Dynamic functional connectivity in temporal lobe epilepsy: a graph theoretical and machine learning approach

Purpose Functional magnetic resonance imaging (fMRI) in resting state can be used to evaluate the functional organization of the human brain in the absence of any task or stimulus. The functional connectivity (FC) has non-stationary nature and consented to be varying over time. By considering the dy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neurological sciences 2021-06, Vol.42 (6), p.2379-2390
Hauptverfasser: Fallahi, Alireza, Pooyan, Mohammad, Lotfi, Nastaran, Baniasad, Fatemeh, Tapak, Leili, Mohammadi-Mobarakeh, Neda, Hashemi-Fesharaki, Seyed Sohrab, Mehvari-Habibabadi, Jafar, Ay, Mohammad Reza, Nazem-Zadeh, Mohammad-Reza
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2390
container_issue 6
container_start_page 2379
container_title Neurological sciences
container_volume 42
creator Fallahi, Alireza
Pooyan, Mohammad
Lotfi, Nastaran
Baniasad, Fatemeh
Tapak, Leili
Mohammadi-Mobarakeh, Neda
Hashemi-Fesharaki, Seyed Sohrab
Mehvari-Habibabadi, Jafar
Ay, Mohammad Reza
Nazem-Zadeh, Mohammad-Reza
description Purpose Functional magnetic resonance imaging (fMRI) in resting state can be used to evaluate the functional organization of the human brain in the absence of any task or stimulus. The functional connectivity (FC) has non-stationary nature and consented to be varying over time. By considering the dynamic characteristics of the FC and using graph theoretical analysis and a machine learning approach, we aim to identify the laterality in cases of temporal lobe epilepsy (TLE). Methods Six global graph measures are extracted from static and dynamic functional connectivity matrices using fMRI data of 35 unilateral TLE subjects. Alterations in the time trend of the graph measures are quantified. The random forest (RF) method is used for the determination of feature importance and selection of dynamic graph features including mean, variance, skewness, kurtosis, and Shannon entropy. The selected features are used in the support vector machine (SVM) classifier to identify the left and right epileptogenic sides in patients with TLE. Results Our results for the performance of SVM demonstrate that the utility of dynamic features improves the classification outcome in terms of accuracy (88.5% for dynamic features compared with 82% for static features). Selecting the best dynamic features also elevates the accuracy to 91.5%. Conclusion Accounting for the non-stationary characteristics of functional connectivity, dynamic connectivity analysis of graph measures along with machine learning approach can identify the temporal trend of some specific network features. These network features may be used as potential imaging markers in determining the epileptogenic hemisphere in patients with TLE.
doi_str_mv 10.1007/s10072-020-04759-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2451131832</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2451131832</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-c6cb0866c508eb9e65d1d7e9e9b5a48d4e94bc78f62942197b8af269bb5a43973</originalsourceid><addsrcrecordid>eNp9kU9PAyEQxTdGE2v1C3gi8eJlFRbYBW-m_k2aeNEzYelsS7MLK-ya9ttLbRMTD16AYX7vTTIvyy4JviEYV7dxdxY5LnCOWcVlvjnKJoRLnFNWiePDm4iKnWZnMa4xxoQROsnah63TnTWoGZ0ZrHe6RcY7B6n4ssMWWYcG6HofUqP1NSDobQt93N4hjZZB9ys0rMAHGKxJiHYL1Gmzsg5QCzo465ZI933w6fM8O2l0G-HicE-zj6fH99lLPn97fp3dz3PDiBhyU5oai7I0HAuoJZR8QRYVSJA110wsGEhWm0o0ZSFZQWRVC90Upax3bSorOs2u975p7OcIcVCdjQbaVjvwY1QF44RQImiR0Ks_6NqPIW0hUZxSzAXDPFHFnjLBxxigUX2wnQ5bRbDarV7tA1ApAPUTgNokEd2LYoLdEsKv9T-qb2G3ioU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2533058405</pqid></control><display><type>article</type><title>Dynamic functional connectivity in temporal lobe epilepsy: a graph theoretical and machine learning approach</title><source>SpringerLink Journals - AutoHoldings</source><creator>Fallahi, Alireza ; Pooyan, Mohammad ; Lotfi, Nastaran ; Baniasad, Fatemeh ; Tapak, Leili ; Mohammadi-Mobarakeh, Neda ; Hashemi-Fesharaki, Seyed Sohrab ; Mehvari-Habibabadi, Jafar ; Ay, Mohammad Reza ; Nazem-Zadeh, Mohammad-Reza</creator><creatorcontrib>Fallahi, Alireza ; Pooyan, Mohammad ; Lotfi, Nastaran ; Baniasad, Fatemeh ; Tapak, Leili ; Mohammadi-Mobarakeh, Neda ; Hashemi-Fesharaki, Seyed Sohrab ; Mehvari-Habibabadi, Jafar ; Ay, Mohammad Reza ; Nazem-Zadeh, Mohammad-Reza</creatorcontrib><description>Purpose Functional magnetic resonance imaging (fMRI) in resting state can be used to evaluate the functional organization of the human brain in the absence of any task or stimulus. The functional connectivity (FC) has non-stationary nature and consented to be varying over time. By considering the dynamic characteristics of the FC and using graph theoretical analysis and a machine learning approach, we aim to identify the laterality in cases of temporal lobe epilepsy (TLE). Methods Six global graph measures are extracted from static and dynamic functional connectivity matrices using fMRI data of 35 unilateral TLE subjects. Alterations in the time trend of the graph measures are quantified. The random forest (RF) method is used for the determination of feature importance and selection of dynamic graph features including mean, variance, skewness, kurtosis, and Shannon entropy. The selected features are used in the support vector machine (SVM) classifier to identify the left and right epileptogenic sides in patients with TLE. Results Our results for the performance of SVM demonstrate that the utility of dynamic features improves the classification outcome in terms of accuracy (88.5% for dynamic features compared with 82% for static features). Selecting the best dynamic features also elevates the accuracy to 91.5%. Conclusion Accounting for the non-stationary characteristics of functional connectivity, dynamic connectivity analysis of graph measures along with machine learning approach can identify the temporal trend of some specific network features. These network features may be used as potential imaging markers in determining the epileptogenic hemisphere in patients with TLE.</description><identifier>ISSN: 1590-1874</identifier><identifier>EISSN: 1590-3478</identifier><identifier>DOI: 10.1007/s10072-020-04759-x</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Brain architecture ; Brain mapping ; Epilepsy ; Functional magnetic resonance imaging ; Functional morphology ; Learning algorithms ; Machine learning ; Medicine ; Medicine &amp; Public Health ; Neural networks ; Neuroimaging ; Neurology ; Neuroradiology ; Neurosciences ; Neurosurgery ; Original Article ; Psychiatry ; Support vector machines ; Temporal lobe</subject><ispartof>Neurological sciences, 2021-06, Vol.42 (6), p.2379-2390</ispartof><rights>Fondazione Società Italiana di Neurologia 2020</rights><rights>Fondazione Società Italiana di Neurologia 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-c6cb0866c508eb9e65d1d7e9e9b5a48d4e94bc78f62942197b8af269bb5a43973</citedby><cites>FETCH-LOGICAL-c418t-c6cb0866c508eb9e65d1d7e9e9b5a48d4e94bc78f62942197b8af269bb5a43973</cites><orcidid>0000-0002-6005-5973</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10072-020-04759-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10072-020-04759-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Fallahi, Alireza</creatorcontrib><creatorcontrib>Pooyan, Mohammad</creatorcontrib><creatorcontrib>Lotfi, Nastaran</creatorcontrib><creatorcontrib>Baniasad, Fatemeh</creatorcontrib><creatorcontrib>Tapak, Leili</creatorcontrib><creatorcontrib>Mohammadi-Mobarakeh, Neda</creatorcontrib><creatorcontrib>Hashemi-Fesharaki, Seyed Sohrab</creatorcontrib><creatorcontrib>Mehvari-Habibabadi, Jafar</creatorcontrib><creatorcontrib>Ay, Mohammad Reza</creatorcontrib><creatorcontrib>Nazem-Zadeh, Mohammad-Reza</creatorcontrib><title>Dynamic functional connectivity in temporal lobe epilepsy: a graph theoretical and machine learning approach</title><title>Neurological sciences</title><addtitle>Neurol Sci</addtitle><description>Purpose Functional magnetic resonance imaging (fMRI) in resting state can be used to evaluate the functional organization of the human brain in the absence of any task or stimulus. The functional connectivity (FC) has non-stationary nature and consented to be varying over time. By considering the dynamic characteristics of the FC and using graph theoretical analysis and a machine learning approach, we aim to identify the laterality in cases of temporal lobe epilepsy (TLE). Methods Six global graph measures are extracted from static and dynamic functional connectivity matrices using fMRI data of 35 unilateral TLE subjects. Alterations in the time trend of the graph measures are quantified. The random forest (RF) method is used for the determination of feature importance and selection of dynamic graph features including mean, variance, skewness, kurtosis, and Shannon entropy. The selected features are used in the support vector machine (SVM) classifier to identify the left and right epileptogenic sides in patients with TLE. Results Our results for the performance of SVM demonstrate that the utility of dynamic features improves the classification outcome in terms of accuracy (88.5% for dynamic features compared with 82% for static features). Selecting the best dynamic features also elevates the accuracy to 91.5%. Conclusion Accounting for the non-stationary characteristics of functional connectivity, dynamic connectivity analysis of graph measures along with machine learning approach can identify the temporal trend of some specific network features. These network features may be used as potential imaging markers in determining the epileptogenic hemisphere in patients with TLE.</description><subject>Brain architecture</subject><subject>Brain mapping</subject><subject>Epilepsy</subject><subject>Functional magnetic resonance imaging</subject><subject>Functional morphology</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Neural networks</subject><subject>Neuroimaging</subject><subject>Neurology</subject><subject>Neuroradiology</subject><subject>Neurosciences</subject><subject>Neurosurgery</subject><subject>Original Article</subject><subject>Psychiatry</subject><subject>Support vector machines</subject><subject>Temporal lobe</subject><issn>1590-1874</issn><issn>1590-3478</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU9PAyEQxTdGE2v1C3gi8eJlFRbYBW-m_k2aeNEzYelsS7MLK-ya9ttLbRMTD16AYX7vTTIvyy4JviEYV7dxdxY5LnCOWcVlvjnKJoRLnFNWiePDm4iKnWZnMa4xxoQROsnah63TnTWoGZ0ZrHe6RcY7B6n4ssMWWYcG6HofUqP1NSDobQt93N4hjZZB9ys0rMAHGKxJiHYL1Gmzsg5QCzo465ZI933w6fM8O2l0G-HicE-zj6fH99lLPn97fp3dz3PDiBhyU5oai7I0HAuoJZR8QRYVSJA110wsGEhWm0o0ZSFZQWRVC90Upax3bSorOs2u975p7OcIcVCdjQbaVjvwY1QF44RQImiR0Ks_6NqPIW0hUZxSzAXDPFHFnjLBxxigUX2wnQ5bRbDarV7tA1ApAPUTgNokEd2LYoLdEsKv9T-qb2G3ioU</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Fallahi, Alireza</creator><creator>Pooyan, Mohammad</creator><creator>Lotfi, Nastaran</creator><creator>Baniasad, Fatemeh</creator><creator>Tapak, Leili</creator><creator>Mohammadi-Mobarakeh, Neda</creator><creator>Hashemi-Fesharaki, Seyed Sohrab</creator><creator>Mehvari-Habibabadi, Jafar</creator><creator>Ay, Mohammad Reza</creator><creator>Nazem-Zadeh, Mohammad-Reza</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>K9-</scope><scope>K9.</scope><scope>M0R</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6005-5973</orcidid></search><sort><creationdate>20210601</creationdate><title>Dynamic functional connectivity in temporal lobe epilepsy: a graph theoretical and machine learning approach</title><author>Fallahi, Alireza ; Pooyan, Mohammad ; Lotfi, Nastaran ; Baniasad, Fatemeh ; Tapak, Leili ; Mohammadi-Mobarakeh, Neda ; Hashemi-Fesharaki, Seyed Sohrab ; Mehvari-Habibabadi, Jafar ; Ay, Mohammad Reza ; Nazem-Zadeh, Mohammad-Reza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-c6cb0866c508eb9e65d1d7e9e9b5a48d4e94bc78f62942197b8af269bb5a43973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Brain architecture</topic><topic>Brain mapping</topic><topic>Epilepsy</topic><topic>Functional magnetic resonance imaging</topic><topic>Functional morphology</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Neural networks</topic><topic>Neuroimaging</topic><topic>Neurology</topic><topic>Neuroradiology</topic><topic>Neurosciences</topic><topic>Neurosurgery</topic><topic>Original Article</topic><topic>Psychiatry</topic><topic>Support vector machines</topic><topic>Temporal lobe</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fallahi, Alireza</creatorcontrib><creatorcontrib>Pooyan, Mohammad</creatorcontrib><creatorcontrib>Lotfi, Nastaran</creatorcontrib><creatorcontrib>Baniasad, Fatemeh</creatorcontrib><creatorcontrib>Tapak, Leili</creatorcontrib><creatorcontrib>Mohammadi-Mobarakeh, Neda</creatorcontrib><creatorcontrib>Hashemi-Fesharaki, Seyed Sohrab</creatorcontrib><creatorcontrib>Mehvari-Habibabadi, Jafar</creatorcontrib><creatorcontrib>Ay, Mohammad Reza</creatorcontrib><creatorcontrib>Nazem-Zadeh, Mohammad-Reza</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Consumer Health Database (Alumni Edition)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Consumer Health Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Neurological sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fallahi, Alireza</au><au>Pooyan, Mohammad</au><au>Lotfi, Nastaran</au><au>Baniasad, Fatemeh</au><au>Tapak, Leili</au><au>Mohammadi-Mobarakeh, Neda</au><au>Hashemi-Fesharaki, Seyed Sohrab</au><au>Mehvari-Habibabadi, Jafar</au><au>Ay, Mohammad Reza</au><au>Nazem-Zadeh, Mohammad-Reza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic functional connectivity in temporal lobe epilepsy: a graph theoretical and machine learning approach</atitle><jtitle>Neurological sciences</jtitle><stitle>Neurol Sci</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>42</volume><issue>6</issue><spage>2379</spage><epage>2390</epage><pages>2379-2390</pages><issn>1590-1874</issn><eissn>1590-3478</eissn><abstract>Purpose Functional magnetic resonance imaging (fMRI) in resting state can be used to evaluate the functional organization of the human brain in the absence of any task or stimulus. The functional connectivity (FC) has non-stationary nature and consented to be varying over time. By considering the dynamic characteristics of the FC and using graph theoretical analysis and a machine learning approach, we aim to identify the laterality in cases of temporal lobe epilepsy (TLE). Methods Six global graph measures are extracted from static and dynamic functional connectivity matrices using fMRI data of 35 unilateral TLE subjects. Alterations in the time trend of the graph measures are quantified. The random forest (RF) method is used for the determination of feature importance and selection of dynamic graph features including mean, variance, skewness, kurtosis, and Shannon entropy. The selected features are used in the support vector machine (SVM) classifier to identify the left and right epileptogenic sides in patients with TLE. Results Our results for the performance of SVM demonstrate that the utility of dynamic features improves the classification outcome in terms of accuracy (88.5% for dynamic features compared with 82% for static features). Selecting the best dynamic features also elevates the accuracy to 91.5%. Conclusion Accounting for the non-stationary characteristics of functional connectivity, dynamic connectivity analysis of graph measures along with machine learning approach can identify the temporal trend of some specific network features. These network features may be used as potential imaging markers in determining the epileptogenic hemisphere in patients with TLE.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10072-020-04759-x</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-6005-5973</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1590-1874
ispartof Neurological sciences, 2021-06, Vol.42 (6), p.2379-2390
issn 1590-1874
1590-3478
language eng
recordid cdi_proquest_miscellaneous_2451131832
source SpringerLink Journals - AutoHoldings
subjects Brain architecture
Brain mapping
Epilepsy
Functional magnetic resonance imaging
Functional morphology
Learning algorithms
Machine learning
Medicine
Medicine & Public Health
Neural networks
Neuroimaging
Neurology
Neuroradiology
Neurosciences
Neurosurgery
Original Article
Psychiatry
Support vector machines
Temporal lobe
title Dynamic functional connectivity in temporal lobe epilepsy: a graph theoretical and machine learning approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T15%3A02%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20functional%20connectivity%20in%20temporal%20lobe%20epilepsy:%20a%20graph%20theoretical%20and%20machine%20learning%20approach&rft.jtitle=Neurological%20sciences&rft.au=Fallahi,%20Alireza&rft.date=2021-06-01&rft.volume=42&rft.issue=6&rft.spage=2379&rft.epage=2390&rft.pages=2379-2390&rft.issn=1590-1874&rft.eissn=1590-3478&rft_id=info:doi/10.1007/s10072-020-04759-x&rft_dat=%3Cproquest_cross%3E2451131832%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2533058405&rft_id=info:pmid/&rfr_iscdi=true