Low-Load Metal-Assisted Catalytic Etching Produces Scalable Porosity in Si Powders
The recently discovered low-load metal-assisted catalytic etching (LL-MACE) creates nanostructured Si with controllable and variable characteristics that distinguish this technique from the conventional high-load variant. LL-MACE employs 150 times less metal catalyst and produces porous Si instead o...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2020-10, Vol.12 (43), p.48969-48981 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 48981 |
---|---|
container_issue | 43 |
container_start_page | 48969 |
container_title | ACS applied materials & interfaces |
container_volume | 12 |
creator | Tamarov, Konstantin Kiviluoto, Riku Swanson, Joseph D Unger, Bret A Ernst, Alexis T Aindow, Mark Riikonen, Joakim Lehto, Vesa-Pekka Kolasinski, Kurt W |
description | The recently discovered low-load metal-assisted catalytic etching (LL-MACE) creates nanostructured Si with controllable and variable characteristics that distinguish this technique from the conventional high-load variant. LL-MACE employs 150 times less metal catalyst and produces porous Si instead of Si nanowires. In this work, we demonstrate that some of the features of LL-MACE cannot be explained by the present understanding of MACE. With mechanistic insight derived from extensive experimentation, it is demonstrated that (1) the method allows the use of not only Ag, Pd, Pt, and Au as metal catalysts but also Cu and (2) judicious combinations of process parameters such as the type of metal, Si doping levels, and etching temperatures facilitate control over yield (0.065–88%), pore size (3–100 nm), specific surface area (20–310 m2·g–1), and specific pore volume (0.05–1.05 cm3·g–1). The porous structure of the product depends on the space-charge layer, which is controlled by the Si doping and the chemical identity of the deposited metal. The porous structure was also dependent on the dynamic structure of the deposited metal. A distinctive comet-like structure of metal nanoparticles was observed after etching with Cu, Ag, Pd, and, in some cases, Pt; this structure consisted of 10–50 nm main particles surrounded by smaller ( |
doi_str_mv | 10.1021/acsami.0c13980 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2451381752</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2451381752</sourcerecordid><originalsourceid>FETCH-LOGICAL-a373t-fe021622f1a9cf8ad951c267ac993c0a745c2117e358f3a2c90ea03cffa9bef43</originalsourceid><addsrcrecordid>eNp1UE1LAzEUDKJgrV495yjC1nzsdjfHUvyCFYvVc3h9m2jKdlOTLaX_3sgWb57em8fMY2YIueZswpngd4ARNm7CkEtVsRMy4irPs0oU4vRvz_NzchHjmrGpFKwYkbfa77PaQ0NfTA9tNovRxd40dA4JHnqH9L7HL9d90kXwzQ5NpEuEFlatoQsffHT9gbqOLl2C-8aEeEnOLLTRXB3nmHw83L_Pn7L69fF5PqszkKXsM2uS6akQloNCW0GjCo5iWgIqJZFBmRcoOC-NLCorQaBiBphEa0GtjM3lmNwMf7fBf-9M7PXGRTRtC53xu6hFXnBZ8bIQiToZqJgMx2Cs3ga3gXDQnOnf8vRQnj6WlwS3gyDd9drvQpeS_Ef-AQd1cak</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2451381752</pqid></control><display><type>article</type><title>Low-Load Metal-Assisted Catalytic Etching Produces Scalable Porosity in Si Powders</title><source>American Chemical Society Journals</source><creator>Tamarov, Konstantin ; Kiviluoto, Riku ; Swanson, Joseph D ; Unger, Bret A ; Ernst, Alexis T ; Aindow, Mark ; Riikonen, Joakim ; Lehto, Vesa-Pekka ; Kolasinski, Kurt W</creator><creatorcontrib>Tamarov, Konstantin ; Kiviluoto, Riku ; Swanson, Joseph D ; Unger, Bret A ; Ernst, Alexis T ; Aindow, Mark ; Riikonen, Joakim ; Lehto, Vesa-Pekka ; Kolasinski, Kurt W</creatorcontrib><description>The recently discovered low-load metal-assisted catalytic etching (LL-MACE) creates nanostructured Si with controllable and variable characteristics that distinguish this technique from the conventional high-load variant. LL-MACE employs 150 times less metal catalyst and produces porous Si instead of Si nanowires. In this work, we demonstrate that some of the features of LL-MACE cannot be explained by the present understanding of MACE. With mechanistic insight derived from extensive experimentation, it is demonstrated that (1) the method allows the use of not only Ag, Pd, Pt, and Au as metal catalysts but also Cu and (2) judicious combinations of process parameters such as the type of metal, Si doping levels, and etching temperatures facilitate control over yield (0.065–88%), pore size (3–100 nm), specific surface area (20–310 m2·g–1), and specific pore volume (0.05–1.05 cm3·g–1). The porous structure of the product depends on the space-charge layer, which is controlled by the Si doping and the chemical identity of the deposited metal. The porous structure was also dependent on the dynamic structure of the deposited metal. A distinctive comet-like structure of metal nanoparticles was observed after etching with Cu, Ag, Pd, and, in some cases, Pt; this structure consisted of 10–50 nm main particles surrounded by smaller (<5 nm) nanoparticles. With good scalability and precise control of structural properties, LL-MACE facilitates Si applications in photovoltaics, energy storage, biomedicine, and water purification.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.0c13980</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Functional Nanostructured Materials (including low-D carbon)</subject><ispartof>ACS applied materials & interfaces, 2020-10, Vol.12 (43), p.48969-48981</ispartof><rights>2020 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a373t-fe021622f1a9cf8ad951c267ac993c0a745c2117e358f3a2c90ea03cffa9bef43</citedby><cites>FETCH-LOGICAL-a373t-fe021622f1a9cf8ad951c267ac993c0a745c2117e358f3a2c90ea03cffa9bef43</cites><orcidid>0000-0003-0087-4878 ; 0000-0001-8153-1070 ; 0000-0002-9469-2700 ; 0000-0002-5304-9479 ; 0000-0001-6617-1409</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.0c13980$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.0c13980$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Tamarov, Konstantin</creatorcontrib><creatorcontrib>Kiviluoto, Riku</creatorcontrib><creatorcontrib>Swanson, Joseph D</creatorcontrib><creatorcontrib>Unger, Bret A</creatorcontrib><creatorcontrib>Ernst, Alexis T</creatorcontrib><creatorcontrib>Aindow, Mark</creatorcontrib><creatorcontrib>Riikonen, Joakim</creatorcontrib><creatorcontrib>Lehto, Vesa-Pekka</creatorcontrib><creatorcontrib>Kolasinski, Kurt W</creatorcontrib><title>Low-Load Metal-Assisted Catalytic Etching Produces Scalable Porosity in Si Powders</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>The recently discovered low-load metal-assisted catalytic etching (LL-MACE) creates nanostructured Si with controllable and variable characteristics that distinguish this technique from the conventional high-load variant. LL-MACE employs 150 times less metal catalyst and produces porous Si instead of Si nanowires. In this work, we demonstrate that some of the features of LL-MACE cannot be explained by the present understanding of MACE. With mechanistic insight derived from extensive experimentation, it is demonstrated that (1) the method allows the use of not only Ag, Pd, Pt, and Au as metal catalysts but also Cu and (2) judicious combinations of process parameters such as the type of metal, Si doping levels, and etching temperatures facilitate control over yield (0.065–88%), pore size (3–100 nm), specific surface area (20–310 m2·g–1), and specific pore volume (0.05–1.05 cm3·g–1). The porous structure of the product depends on the space-charge layer, which is controlled by the Si doping and the chemical identity of the deposited metal. The porous structure was also dependent on the dynamic structure of the deposited metal. A distinctive comet-like structure of metal nanoparticles was observed after etching with Cu, Ag, Pd, and, in some cases, Pt; this structure consisted of 10–50 nm main particles surrounded by smaller (<5 nm) nanoparticles. With good scalability and precise control of structural properties, LL-MACE facilitates Si applications in photovoltaics, energy storage, biomedicine, and water purification.</description><subject>Functional Nanostructured Materials (including low-D carbon)</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1UE1LAzEUDKJgrV495yjC1nzsdjfHUvyCFYvVc3h9m2jKdlOTLaX_3sgWb57em8fMY2YIueZswpngd4ARNm7CkEtVsRMy4irPs0oU4vRvz_NzchHjmrGpFKwYkbfa77PaQ0NfTA9tNovRxd40dA4JHnqH9L7HL9d90kXwzQ5NpEuEFlatoQsffHT9gbqOLl2C-8aEeEnOLLTRXB3nmHw83L_Pn7L69fF5PqszkKXsM2uS6akQloNCW0GjCo5iWgIqJZFBmRcoOC-NLCorQaBiBphEa0GtjM3lmNwMf7fBf-9M7PXGRTRtC53xu6hFXnBZ8bIQiToZqJgMx2Cs3ga3gXDQnOnf8vRQnj6WlwS3gyDd9drvQpeS_Ef-AQd1cak</recordid><startdate>20201028</startdate><enddate>20201028</enddate><creator>Tamarov, Konstantin</creator><creator>Kiviluoto, Riku</creator><creator>Swanson, Joseph D</creator><creator>Unger, Bret A</creator><creator>Ernst, Alexis T</creator><creator>Aindow, Mark</creator><creator>Riikonen, Joakim</creator><creator>Lehto, Vesa-Pekka</creator><creator>Kolasinski, Kurt W</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0087-4878</orcidid><orcidid>https://orcid.org/0000-0001-8153-1070</orcidid><orcidid>https://orcid.org/0000-0002-9469-2700</orcidid><orcidid>https://orcid.org/0000-0002-5304-9479</orcidid><orcidid>https://orcid.org/0000-0001-6617-1409</orcidid></search><sort><creationdate>20201028</creationdate><title>Low-Load Metal-Assisted Catalytic Etching Produces Scalable Porosity in Si Powders</title><author>Tamarov, Konstantin ; Kiviluoto, Riku ; Swanson, Joseph D ; Unger, Bret A ; Ernst, Alexis T ; Aindow, Mark ; Riikonen, Joakim ; Lehto, Vesa-Pekka ; Kolasinski, Kurt W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a373t-fe021622f1a9cf8ad951c267ac993c0a745c2117e358f3a2c90ea03cffa9bef43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Functional Nanostructured Materials (including low-D carbon)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tamarov, Konstantin</creatorcontrib><creatorcontrib>Kiviluoto, Riku</creatorcontrib><creatorcontrib>Swanson, Joseph D</creatorcontrib><creatorcontrib>Unger, Bret A</creatorcontrib><creatorcontrib>Ernst, Alexis T</creatorcontrib><creatorcontrib>Aindow, Mark</creatorcontrib><creatorcontrib>Riikonen, Joakim</creatorcontrib><creatorcontrib>Lehto, Vesa-Pekka</creatorcontrib><creatorcontrib>Kolasinski, Kurt W</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tamarov, Konstantin</au><au>Kiviluoto, Riku</au><au>Swanson, Joseph D</au><au>Unger, Bret A</au><au>Ernst, Alexis T</au><au>Aindow, Mark</au><au>Riikonen, Joakim</au><au>Lehto, Vesa-Pekka</au><au>Kolasinski, Kurt W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low-Load Metal-Assisted Catalytic Etching Produces Scalable Porosity in Si Powders</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2020-10-28</date><risdate>2020</risdate><volume>12</volume><issue>43</issue><spage>48969</spage><epage>48981</epage><pages>48969-48981</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>The recently discovered low-load metal-assisted catalytic etching (LL-MACE) creates nanostructured Si with controllable and variable characteristics that distinguish this technique from the conventional high-load variant. LL-MACE employs 150 times less metal catalyst and produces porous Si instead of Si nanowires. In this work, we demonstrate that some of the features of LL-MACE cannot be explained by the present understanding of MACE. With mechanistic insight derived from extensive experimentation, it is demonstrated that (1) the method allows the use of not only Ag, Pd, Pt, and Au as metal catalysts but also Cu and (2) judicious combinations of process parameters such as the type of metal, Si doping levels, and etching temperatures facilitate control over yield (0.065–88%), pore size (3–100 nm), specific surface area (20–310 m2·g–1), and specific pore volume (0.05–1.05 cm3·g–1). The porous structure of the product depends on the space-charge layer, which is controlled by the Si doping and the chemical identity of the deposited metal. The porous structure was also dependent on the dynamic structure of the deposited metal. A distinctive comet-like structure of metal nanoparticles was observed after etching with Cu, Ag, Pd, and, in some cases, Pt; this structure consisted of 10–50 nm main particles surrounded by smaller (<5 nm) nanoparticles. With good scalability and precise control of structural properties, LL-MACE facilitates Si applications in photovoltaics, energy storage, biomedicine, and water purification.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsami.0c13980</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0087-4878</orcidid><orcidid>https://orcid.org/0000-0001-8153-1070</orcidid><orcidid>https://orcid.org/0000-0002-9469-2700</orcidid><orcidid>https://orcid.org/0000-0002-5304-9479</orcidid><orcidid>https://orcid.org/0000-0001-6617-1409</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2020-10, Vol.12 (43), p.48969-48981 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_proquest_miscellaneous_2451381752 |
source | American Chemical Society Journals |
subjects | Functional Nanostructured Materials (including low-D carbon) |
title | Low-Load Metal-Assisted Catalytic Etching Produces Scalable Porosity in Si Powders |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T07%3A34%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low-Load%20Metal-Assisted%20Catalytic%20Etching%20Produces%20Scalable%20Porosity%20in%20Si%20Powders&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Tamarov,%20Konstantin&rft.date=2020-10-28&rft.volume=12&rft.issue=43&rft.spage=48969&rft.epage=48981&rft.pages=48969-48981&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.0c13980&rft_dat=%3Cproquest_cross%3E2451381752%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2451381752&rft_id=info:pmid/&rfr_iscdi=true |