Glycometabolic Regulation of the Biogenesis of Small Extracellular Vesicles

The biogenesis of small extracellular vesicles (sEVs) is regulated by multiple molecular machineries generating considerably heterogeneous vesicle populations, including exosomes and non-exosomal vesicles, with distinct cargo molecules. However, the role of carbohydrate metabolism in generating such...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell reports (Cambridge) 2020-10, Vol.33 (2), p.108261-108261, Article 108261
Hauptverfasser: Harada, Yoichiro, Nakajima, Kazuki, Suzuki, Takehiro, Fukushige, Tomoko, Kondo, Kiyotaka, Seino, Junichi, Ohkawa, Yuki, Suzuki, Tadashi, Inoue, Hiromasa, Kanekura, Takuro, Dohmae, Naoshi, Taniguchi, Naoyuki, Maruyama, Ikuro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 108261
container_issue 2
container_start_page 108261
container_title Cell reports (Cambridge)
container_volume 33
creator Harada, Yoichiro
Nakajima, Kazuki
Suzuki, Takehiro
Fukushige, Tomoko
Kondo, Kiyotaka
Seino, Junichi
Ohkawa, Yuki
Suzuki, Tadashi
Inoue, Hiromasa
Kanekura, Takuro
Dohmae, Naoshi
Taniguchi, Naoyuki
Maruyama, Ikuro
description The biogenesis of small extracellular vesicles (sEVs) is regulated by multiple molecular machineries generating considerably heterogeneous vesicle populations, including exosomes and non-exosomal vesicles, with distinct cargo molecules. However, the role of carbohydrate metabolism in generating such vesicle heterogeneity remains largely elusive. Here, we discover that 2-deoxyglucose (2-DG), a well-known glycolysis inhibitor, suppresses the secretion of non-exosomal vesicles by impairing asparagine-linked glycosylation (N-glycosylation) in mouse melanoma cells. Mechanistically, 2-DG is metabolically incorporated into N-glycan precursors, causing precursor degradation and partial hypoglycosylation. N-glycosylation blockade by Stt3a silencing is sufficient to inhibit non-exosomal vesicle secretion. In contrast, N-glycosylation blockade barely influences exosomal secretion of tetraspanin proteins. Functionally, N-glycosylation at specific sites of the hepatocyte growth factor receptor, a cargo protein of non-exosomal vesicles, facilitates its sorting into vesicles. These results uncover a link between N-glycosylation and unconventional vesicle secretion and suggest that N-glycosylation facilitates sEV biogenesis through cargo protein sorting. [Display omitted] •Mouse melanoma cells secrete exosomes and non-exosomal vesicles•2-Deoxyglucose impairs non-exosomal vesicle secretion by inhibiting N-glycosylation•Stt3a is a key N-glycosylating enzyme that regulates non-exosomal vesicle secretion•N-glycosylation mediates sorting of Met into non-exosomal vesicles Tumor cells secrete various types of small extracellular vesicles, including exosomes and non-exosomal vesicles, each with distinct protein profiles. Through metabolic manipulation in mouse melanoma cells, Harada et al. identify N-glycosylation as a mechanism that selectively regulates non-exosomal vesicle secretion by mediating the sorting of cargo proteins into the vesicles.
doi_str_mv 10.1016/j.celrep.2020.108261
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2451381192</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S221112472031250X</els_id><sourcerecordid>2451381192</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-bea4ca28d49982b7743dedbdcbd09a566200fda2206ae85dc7756365539e9963</originalsourceid><addsrcrecordid>eNp9kE1LwzAYgIMobkz_gUiPXjbz1bS9CDrmFAeCiteQJu80I11m0or-e1Oq4slcEt4879eD0AnBM4KJON_MNLgAuxnFtA-VVJA9NKaUkCmhvNj_8x6h4xg3OB2BCan4IRoxhnPGeDFGd0v3qX0Draq9szp7gJfOqdb6bebXWfsK2ZX1L7CFaGMfeWyUc9niow0qTeASG7Ln9KkdxCN0sFYuwvH3PUFP14un-c10db-8nV-uppoXvJ3WoLhWtDS8qkpaFwVnBkxtdG1wpXIhKMZroyjFQkGZG10UuWAiz1kFVSXYBJ0NZXfBv3UQW9nY2A-jtuC7KCnPCSvTpjShfEB18DEGWMtdsI0Kn5Jg2YuUGzmIlL1IOYhMaaffHbq6AfOb9KMtARcDAGnNdwtBRm1hq8HYALqVxtv_O3wB4V2FaA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2451381192</pqid></control><display><type>article</type><title>Glycometabolic Regulation of the Biogenesis of Small Extracellular Vesicles</title><source>DOAJ Directory of Open Access Journals</source><source>Cell Press Free Archives</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Harada, Yoichiro ; Nakajima, Kazuki ; Suzuki, Takehiro ; Fukushige, Tomoko ; Kondo, Kiyotaka ; Seino, Junichi ; Ohkawa, Yuki ; Suzuki, Tadashi ; Inoue, Hiromasa ; Kanekura, Takuro ; Dohmae, Naoshi ; Taniguchi, Naoyuki ; Maruyama, Ikuro</creator><creatorcontrib>Harada, Yoichiro ; Nakajima, Kazuki ; Suzuki, Takehiro ; Fukushige, Tomoko ; Kondo, Kiyotaka ; Seino, Junichi ; Ohkawa, Yuki ; Suzuki, Tadashi ; Inoue, Hiromasa ; Kanekura, Takuro ; Dohmae, Naoshi ; Taniguchi, Naoyuki ; Maruyama, Ikuro</creatorcontrib><description>The biogenesis of small extracellular vesicles (sEVs) is regulated by multiple molecular machineries generating considerably heterogeneous vesicle populations, including exosomes and non-exosomal vesicles, with distinct cargo molecules. However, the role of carbohydrate metabolism in generating such vesicle heterogeneity remains largely elusive. Here, we discover that 2-deoxyglucose (2-DG), a well-known glycolysis inhibitor, suppresses the secretion of non-exosomal vesicles by impairing asparagine-linked glycosylation (N-glycosylation) in mouse melanoma cells. Mechanistically, 2-DG is metabolically incorporated into N-glycan precursors, causing precursor degradation and partial hypoglycosylation. N-glycosylation blockade by Stt3a silencing is sufficient to inhibit non-exosomal vesicle secretion. In contrast, N-glycosylation blockade barely influences exosomal secretion of tetraspanin proteins. Functionally, N-glycosylation at specific sites of the hepatocyte growth factor receptor, a cargo protein of non-exosomal vesicles, facilitates its sorting into vesicles. These results uncover a link between N-glycosylation and unconventional vesicle secretion and suggest that N-glycosylation facilitates sEV biogenesis through cargo protein sorting. [Display omitted] •Mouse melanoma cells secrete exosomes and non-exosomal vesicles•2-Deoxyglucose impairs non-exosomal vesicle secretion by inhibiting N-glycosylation•Stt3a is a key N-glycosylating enzyme that regulates non-exosomal vesicle secretion•N-glycosylation mediates sorting of Met into non-exosomal vesicles Tumor cells secrete various types of small extracellular vesicles, including exosomes and non-exosomal vesicles, each with distinct protein profiles. Through metabolic manipulation in mouse melanoma cells, Harada et al. identify N-glycosylation as a mechanism that selectively regulates non-exosomal vesicle secretion by mediating the sorting of cargo proteins into the vesicles.</description><identifier>ISSN: 2211-1247</identifier><identifier>EISSN: 2211-1247</identifier><identifier>DOI: 10.1016/j.celrep.2020.108261</identifier><identifier>PMID: 33053347</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>exosomes ; extracellular vesicles ; glycolysis ; N-glycosylation ; nucleotide sugars</subject><ispartof>Cell reports (Cambridge), 2020-10, Vol.33 (2), p.108261-108261, Article 108261</ispartof><rights>2020 The Author(s)</rights><rights>Copyright © 2020 The Author(s). Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-bea4ca28d49982b7743dedbdcbd09a566200fda2206ae85dc7756365539e9963</citedby><cites>FETCH-LOGICAL-c474t-bea4ca28d49982b7743dedbdcbd09a566200fda2206ae85dc7756365539e9963</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33053347$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Harada, Yoichiro</creatorcontrib><creatorcontrib>Nakajima, Kazuki</creatorcontrib><creatorcontrib>Suzuki, Takehiro</creatorcontrib><creatorcontrib>Fukushige, Tomoko</creatorcontrib><creatorcontrib>Kondo, Kiyotaka</creatorcontrib><creatorcontrib>Seino, Junichi</creatorcontrib><creatorcontrib>Ohkawa, Yuki</creatorcontrib><creatorcontrib>Suzuki, Tadashi</creatorcontrib><creatorcontrib>Inoue, Hiromasa</creatorcontrib><creatorcontrib>Kanekura, Takuro</creatorcontrib><creatorcontrib>Dohmae, Naoshi</creatorcontrib><creatorcontrib>Taniguchi, Naoyuki</creatorcontrib><creatorcontrib>Maruyama, Ikuro</creatorcontrib><title>Glycometabolic Regulation of the Biogenesis of Small Extracellular Vesicles</title><title>Cell reports (Cambridge)</title><addtitle>Cell Rep</addtitle><description>The biogenesis of small extracellular vesicles (sEVs) is regulated by multiple molecular machineries generating considerably heterogeneous vesicle populations, including exosomes and non-exosomal vesicles, with distinct cargo molecules. However, the role of carbohydrate metabolism in generating such vesicle heterogeneity remains largely elusive. Here, we discover that 2-deoxyglucose (2-DG), a well-known glycolysis inhibitor, suppresses the secretion of non-exosomal vesicles by impairing asparagine-linked glycosylation (N-glycosylation) in mouse melanoma cells. Mechanistically, 2-DG is metabolically incorporated into N-glycan precursors, causing precursor degradation and partial hypoglycosylation. N-glycosylation blockade by Stt3a silencing is sufficient to inhibit non-exosomal vesicle secretion. In contrast, N-glycosylation blockade barely influences exosomal secretion of tetraspanin proteins. Functionally, N-glycosylation at specific sites of the hepatocyte growth factor receptor, a cargo protein of non-exosomal vesicles, facilitates its sorting into vesicles. These results uncover a link between N-glycosylation and unconventional vesicle secretion and suggest that N-glycosylation facilitates sEV biogenesis through cargo protein sorting. [Display omitted] •Mouse melanoma cells secrete exosomes and non-exosomal vesicles•2-Deoxyglucose impairs non-exosomal vesicle secretion by inhibiting N-glycosylation•Stt3a is a key N-glycosylating enzyme that regulates non-exosomal vesicle secretion•N-glycosylation mediates sorting of Met into non-exosomal vesicles Tumor cells secrete various types of small extracellular vesicles, including exosomes and non-exosomal vesicles, each with distinct protein profiles. Through metabolic manipulation in mouse melanoma cells, Harada et al. identify N-glycosylation as a mechanism that selectively regulates non-exosomal vesicle secretion by mediating the sorting of cargo proteins into the vesicles.</description><subject>exosomes</subject><subject>extracellular vesicles</subject><subject>glycolysis</subject><subject>N-glycosylation</subject><subject>nucleotide sugars</subject><issn>2211-1247</issn><issn>2211-1247</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LwzAYgIMobkz_gUiPXjbz1bS9CDrmFAeCiteQJu80I11m0or-e1Oq4slcEt4879eD0AnBM4KJON_MNLgAuxnFtA-VVJA9NKaUkCmhvNj_8x6h4xg3OB2BCan4IRoxhnPGeDFGd0v3qX0Draq9szp7gJfOqdb6bebXWfsK2ZX1L7CFaGMfeWyUc9niow0qTeASG7Ln9KkdxCN0sFYuwvH3PUFP14un-c10db-8nV-uppoXvJ3WoLhWtDS8qkpaFwVnBkxtdG1wpXIhKMZroyjFQkGZG10UuWAiz1kFVSXYBJ0NZXfBv3UQW9nY2A-jtuC7KCnPCSvTpjShfEB18DEGWMtdsI0Kn5Jg2YuUGzmIlL1IOYhMaaffHbq6AfOb9KMtARcDAGnNdwtBRm1hq8HYALqVxtv_O3wB4V2FaA</recordid><startdate>20201013</startdate><enddate>20201013</enddate><creator>Harada, Yoichiro</creator><creator>Nakajima, Kazuki</creator><creator>Suzuki, Takehiro</creator><creator>Fukushige, Tomoko</creator><creator>Kondo, Kiyotaka</creator><creator>Seino, Junichi</creator><creator>Ohkawa, Yuki</creator><creator>Suzuki, Tadashi</creator><creator>Inoue, Hiromasa</creator><creator>Kanekura, Takuro</creator><creator>Dohmae, Naoshi</creator><creator>Taniguchi, Naoyuki</creator><creator>Maruyama, Ikuro</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20201013</creationdate><title>Glycometabolic Regulation of the Biogenesis of Small Extracellular Vesicles</title><author>Harada, Yoichiro ; Nakajima, Kazuki ; Suzuki, Takehiro ; Fukushige, Tomoko ; Kondo, Kiyotaka ; Seino, Junichi ; Ohkawa, Yuki ; Suzuki, Tadashi ; Inoue, Hiromasa ; Kanekura, Takuro ; Dohmae, Naoshi ; Taniguchi, Naoyuki ; Maruyama, Ikuro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-bea4ca28d49982b7743dedbdcbd09a566200fda2206ae85dc7756365539e9963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>exosomes</topic><topic>extracellular vesicles</topic><topic>glycolysis</topic><topic>N-glycosylation</topic><topic>nucleotide sugars</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Harada, Yoichiro</creatorcontrib><creatorcontrib>Nakajima, Kazuki</creatorcontrib><creatorcontrib>Suzuki, Takehiro</creatorcontrib><creatorcontrib>Fukushige, Tomoko</creatorcontrib><creatorcontrib>Kondo, Kiyotaka</creatorcontrib><creatorcontrib>Seino, Junichi</creatorcontrib><creatorcontrib>Ohkawa, Yuki</creatorcontrib><creatorcontrib>Suzuki, Tadashi</creatorcontrib><creatorcontrib>Inoue, Hiromasa</creatorcontrib><creatorcontrib>Kanekura, Takuro</creatorcontrib><creatorcontrib>Dohmae, Naoshi</creatorcontrib><creatorcontrib>Taniguchi, Naoyuki</creatorcontrib><creatorcontrib>Maruyama, Ikuro</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Cell reports (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Harada, Yoichiro</au><au>Nakajima, Kazuki</au><au>Suzuki, Takehiro</au><au>Fukushige, Tomoko</au><au>Kondo, Kiyotaka</au><au>Seino, Junichi</au><au>Ohkawa, Yuki</au><au>Suzuki, Tadashi</au><au>Inoue, Hiromasa</au><au>Kanekura, Takuro</au><au>Dohmae, Naoshi</au><au>Taniguchi, Naoyuki</au><au>Maruyama, Ikuro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Glycometabolic Regulation of the Biogenesis of Small Extracellular Vesicles</atitle><jtitle>Cell reports (Cambridge)</jtitle><addtitle>Cell Rep</addtitle><date>2020-10-13</date><risdate>2020</risdate><volume>33</volume><issue>2</issue><spage>108261</spage><epage>108261</epage><pages>108261-108261</pages><artnum>108261</artnum><issn>2211-1247</issn><eissn>2211-1247</eissn><abstract>The biogenesis of small extracellular vesicles (sEVs) is regulated by multiple molecular machineries generating considerably heterogeneous vesicle populations, including exosomes and non-exosomal vesicles, with distinct cargo molecules. However, the role of carbohydrate metabolism in generating such vesicle heterogeneity remains largely elusive. Here, we discover that 2-deoxyglucose (2-DG), a well-known glycolysis inhibitor, suppresses the secretion of non-exosomal vesicles by impairing asparagine-linked glycosylation (N-glycosylation) in mouse melanoma cells. Mechanistically, 2-DG is metabolically incorporated into N-glycan precursors, causing precursor degradation and partial hypoglycosylation. N-glycosylation blockade by Stt3a silencing is sufficient to inhibit non-exosomal vesicle secretion. In contrast, N-glycosylation blockade barely influences exosomal secretion of tetraspanin proteins. Functionally, N-glycosylation at specific sites of the hepatocyte growth factor receptor, a cargo protein of non-exosomal vesicles, facilitates its sorting into vesicles. These results uncover a link between N-glycosylation and unconventional vesicle secretion and suggest that N-glycosylation facilitates sEV biogenesis through cargo protein sorting. [Display omitted] •Mouse melanoma cells secrete exosomes and non-exosomal vesicles•2-Deoxyglucose impairs non-exosomal vesicle secretion by inhibiting N-glycosylation•Stt3a is a key N-glycosylating enzyme that regulates non-exosomal vesicle secretion•N-glycosylation mediates sorting of Met into non-exosomal vesicles Tumor cells secrete various types of small extracellular vesicles, including exosomes and non-exosomal vesicles, each with distinct protein profiles. Through metabolic manipulation in mouse melanoma cells, Harada et al. identify N-glycosylation as a mechanism that selectively regulates non-exosomal vesicle secretion by mediating the sorting of cargo proteins into the vesicles.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>33053347</pmid><doi>10.1016/j.celrep.2020.108261</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2211-1247
ispartof Cell reports (Cambridge), 2020-10, Vol.33 (2), p.108261-108261, Article 108261
issn 2211-1247
2211-1247
language eng
recordid cdi_proquest_miscellaneous_2451381192
source DOAJ Directory of Open Access Journals; Cell Press Free Archives; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects exosomes
extracellular vesicles
glycolysis
N-glycosylation
nucleotide sugars
title Glycometabolic Regulation of the Biogenesis of Small Extracellular Vesicles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T16%3A28%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Glycometabolic%20Regulation%20of%20the%20Biogenesis%20of%20Small%20Extracellular%20Vesicles&rft.jtitle=Cell%20reports%20(Cambridge)&rft.au=Harada,%20Yoichiro&rft.date=2020-10-13&rft.volume=33&rft.issue=2&rft.spage=108261&rft.epage=108261&rft.pages=108261-108261&rft.artnum=108261&rft.issn=2211-1247&rft.eissn=2211-1247&rft_id=info:doi/10.1016/j.celrep.2020.108261&rft_dat=%3Cproquest_cross%3E2451381192%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2451381192&rft_id=info:pmid/33053347&rft_els_id=S221112472031250X&rfr_iscdi=true