Activation tagging identifies Arabidopsis transcription factor AtMYB68 for heat and drought tolerance at yield determining reproductive stages

SUMMARY Heat stress occurring at reproductive stages can result in significant and permanent damage to crop yields. However, previous genetic studies in understanding heat stress response and signaling were performed mostly on seedling and plants at early vegetative stages. Here we identify, using a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Plant journal : for cell and molecular biology 2020-12, Vol.104 (6), p.1535-1550
Hauptverfasser: Deng, Mingde, Wang, Yang, Kuzma, Monika, Chalifoux, Maryse, Tremblay, Linda, Yang, Shujun, Ying, Jifeng, Sample, Angela, Wang, Hung‐Mei, Griffiths, Rebecca, Uchacz, Tina, Tang, Xurong, Tian, Gang, Joslin, Katelyn, Dennis, David, McCourt, Peter, Huang, Yafan, Wan, Jiangxin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1550
container_issue 6
container_start_page 1535
container_title The Plant journal : for cell and molecular biology
container_volume 104
creator Deng, Mingde
Wang, Yang
Kuzma, Monika
Chalifoux, Maryse
Tremblay, Linda
Yang, Shujun
Ying, Jifeng
Sample, Angela
Wang, Hung‐Mei
Griffiths, Rebecca
Uchacz, Tina
Tang, Xurong
Tian, Gang
Joslin, Katelyn
Dennis, David
McCourt, Peter
Huang, Yafan
Wan, Jiangxin
description SUMMARY Heat stress occurring at reproductive stages can result in significant and permanent damage to crop yields. However, previous genetic studies in understanding heat stress response and signaling were performed mostly on seedling and plants at early vegetative stages. Here we identify, using a developmentally defined, gain‐of‐function genetic screen with approximately 18 000 Arabidopsis thaliana activation‐tagged lines, a mutant that maintained productive seed set post‐severe heat stress during flowering. Genome walking indicated this phenotype was caused by the insertion of 35S enhancers adjacent to a nuclear localized transcription factor AtMYB68. Subsequent overexpression analysis confirmed that AtMYB68 was responsible for the reproductive heat tolerance of the mutant. Furthermore, these transgenic Arabidopsis plants exhibited enhanced abscisic acid sensitivity at and post‐germination, reduced transpirational water loss during a drought treatment, and enhanced seed yield under combined heat and drought stress during flowering. Ectopic expression of AtMYB68 in Brassica napus driven either by 35S or by heat‐inducible promoter recapitulated the enhanced reproductive heat stress and drought tolerance phenotypes observed in the transgenic Arabidopsis. The improvement to heat stress is likely due to enhanced pollen viability observed in the transgenic plants. More importantly, the transgenic canola showed significant yield advantages over the non‐transgenic controls in multiple locations, multiple season field trials under various drought and heat stress conditions. Together these results suggest that AtMYB68 regulate plant stress tolerance at the most important yield determining stage of plant development, and is an effective target for crop yield protection under current global climate volatility. Significance Statement There is a significant gap in our knowledge on how plants cope with heat and drought stresses at the reproductive stages, which is critical for seed yield. Using a developmentally defined, gain‐of‐function genetic screen in Arabidopsis, this study reveals a transcriptional factor for enhancing heat and drought tolerance at yield determining reproductive stages.
doi_str_mv 10.1111/tpj.15019
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2450672555</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2471526416</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3889-314a9cf4aa7aefb88d75b651f80e4778c7535bcb06dab2a0f73d9e58c26ebeae3</originalsourceid><addsrcrecordid>eNp1kctOHDEQRS0EChOSBT-ALLEJiwG73X70ckAhD4GSBZGSVcttlwePetqN7U40P5FvjochLJDwpizVqVu3dBE6puSclneRx9U55YQ2e2hGmeBzRtnPfTQjjSBzWdPqEL1NaUUIlUzUb9AhY6RWrGlm6O_CZP9bZx8GnPVy6Ycl9haG7J2HhBdRd96GMfmEc9RDMtGPj7DTJoeIF_n216VQ2JX_PeiM9WCxjWFa3mecQw9lyAAujY2HvrQgQ1z7YbsnwhiDnbYGAKeyHdI7dOB0n-D9Uz1CP64_3l19nt98-_TlanEzN0ypptxX68a4WmupwXVKWck7walTBGoplZGc8c50RFjdVZo4yWwDXJlKQAca2BH6sNMtDh4mSLld-2Sg7_UAYUptVXMiZMU5L-jpC3QVpjgUd4WSlFeipqJQZzvKxJBSBNeO0a913LSUtNuQ2hJS-xhSYU-eFKduDfaZ_J9KAS52wB_fw-Z1pfbu-9ed5D9th571</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471526416</pqid></control><display><type>article</type><title>Activation tagging identifies Arabidopsis transcription factor AtMYB68 for heat and drought tolerance at yield determining reproductive stages</title><source>Wiley Free Content</source><source>MEDLINE</source><source>IngentaConnect Free/Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Deng, Mingde ; Wang, Yang ; Kuzma, Monika ; Chalifoux, Maryse ; Tremblay, Linda ; Yang, Shujun ; Ying, Jifeng ; Sample, Angela ; Wang, Hung‐Mei ; Griffiths, Rebecca ; Uchacz, Tina ; Tang, Xurong ; Tian, Gang ; Joslin, Katelyn ; Dennis, David ; McCourt, Peter ; Huang, Yafan ; Wan, Jiangxin</creator><creatorcontrib>Deng, Mingde ; Wang, Yang ; Kuzma, Monika ; Chalifoux, Maryse ; Tremblay, Linda ; Yang, Shujun ; Ying, Jifeng ; Sample, Angela ; Wang, Hung‐Mei ; Griffiths, Rebecca ; Uchacz, Tina ; Tang, Xurong ; Tian, Gang ; Joslin, Katelyn ; Dennis, David ; McCourt, Peter ; Huang, Yafan ; Wan, Jiangxin</creatorcontrib><description>SUMMARY Heat stress occurring at reproductive stages can result in significant and permanent damage to crop yields. However, previous genetic studies in understanding heat stress response and signaling were performed mostly on seedling and plants at early vegetative stages. Here we identify, using a developmentally defined, gain‐of‐function genetic screen with approximately 18 000 Arabidopsis thaliana activation‐tagged lines, a mutant that maintained productive seed set post‐severe heat stress during flowering. Genome walking indicated this phenotype was caused by the insertion of 35S enhancers adjacent to a nuclear localized transcription factor AtMYB68. Subsequent overexpression analysis confirmed that AtMYB68 was responsible for the reproductive heat tolerance of the mutant. Furthermore, these transgenic Arabidopsis plants exhibited enhanced abscisic acid sensitivity at and post‐germination, reduced transpirational water loss during a drought treatment, and enhanced seed yield under combined heat and drought stress during flowering. Ectopic expression of AtMYB68 in Brassica napus driven either by 35S or by heat‐inducible promoter recapitulated the enhanced reproductive heat stress and drought tolerance phenotypes observed in the transgenic Arabidopsis. The improvement to heat stress is likely due to enhanced pollen viability observed in the transgenic plants. More importantly, the transgenic canola showed significant yield advantages over the non‐transgenic controls in multiple locations, multiple season field trials under various drought and heat stress conditions. Together these results suggest that AtMYB68 regulate plant stress tolerance at the most important yield determining stage of plant development, and is an effective target for crop yield protection under current global climate volatility. Significance Statement There is a significant gap in our knowledge on how plants cope with heat and drought stresses at the reproductive stages, which is critical for seed yield. Using a developmentally defined, gain‐of‐function genetic screen in Arabidopsis, this study reveals a transcriptional factor for enhancing heat and drought tolerance at yield determining reproductive stages.</description><identifier>ISSN: 0960-7412</identifier><identifier>EISSN: 1365-313X</identifier><identifier>DOI: 10.1111/tpj.15019</identifier><identifier>PMID: 33048399</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Abscisic acid ; Agricultural production ; Arabidopsis ; Arabidopsis - genetics ; Arabidopsis - growth &amp; development ; Arabidopsis - physiology ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - physiology ; Arabidopsis thaliana ; AtMYB68 (accession At5G65790) ; Brassica ; Brassica napus ; Cellular stress response ; Crop damage ; Crop yield ; Dehydration ; Developmental stages ; Drought resistance ; Ectopic expression ; Enhancers ; Environmental stress ; field trial ; Flowering ; Flowers - growth &amp; development ; Gain of Function Mutation ; Gene Expression Regulation, Plant ; Gene mapping ; genetic screen ; Genetic screening ; Genomes ; Germination ; Global climate ; heat and drought tolerance ; Heat stress ; Heat tolerance ; Insertion ; Mutants ; Phenotypes ; Plant stress ; Plants (botany) ; Plants, Genetically Modified ; Pollen ; R2R3‐MYB transcription factors ; Reproduction ; reproductive development ; Seed set ; Seedlings ; Sensitivity enhancement ; Thermotolerance ; Transcription activation ; Transcription factors ; Transcription Factors - genetics ; Transcription Factors - physiology ; Transgenic plants ; Transpiration ; Volatility ; Water loss</subject><ispartof>The Plant journal : for cell and molecular biology, 2020-12, Vol.104 (6), p.1535-1550</ispartof><rights>2020 Society for Experimental Biology and John Wiley &amp; Sons Ltd</rights><rights>2020 Society for Experimental Biology and John Wiley &amp; Sons Ltd.</rights><rights>Copyright © 2020 John Wiley &amp; Sons Ltd and the Society for Experimental Biology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3889-314a9cf4aa7aefb88d75b651f80e4778c7535bcb06dab2a0f73d9e58c26ebeae3</citedby><cites>FETCH-LOGICAL-c3889-314a9cf4aa7aefb88d75b651f80e4778c7535bcb06dab2a0f73d9e58c26ebeae3</cites><orcidid>0000-0002-2525-4301</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Ftpj.15019$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Ftpj.15019$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33048399$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Deng, Mingde</creatorcontrib><creatorcontrib>Wang, Yang</creatorcontrib><creatorcontrib>Kuzma, Monika</creatorcontrib><creatorcontrib>Chalifoux, Maryse</creatorcontrib><creatorcontrib>Tremblay, Linda</creatorcontrib><creatorcontrib>Yang, Shujun</creatorcontrib><creatorcontrib>Ying, Jifeng</creatorcontrib><creatorcontrib>Sample, Angela</creatorcontrib><creatorcontrib>Wang, Hung‐Mei</creatorcontrib><creatorcontrib>Griffiths, Rebecca</creatorcontrib><creatorcontrib>Uchacz, Tina</creatorcontrib><creatorcontrib>Tang, Xurong</creatorcontrib><creatorcontrib>Tian, Gang</creatorcontrib><creatorcontrib>Joslin, Katelyn</creatorcontrib><creatorcontrib>Dennis, David</creatorcontrib><creatorcontrib>McCourt, Peter</creatorcontrib><creatorcontrib>Huang, Yafan</creatorcontrib><creatorcontrib>Wan, Jiangxin</creatorcontrib><title>Activation tagging identifies Arabidopsis transcription factor AtMYB68 for heat and drought tolerance at yield determining reproductive stages</title><title>The Plant journal : for cell and molecular biology</title><addtitle>Plant J</addtitle><description>SUMMARY Heat stress occurring at reproductive stages can result in significant and permanent damage to crop yields. However, previous genetic studies in understanding heat stress response and signaling were performed mostly on seedling and plants at early vegetative stages. Here we identify, using a developmentally defined, gain‐of‐function genetic screen with approximately 18 000 Arabidopsis thaliana activation‐tagged lines, a mutant that maintained productive seed set post‐severe heat stress during flowering. Genome walking indicated this phenotype was caused by the insertion of 35S enhancers adjacent to a nuclear localized transcription factor AtMYB68. Subsequent overexpression analysis confirmed that AtMYB68 was responsible for the reproductive heat tolerance of the mutant. Furthermore, these transgenic Arabidopsis plants exhibited enhanced abscisic acid sensitivity at and post‐germination, reduced transpirational water loss during a drought treatment, and enhanced seed yield under combined heat and drought stress during flowering. Ectopic expression of AtMYB68 in Brassica napus driven either by 35S or by heat‐inducible promoter recapitulated the enhanced reproductive heat stress and drought tolerance phenotypes observed in the transgenic Arabidopsis. The improvement to heat stress is likely due to enhanced pollen viability observed in the transgenic plants. More importantly, the transgenic canola showed significant yield advantages over the non‐transgenic controls in multiple locations, multiple season field trials under various drought and heat stress conditions. Together these results suggest that AtMYB68 regulate plant stress tolerance at the most important yield determining stage of plant development, and is an effective target for crop yield protection under current global climate volatility. Significance Statement There is a significant gap in our knowledge on how plants cope with heat and drought stresses at the reproductive stages, which is critical for seed yield. Using a developmentally defined, gain‐of‐function genetic screen in Arabidopsis, this study reveals a transcriptional factor for enhancing heat and drought tolerance at yield determining reproductive stages.</description><subject>Abscisic acid</subject><subject>Agricultural production</subject><subject>Arabidopsis</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - growth &amp; development</subject><subject>Arabidopsis - physiology</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - physiology</subject><subject>Arabidopsis thaliana</subject><subject>AtMYB68 (accession At5G65790)</subject><subject>Brassica</subject><subject>Brassica napus</subject><subject>Cellular stress response</subject><subject>Crop damage</subject><subject>Crop yield</subject><subject>Dehydration</subject><subject>Developmental stages</subject><subject>Drought resistance</subject><subject>Ectopic expression</subject><subject>Enhancers</subject><subject>Environmental stress</subject><subject>field trial</subject><subject>Flowering</subject><subject>Flowers - growth &amp; development</subject><subject>Gain of Function Mutation</subject><subject>Gene Expression Regulation, Plant</subject><subject>Gene mapping</subject><subject>genetic screen</subject><subject>Genetic screening</subject><subject>Genomes</subject><subject>Germination</subject><subject>Global climate</subject><subject>heat and drought tolerance</subject><subject>Heat stress</subject><subject>Heat tolerance</subject><subject>Insertion</subject><subject>Mutants</subject><subject>Phenotypes</subject><subject>Plant stress</subject><subject>Plants (botany)</subject><subject>Plants, Genetically Modified</subject><subject>Pollen</subject><subject>R2R3‐MYB transcription factors</subject><subject>Reproduction</subject><subject>reproductive development</subject><subject>Seed set</subject><subject>Seedlings</subject><subject>Sensitivity enhancement</subject><subject>Thermotolerance</subject><subject>Transcription activation</subject><subject>Transcription factors</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - physiology</subject><subject>Transgenic plants</subject><subject>Transpiration</subject><subject>Volatility</subject><subject>Water loss</subject><issn>0960-7412</issn><issn>1365-313X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kctOHDEQRS0EChOSBT-ALLEJiwG73X70ckAhD4GSBZGSVcttlwePetqN7U40P5FvjochLJDwpizVqVu3dBE6puSclneRx9U55YQ2e2hGmeBzRtnPfTQjjSBzWdPqEL1NaUUIlUzUb9AhY6RWrGlm6O_CZP9bZx8GnPVy6Ycl9haG7J2HhBdRd96GMfmEc9RDMtGPj7DTJoeIF_n216VQ2JX_PeiM9WCxjWFa3mecQw9lyAAujY2HvrQgQ1z7YbsnwhiDnbYGAKeyHdI7dOB0n-D9Uz1CP64_3l19nt98-_TlanEzN0ypptxX68a4WmupwXVKWck7walTBGoplZGc8c50RFjdVZo4yWwDXJlKQAca2BH6sNMtDh4mSLld-2Sg7_UAYUptVXMiZMU5L-jpC3QVpjgUd4WSlFeipqJQZzvKxJBSBNeO0a913LSUtNuQ2hJS-xhSYU-eFKduDfaZ_J9KAS52wB_fw-Z1pfbu-9ed5D9th571</recordid><startdate>202012</startdate><enddate>202012</enddate><creator>Deng, Mingde</creator><creator>Wang, Yang</creator><creator>Kuzma, Monika</creator><creator>Chalifoux, Maryse</creator><creator>Tremblay, Linda</creator><creator>Yang, Shujun</creator><creator>Ying, Jifeng</creator><creator>Sample, Angela</creator><creator>Wang, Hung‐Mei</creator><creator>Griffiths, Rebecca</creator><creator>Uchacz, Tina</creator><creator>Tang, Xurong</creator><creator>Tian, Gang</creator><creator>Joslin, Katelyn</creator><creator>Dennis, David</creator><creator>McCourt, Peter</creator><creator>Huang, Yafan</creator><creator>Wan, Jiangxin</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2525-4301</orcidid></search><sort><creationdate>202012</creationdate><title>Activation tagging identifies Arabidopsis transcription factor AtMYB68 for heat and drought tolerance at yield determining reproductive stages</title><author>Deng, Mingde ; Wang, Yang ; Kuzma, Monika ; Chalifoux, Maryse ; Tremblay, Linda ; Yang, Shujun ; Ying, Jifeng ; Sample, Angela ; Wang, Hung‐Mei ; Griffiths, Rebecca ; Uchacz, Tina ; Tang, Xurong ; Tian, Gang ; Joslin, Katelyn ; Dennis, David ; McCourt, Peter ; Huang, Yafan ; Wan, Jiangxin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3889-314a9cf4aa7aefb88d75b651f80e4778c7535bcb06dab2a0f73d9e58c26ebeae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Abscisic acid</topic><topic>Agricultural production</topic><topic>Arabidopsis</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - growth &amp; development</topic><topic>Arabidopsis - physiology</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - physiology</topic><topic>Arabidopsis thaliana</topic><topic>AtMYB68 (accession At5G65790)</topic><topic>Brassica</topic><topic>Brassica napus</topic><topic>Cellular stress response</topic><topic>Crop damage</topic><topic>Crop yield</topic><topic>Dehydration</topic><topic>Developmental stages</topic><topic>Drought resistance</topic><topic>Ectopic expression</topic><topic>Enhancers</topic><topic>Environmental stress</topic><topic>field trial</topic><topic>Flowering</topic><topic>Flowers - growth &amp; development</topic><topic>Gain of Function Mutation</topic><topic>Gene Expression Regulation, Plant</topic><topic>Gene mapping</topic><topic>genetic screen</topic><topic>Genetic screening</topic><topic>Genomes</topic><topic>Germination</topic><topic>Global climate</topic><topic>heat and drought tolerance</topic><topic>Heat stress</topic><topic>Heat tolerance</topic><topic>Insertion</topic><topic>Mutants</topic><topic>Phenotypes</topic><topic>Plant stress</topic><topic>Plants (botany)</topic><topic>Plants, Genetically Modified</topic><topic>Pollen</topic><topic>R2R3‐MYB transcription factors</topic><topic>Reproduction</topic><topic>reproductive development</topic><topic>Seed set</topic><topic>Seedlings</topic><topic>Sensitivity enhancement</topic><topic>Thermotolerance</topic><topic>Transcription activation</topic><topic>Transcription factors</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - physiology</topic><topic>Transgenic plants</topic><topic>Transpiration</topic><topic>Volatility</topic><topic>Water loss</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deng, Mingde</creatorcontrib><creatorcontrib>Wang, Yang</creatorcontrib><creatorcontrib>Kuzma, Monika</creatorcontrib><creatorcontrib>Chalifoux, Maryse</creatorcontrib><creatorcontrib>Tremblay, Linda</creatorcontrib><creatorcontrib>Yang, Shujun</creatorcontrib><creatorcontrib>Ying, Jifeng</creatorcontrib><creatorcontrib>Sample, Angela</creatorcontrib><creatorcontrib>Wang, Hung‐Mei</creatorcontrib><creatorcontrib>Griffiths, Rebecca</creatorcontrib><creatorcontrib>Uchacz, Tina</creatorcontrib><creatorcontrib>Tang, Xurong</creatorcontrib><creatorcontrib>Tian, Gang</creatorcontrib><creatorcontrib>Joslin, Katelyn</creatorcontrib><creatorcontrib>Dennis, David</creatorcontrib><creatorcontrib>McCourt, Peter</creatorcontrib><creatorcontrib>Huang, Yafan</creatorcontrib><creatorcontrib>Wan, Jiangxin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The Plant journal : for cell and molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deng, Mingde</au><au>Wang, Yang</au><au>Kuzma, Monika</au><au>Chalifoux, Maryse</au><au>Tremblay, Linda</au><au>Yang, Shujun</au><au>Ying, Jifeng</au><au>Sample, Angela</au><au>Wang, Hung‐Mei</au><au>Griffiths, Rebecca</au><au>Uchacz, Tina</au><au>Tang, Xurong</au><au>Tian, Gang</au><au>Joslin, Katelyn</au><au>Dennis, David</au><au>McCourt, Peter</au><au>Huang, Yafan</au><au>Wan, Jiangxin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Activation tagging identifies Arabidopsis transcription factor AtMYB68 for heat and drought tolerance at yield determining reproductive stages</atitle><jtitle>The Plant journal : for cell and molecular biology</jtitle><addtitle>Plant J</addtitle><date>2020-12</date><risdate>2020</risdate><volume>104</volume><issue>6</issue><spage>1535</spage><epage>1550</epage><pages>1535-1550</pages><issn>0960-7412</issn><eissn>1365-313X</eissn><abstract>SUMMARY Heat stress occurring at reproductive stages can result in significant and permanent damage to crop yields. However, previous genetic studies in understanding heat stress response and signaling were performed mostly on seedling and plants at early vegetative stages. Here we identify, using a developmentally defined, gain‐of‐function genetic screen with approximately 18 000 Arabidopsis thaliana activation‐tagged lines, a mutant that maintained productive seed set post‐severe heat stress during flowering. Genome walking indicated this phenotype was caused by the insertion of 35S enhancers adjacent to a nuclear localized transcription factor AtMYB68. Subsequent overexpression analysis confirmed that AtMYB68 was responsible for the reproductive heat tolerance of the mutant. Furthermore, these transgenic Arabidopsis plants exhibited enhanced abscisic acid sensitivity at and post‐germination, reduced transpirational water loss during a drought treatment, and enhanced seed yield under combined heat and drought stress during flowering. Ectopic expression of AtMYB68 in Brassica napus driven either by 35S or by heat‐inducible promoter recapitulated the enhanced reproductive heat stress and drought tolerance phenotypes observed in the transgenic Arabidopsis. The improvement to heat stress is likely due to enhanced pollen viability observed in the transgenic plants. More importantly, the transgenic canola showed significant yield advantages over the non‐transgenic controls in multiple locations, multiple season field trials under various drought and heat stress conditions. Together these results suggest that AtMYB68 regulate plant stress tolerance at the most important yield determining stage of plant development, and is an effective target for crop yield protection under current global climate volatility. Significance Statement There is a significant gap in our knowledge on how plants cope with heat and drought stresses at the reproductive stages, which is critical for seed yield. Using a developmentally defined, gain‐of‐function genetic screen in Arabidopsis, this study reveals a transcriptional factor for enhancing heat and drought tolerance at yield determining reproductive stages.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>33048399</pmid><doi>10.1111/tpj.15019</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-2525-4301</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0960-7412
ispartof The Plant journal : for cell and molecular biology, 2020-12, Vol.104 (6), p.1535-1550
issn 0960-7412
1365-313X
language eng
recordid cdi_proquest_miscellaneous_2450672555
source Wiley Free Content; MEDLINE; IngentaConnect Free/Open Access Journals; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Abscisic acid
Agricultural production
Arabidopsis
Arabidopsis - genetics
Arabidopsis - growth & development
Arabidopsis - physiology
Arabidopsis Proteins - genetics
Arabidopsis Proteins - physiology
Arabidopsis thaliana
AtMYB68 (accession At5G65790)
Brassica
Brassica napus
Cellular stress response
Crop damage
Crop yield
Dehydration
Developmental stages
Drought resistance
Ectopic expression
Enhancers
Environmental stress
field trial
Flowering
Flowers - growth & development
Gain of Function Mutation
Gene Expression Regulation, Plant
Gene mapping
genetic screen
Genetic screening
Genomes
Germination
Global climate
heat and drought tolerance
Heat stress
Heat tolerance
Insertion
Mutants
Phenotypes
Plant stress
Plants (botany)
Plants, Genetically Modified
Pollen
R2R3‐MYB transcription factors
Reproduction
reproductive development
Seed set
Seedlings
Sensitivity enhancement
Thermotolerance
Transcription activation
Transcription factors
Transcription Factors - genetics
Transcription Factors - physiology
Transgenic plants
Transpiration
Volatility
Water loss
title Activation tagging identifies Arabidopsis transcription factor AtMYB68 for heat and drought tolerance at yield determining reproductive stages
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T23%3A37%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Activation%20tagging%20identifies%20Arabidopsis%20transcription%20factor%20AtMYB68%20for%20heat%20and%20drought%20tolerance%20at%20yield%20determining%20reproductive%20stages&rft.jtitle=The%20Plant%20journal%20:%20for%20cell%20and%20molecular%20biology&rft.au=Deng,%20Mingde&rft.date=2020-12&rft.volume=104&rft.issue=6&rft.spage=1535&rft.epage=1550&rft.pages=1535-1550&rft.issn=0960-7412&rft.eissn=1365-313X&rft_id=info:doi/10.1111/tpj.15019&rft_dat=%3Cproquest_cross%3E2471526416%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2471526416&rft_id=info:pmid/33048399&rfr_iscdi=true