Dynamic functional connectivity in temporal lobe epilepsy: a graph theoretical and machine learning approach
Purpose Functional magnetic resonance imaging (fMRI) in resting state can be used to evaluate the functional organization of the human brain in the absence of any task or stimulus. The functional connectivity (FC) has non-stationary nature and consented to be varying over time. By considering the dy...
Gespeichert in:
Veröffentlicht in: | Neurological sciences 2021-06, Vol.42 (6), p.2379-2390 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2390 |
---|---|
container_issue | 6 |
container_start_page | 2379 |
container_title | Neurological sciences |
container_volume | 42 |
creator | Fallahi, Alireza Pooyan, Mohammad Lotfi, Nastaran Baniasad, Fatemeh Tapak, Leili Mohammadi-Mobarakeh, Neda Hashemi-Fesharaki, Seyed Sohrab Mehvari-Habibabadi, Jafar Ay, Mohammad Reza Nazem-Zadeh, Mohammad-Reza |
description | Purpose
Functional magnetic resonance imaging (fMRI) in resting state can be used to evaluate the functional organization of the human brain in the absence of any task or stimulus. The functional connectivity (FC) has non-stationary nature and consented to be varying over time. By considering the dynamic characteristics of the FC and using graph theoretical analysis and a machine learning approach, we aim to identify the laterality in cases of temporal lobe epilepsy (TLE).
Methods
Six global graph measures are extracted from static and dynamic functional connectivity matrices using fMRI data of 35 unilateral TLE subjects. Alterations in the time trend of the graph measures are quantified. The random forest (RF) method is used for the determination of feature importance and selection of dynamic graph features including mean, variance, skewness, kurtosis, and Shannon entropy. The selected features are used in the support vector machine (SVM) classifier to identify the left and right epileptogenic sides in patients with TLE.
Results
Our results for the performance of SVM demonstrate that the utility of dynamic features improves the classification outcome in terms of accuracy (88.5% for dynamic features compared with 82% for static features). Selecting the best dynamic features also elevates the accuracy to 91.5%.
Conclusion
Accounting for the non-stationary characteristics of functional connectivity, dynamic connectivity analysis of graph measures along with machine learning approach can identify the temporal trend of some specific network features. These network features may be used as potential imaging markers in determining the epileptogenic hemisphere in patients with TLE. |
doi_str_mv | 10.1007/s10072-020-04759-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2451131832</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2451131832</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-c6cb0866c508eb9e65d1d7e9e9b5a48d4e94bc78f62942197b8af269bb5a43973</originalsourceid><addsrcrecordid>eNp9kU9PAyEQxTdGE2v1C3gi8eJlFRbYBW-m_k2aeNEzYelsS7MLK-ya9ttLbRMTD16AYX7vTTIvyy4JviEYV7dxdxY5LnCOWcVlvjnKJoRLnFNWiePDm4iKnWZnMa4xxoQROsnah63TnTWoGZ0ZrHe6RcY7B6n4ssMWWYcG6HofUqP1NSDobQt93N4hjZZB9ys0rMAHGKxJiHYL1Gmzsg5QCzo465ZI933w6fM8O2l0G-HicE-zj6fH99lLPn97fp3dz3PDiBhyU5oai7I0HAuoJZR8QRYVSJA110wsGEhWm0o0ZSFZQWRVC90Upax3bSorOs2u975p7OcIcVCdjQbaVjvwY1QF44RQImiR0Ks_6NqPIW0hUZxSzAXDPFHFnjLBxxigUX2wnQ5bRbDarV7tA1ApAPUTgNokEd2LYoLdEsKv9T-qb2G3ioU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2533058405</pqid></control><display><type>article</type><title>Dynamic functional connectivity in temporal lobe epilepsy: a graph theoretical and machine learning approach</title><source>SpringerLink Journals - AutoHoldings</source><creator>Fallahi, Alireza ; Pooyan, Mohammad ; Lotfi, Nastaran ; Baniasad, Fatemeh ; Tapak, Leili ; Mohammadi-Mobarakeh, Neda ; Hashemi-Fesharaki, Seyed Sohrab ; Mehvari-Habibabadi, Jafar ; Ay, Mohammad Reza ; Nazem-Zadeh, Mohammad-Reza</creator><creatorcontrib>Fallahi, Alireza ; Pooyan, Mohammad ; Lotfi, Nastaran ; Baniasad, Fatemeh ; Tapak, Leili ; Mohammadi-Mobarakeh, Neda ; Hashemi-Fesharaki, Seyed Sohrab ; Mehvari-Habibabadi, Jafar ; Ay, Mohammad Reza ; Nazem-Zadeh, Mohammad-Reza</creatorcontrib><description>Purpose
Functional magnetic resonance imaging (fMRI) in resting state can be used to evaluate the functional organization of the human brain in the absence of any task or stimulus. The functional connectivity (FC) has non-stationary nature and consented to be varying over time. By considering the dynamic characteristics of the FC and using graph theoretical analysis and a machine learning approach, we aim to identify the laterality in cases of temporal lobe epilepsy (TLE).
Methods
Six global graph measures are extracted from static and dynamic functional connectivity matrices using fMRI data of 35 unilateral TLE subjects. Alterations in the time trend of the graph measures are quantified. The random forest (RF) method is used for the determination of feature importance and selection of dynamic graph features including mean, variance, skewness, kurtosis, and Shannon entropy. The selected features are used in the support vector machine (SVM) classifier to identify the left and right epileptogenic sides in patients with TLE.
Results
Our results for the performance of SVM demonstrate that the utility of dynamic features improves the classification outcome in terms of accuracy (88.5% for dynamic features compared with 82% for static features). Selecting the best dynamic features also elevates the accuracy to 91.5%.
Conclusion
Accounting for the non-stationary characteristics of functional connectivity, dynamic connectivity analysis of graph measures along with machine learning approach can identify the temporal trend of some specific network features. These network features may be used as potential imaging markers in determining the epileptogenic hemisphere in patients with TLE.</description><identifier>ISSN: 1590-1874</identifier><identifier>EISSN: 1590-3478</identifier><identifier>DOI: 10.1007/s10072-020-04759-x</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Brain architecture ; Brain mapping ; Epilepsy ; Functional magnetic resonance imaging ; Functional morphology ; Learning algorithms ; Machine learning ; Medicine ; Medicine & Public Health ; Neural networks ; Neuroimaging ; Neurology ; Neuroradiology ; Neurosciences ; Neurosurgery ; Original Article ; Psychiatry ; Support vector machines ; Temporal lobe</subject><ispartof>Neurological sciences, 2021-06, Vol.42 (6), p.2379-2390</ispartof><rights>Fondazione Società Italiana di Neurologia 2020</rights><rights>Fondazione Società Italiana di Neurologia 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-c6cb0866c508eb9e65d1d7e9e9b5a48d4e94bc78f62942197b8af269bb5a43973</citedby><cites>FETCH-LOGICAL-c418t-c6cb0866c508eb9e65d1d7e9e9b5a48d4e94bc78f62942197b8af269bb5a43973</cites><orcidid>0000-0002-6005-5973</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10072-020-04759-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10072-020-04759-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Fallahi, Alireza</creatorcontrib><creatorcontrib>Pooyan, Mohammad</creatorcontrib><creatorcontrib>Lotfi, Nastaran</creatorcontrib><creatorcontrib>Baniasad, Fatemeh</creatorcontrib><creatorcontrib>Tapak, Leili</creatorcontrib><creatorcontrib>Mohammadi-Mobarakeh, Neda</creatorcontrib><creatorcontrib>Hashemi-Fesharaki, Seyed Sohrab</creatorcontrib><creatorcontrib>Mehvari-Habibabadi, Jafar</creatorcontrib><creatorcontrib>Ay, Mohammad Reza</creatorcontrib><creatorcontrib>Nazem-Zadeh, Mohammad-Reza</creatorcontrib><title>Dynamic functional connectivity in temporal lobe epilepsy: a graph theoretical and machine learning approach</title><title>Neurological sciences</title><addtitle>Neurol Sci</addtitle><description>Purpose
Functional magnetic resonance imaging (fMRI) in resting state can be used to evaluate the functional organization of the human brain in the absence of any task or stimulus. The functional connectivity (FC) has non-stationary nature and consented to be varying over time. By considering the dynamic characteristics of the FC and using graph theoretical analysis and a machine learning approach, we aim to identify the laterality in cases of temporal lobe epilepsy (TLE).
Methods
Six global graph measures are extracted from static and dynamic functional connectivity matrices using fMRI data of 35 unilateral TLE subjects. Alterations in the time trend of the graph measures are quantified. The random forest (RF) method is used for the determination of feature importance and selection of dynamic graph features including mean, variance, skewness, kurtosis, and Shannon entropy. The selected features are used in the support vector machine (SVM) classifier to identify the left and right epileptogenic sides in patients with TLE.
Results
Our results for the performance of SVM demonstrate that the utility of dynamic features improves the classification outcome in terms of accuracy (88.5% for dynamic features compared with 82% for static features). Selecting the best dynamic features also elevates the accuracy to 91.5%.
Conclusion
Accounting for the non-stationary characteristics of functional connectivity, dynamic connectivity analysis of graph measures along with machine learning approach can identify the temporal trend of some specific network features. These network features may be used as potential imaging markers in determining the epileptogenic hemisphere in patients with TLE.</description><subject>Brain architecture</subject><subject>Brain mapping</subject><subject>Epilepsy</subject><subject>Functional magnetic resonance imaging</subject><subject>Functional morphology</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Neural networks</subject><subject>Neuroimaging</subject><subject>Neurology</subject><subject>Neuroradiology</subject><subject>Neurosciences</subject><subject>Neurosurgery</subject><subject>Original Article</subject><subject>Psychiatry</subject><subject>Support vector machines</subject><subject>Temporal lobe</subject><issn>1590-1874</issn><issn>1590-3478</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU9PAyEQxTdGE2v1C3gi8eJlFRbYBW-m_k2aeNEzYelsS7MLK-ya9ttLbRMTD16AYX7vTTIvyy4JviEYV7dxdxY5LnCOWcVlvjnKJoRLnFNWiePDm4iKnWZnMa4xxoQROsnah63TnTWoGZ0ZrHe6RcY7B6n4ssMWWYcG6HofUqP1NSDobQt93N4hjZZB9ys0rMAHGKxJiHYL1Gmzsg5QCzo465ZI933w6fM8O2l0G-HicE-zj6fH99lLPn97fp3dz3PDiBhyU5oai7I0HAuoJZR8QRYVSJA110wsGEhWm0o0ZSFZQWRVC90Upax3bSorOs2u975p7OcIcVCdjQbaVjvwY1QF44RQImiR0Ks_6NqPIW0hUZxSzAXDPFHFnjLBxxigUX2wnQ5bRbDarV7tA1ApAPUTgNokEd2LYoLdEsKv9T-qb2G3ioU</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Fallahi, Alireza</creator><creator>Pooyan, Mohammad</creator><creator>Lotfi, Nastaran</creator><creator>Baniasad, Fatemeh</creator><creator>Tapak, Leili</creator><creator>Mohammadi-Mobarakeh, Neda</creator><creator>Hashemi-Fesharaki, Seyed Sohrab</creator><creator>Mehvari-Habibabadi, Jafar</creator><creator>Ay, Mohammad Reza</creator><creator>Nazem-Zadeh, Mohammad-Reza</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>K9-</scope><scope>K9.</scope><scope>M0R</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6005-5973</orcidid></search><sort><creationdate>20210601</creationdate><title>Dynamic functional connectivity in temporal lobe epilepsy: a graph theoretical and machine learning approach</title><author>Fallahi, Alireza ; Pooyan, Mohammad ; Lotfi, Nastaran ; Baniasad, Fatemeh ; Tapak, Leili ; Mohammadi-Mobarakeh, Neda ; Hashemi-Fesharaki, Seyed Sohrab ; Mehvari-Habibabadi, Jafar ; Ay, Mohammad Reza ; Nazem-Zadeh, Mohammad-Reza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-c6cb0866c508eb9e65d1d7e9e9b5a48d4e94bc78f62942197b8af269bb5a43973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Brain architecture</topic><topic>Brain mapping</topic><topic>Epilepsy</topic><topic>Functional magnetic resonance imaging</topic><topic>Functional morphology</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Neural networks</topic><topic>Neuroimaging</topic><topic>Neurology</topic><topic>Neuroradiology</topic><topic>Neurosciences</topic><topic>Neurosurgery</topic><topic>Original Article</topic><topic>Psychiatry</topic><topic>Support vector machines</topic><topic>Temporal lobe</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fallahi, Alireza</creatorcontrib><creatorcontrib>Pooyan, Mohammad</creatorcontrib><creatorcontrib>Lotfi, Nastaran</creatorcontrib><creatorcontrib>Baniasad, Fatemeh</creatorcontrib><creatorcontrib>Tapak, Leili</creatorcontrib><creatorcontrib>Mohammadi-Mobarakeh, Neda</creatorcontrib><creatorcontrib>Hashemi-Fesharaki, Seyed Sohrab</creatorcontrib><creatorcontrib>Mehvari-Habibabadi, Jafar</creatorcontrib><creatorcontrib>Ay, Mohammad Reza</creatorcontrib><creatorcontrib>Nazem-Zadeh, Mohammad-Reza</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Consumer Health Database (Alumni Edition)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Consumer Health Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Neurological sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fallahi, Alireza</au><au>Pooyan, Mohammad</au><au>Lotfi, Nastaran</au><au>Baniasad, Fatemeh</au><au>Tapak, Leili</au><au>Mohammadi-Mobarakeh, Neda</au><au>Hashemi-Fesharaki, Seyed Sohrab</au><au>Mehvari-Habibabadi, Jafar</au><au>Ay, Mohammad Reza</au><au>Nazem-Zadeh, Mohammad-Reza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic functional connectivity in temporal lobe epilepsy: a graph theoretical and machine learning approach</atitle><jtitle>Neurological sciences</jtitle><stitle>Neurol Sci</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>42</volume><issue>6</issue><spage>2379</spage><epage>2390</epage><pages>2379-2390</pages><issn>1590-1874</issn><eissn>1590-3478</eissn><abstract>Purpose
Functional magnetic resonance imaging (fMRI) in resting state can be used to evaluate the functional organization of the human brain in the absence of any task or stimulus. The functional connectivity (FC) has non-stationary nature and consented to be varying over time. By considering the dynamic characteristics of the FC and using graph theoretical analysis and a machine learning approach, we aim to identify the laterality in cases of temporal lobe epilepsy (TLE).
Methods
Six global graph measures are extracted from static and dynamic functional connectivity matrices using fMRI data of 35 unilateral TLE subjects. Alterations in the time trend of the graph measures are quantified. The random forest (RF) method is used for the determination of feature importance and selection of dynamic graph features including mean, variance, skewness, kurtosis, and Shannon entropy. The selected features are used in the support vector machine (SVM) classifier to identify the left and right epileptogenic sides in patients with TLE.
Results
Our results for the performance of SVM demonstrate that the utility of dynamic features improves the classification outcome in terms of accuracy (88.5% for dynamic features compared with 82% for static features). Selecting the best dynamic features also elevates the accuracy to 91.5%.
Conclusion
Accounting for the non-stationary characteristics of functional connectivity, dynamic connectivity analysis of graph measures along with machine learning approach can identify the temporal trend of some specific network features. These network features may be used as potential imaging markers in determining the epileptogenic hemisphere in patients with TLE.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10072-020-04759-x</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-6005-5973</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1590-1874 |
ispartof | Neurological sciences, 2021-06, Vol.42 (6), p.2379-2390 |
issn | 1590-1874 1590-3478 |
language | eng |
recordid | cdi_proquest_miscellaneous_2451131832 |
source | SpringerLink Journals - AutoHoldings |
subjects | Brain architecture Brain mapping Epilepsy Functional magnetic resonance imaging Functional morphology Learning algorithms Machine learning Medicine Medicine & Public Health Neural networks Neuroimaging Neurology Neuroradiology Neurosciences Neurosurgery Original Article Psychiatry Support vector machines Temporal lobe |
title | Dynamic functional connectivity in temporal lobe epilepsy: a graph theoretical and machine learning approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T15%3A02%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20functional%20connectivity%20in%20temporal%20lobe%20epilepsy:%20a%20graph%20theoretical%20and%20machine%20learning%20approach&rft.jtitle=Neurological%20sciences&rft.au=Fallahi,%20Alireza&rft.date=2021-06-01&rft.volume=42&rft.issue=6&rft.spage=2379&rft.epage=2390&rft.pages=2379-2390&rft.issn=1590-1874&rft.eissn=1590-3478&rft_id=info:doi/10.1007/s10072-020-04759-x&rft_dat=%3Cproquest_cross%3E2451131832%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2533058405&rft_id=info:pmid/&rfr_iscdi=true |