0431403b1328690242516fdfef6da0553f5241c2092d32aee315f9c4f471983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>119/118</topic><topic>140/133</topic><topic>140/146</topic><topic>639/638/298</topic><topic>639/638/542</topic><topic>Alkanes</topic><topic>Annealing</topic><topic>Chemical properties</topic><topic>Chemical synthesis</topic><topic>Chromium</topic><topic>Coordination</topic><topic>Copper</topic><topic>Corrosion</topic><topic>Crystallography</topic><topic>Ductility</topic><topic>Electrical resistivity</topic><topic>Electrochemistry</topic><topic>Foils</topic><topic>Fourier transforms</topic><topic>Graphene</topic><topic>Humanities and Social Sciences</topic><topic>Industrial applications</topic><topic>Inorganic materials</topic><topic>Ligands</topic><topic>Microscopy</topic><topic>multidisciplinary</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Nanowires</topic><topic>Nickel</topic><topic>Observations</topic><topic>Organic chemistry</topic><topic>Oxidation</topic><topic>Oxidation resistance</topic><topic>Oxidation-reduction reaction</topic><topic>Passivity</topic><topic>Pastes</topic><topic>Physical properties</topic><topic>Room temperature</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Sodium</topic><topic>Sodium formate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peng, Jian</creatorcontrib><creatorcontrib>Chen, Bili</creatorcontrib><creatorcontrib>Wang, Zhichang</creatorcontrib><creatorcontrib>Guo, Jing</creatorcontrib><creatorcontrib>Wu, Binghui</creatorcontrib><creatorcontrib>Hao, Shuqiang</creatorcontrib><creatorcontrib>Zhang, Qinghua</creatorcontrib><creatorcontrib>Gu, Lin</creatorcontrib><creatorcontrib>Zhou, Qin</creatorcontrib><creatorcontrib>Liu, Zhi</creatorcontrib><creatorcontrib>Hong, Shuqin</creatorcontrib><creatorcontrib>You, Sifan</creatorcontrib><creatorcontrib>Fu, Ang</creatorcontrib><creatorcontrib>Shi, Zaifa</creatorcontrib><creatorcontrib>Xie, Hao</creatorcontrib><creatorcontrib>Cao, Duanyun</creatorcontrib><creatorcontrib>Lin, Chang-Jian</creatorcontrib><creatorcontrib>Fu, Gang</creatorcontrib><creatorcontrib>Zheng, Lan-Sun</creatorcontrib><creatorcontrib>Jiang, Ying</creatorcontrib><creatorcontrib>Zheng, Nanfeng</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peng, Jian</au><au>Chen, Bili</au><au>Wang, Zhichang</au><au>Guo, Jing</au><au>Wu, Binghui</au><au>Hao, Shuqiang</au><au>Zhang, Qinghua</au><au>Gu, Lin</au><au>Zhou, Qin</au><au>Liu, Zhi</au><au>Hong, Shuqin</au><au>You, Sifan</au><au>Fu, Ang</au><au>Shi, Zaifa</au><au>Xie, Hao</au><au>Cao, Duanyun</au><au>Lin, Chang-Jian</au><au>Fu, Gang</au><au>Zheng, Lan-Sun</au><au>Jiang, Ying</au><au>Zheng, Nanfeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface coordination layer passivates oxidation of copper</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2020-10-15</date><risdate>2020</risdate><volume>586</volume><issue>7829</issue><spage>390</spage><epage>394</epage><pages>390-394</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>Owing to its high thermal and electrical conductivities, its ductility and its overall non-toxicity
1
–
3
, copper is widely used in daily applications and in industry, particularly in anti-oxidation technologies. However, many widespread anti-oxidation techniques, such as alloying and electroplating
1
,
2
, often degrade some physical properties (for example, thermal and electrical conductivities and colour) and introduce harmful elements such as chromium and nickel. Although efforts have been made to develop surface passivation technologies using organic molecules, inorganic materials or carbon-based materials as oxidation inhibitors
4
–
12
, their large-scale application has had limited success. We have previously reported the solvothermal synthesis of highly air-stable copper nanosheets using formate as a reducing agent
13
. Here we report that a solvothermal treatment of copper in the presence of sodium formate leads to crystallographic reconstruction of the copper surface and formation of an ultrathin surface coordination layer. We reveal that the surface modification does not affect the electrical or thermal conductivities of the bulk copper, but introduces high oxidation resistance in air, salt spray and alkaline conditions. We also develop a rapid room-temperature electrochemical synthesis protocol, with the resulting materials demonstrating similarly strong passivation performance. We further improve the oxidation resistance of the copper surfaces by introducing alkanethiol ligands to coordinate with steps or defect sites that are not protected by the passivation layer. We demonstrate that the mild treatment conditions make this technology applicable to the preparation of air-stable copper materials in different forms, including foils, nanowires, nanoparticles and bulk pastes. We expect that the technology developed in this work will help to expand the industrial applications of copper.
High oxidation resistance, without degradation of thermal or electrical conductivity, is achieved in copper using surface modification by a solvothermal or electrochemical treatment with sodium formate and formation of a thin surface coordination layer.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33057223</pmid><doi>10.1038/s41586-020-2783-x</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-9879-4790</orcidid><orcidid>https://orcid.org/0000-0003-3141-2190</orcidid><orcidid>https://orcid.org/0000-0002-7504-031X</orcidid><orcidid>https://orcid.org/0000-0002-0488-9076</orcidid><orcidid>https://orcid.org/0000-0002-6887-5503</orcidid><orcidid>https://orcid.org/0000-0002-3989-959X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2020-10, Vol.586 (7829), p.390-394 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_proquest_miscellaneous_2451846336 |
source | SpringerLink Journals; Nature Journals Online |
subjects | 119/118 140/133 140/146 639/638/298 639/638/542 Alkanes Annealing Chemical properties Chemical synthesis Chromium Coordination Copper Corrosion Crystallography Ductility Electrical resistivity Electrochemistry Foils Fourier transforms Graphene Humanities and Social Sciences Industrial applications Inorganic materials Ligands Microscopy multidisciplinary Nanoparticles Nanotechnology Nanowires Nickel Observations Organic chemistry Oxidation Oxidation resistance Oxidation-reduction reaction Passivity Pastes Physical properties Room temperature Science Science (multidisciplinary) Sodium Sodium formate |
title | Surface coordination layer passivates oxidation of copper |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T19%3A30%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%20coordination%20layer%20passivates%20oxidation%20of%20copper&rft.jtitle=Nature%20(London)&rft.au=Peng,%20Jian&rft.date=2020-10-15&rft.volume=586&rft.issue=7829&rft.spage=390&rft.epage=394&rft.pages=390-394&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-020-2783-x&rft_dat=%3Cgale_proqu%3EA638458741%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454189930&rft_id=info:pmid/33057223&rft_galeid=A638458741&rfr_iscdi=true |