Combinations with Allosteric SHP2 Inhibitor TNO155 to Block Receptor Tyrosine Kinase Signaling
SHP2 inhibitors offer an appealing and novel approach to inhibit receptor tyrosine kinase (RTK) signaling, which is the oncogenic driver in many tumors or is frequently feedback activated in response to targeted therapies including RTK inhibitors and MAPK inhibitors. We seek to evaluate the efficacy...
Gespeichert in:
Veröffentlicht in: | Clinical cancer research 2021-01, Vol.27 (1), p.342-354 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 354 |
---|---|
container_issue | 1 |
container_start_page | 342 |
container_title | Clinical cancer research |
container_volume | 27 |
creator | Liu, Chen Lu, Hengyu Wang, Hongyun Loo, Alice Zhang, Xiamei Yang, Guizhi Kowal, Colleen Delach, Scott Wang, Ye Goldoni, Silvia Hastings, William D Wong, Karrie Gao, Hui Meyer, Matthew J Moody, Susan E LaMarche, Matthew J Engelman, Jeffrey A Williams, Juliet A Hammerman, Peter S Abrams, Tinya J Mohseni, Morvarid Caponigro, Giordano Hao, Huai-Xiang |
description | SHP2 inhibitors offer an appealing and novel approach to inhibit receptor tyrosine kinase (RTK) signaling, which is the oncogenic driver in many tumors or is frequently feedback activated in response to targeted therapies including RTK inhibitors and MAPK inhibitors. We seek to evaluate the efficacy and synergistic mechanisms of combinations with a novel SHP2 inhibitor, TNO155, to inform their clinical development.
The combinations of TNO155 with EGFR inhibitors (EGFRi), BRAFi, KRAS
i, CDK4/6i, and anti-programmed cell death-1 (PD-1) antibody were tested in appropriate cancer models
and
, and their effects on downstream signaling were examined.
In EGFR-mutant lung cancer models, combination benefit of TNO155 and the EGFRi nazartinib was observed, coincident with sustained ERK inhibition. In BRAF
colorectal cancer models, TNO155 synergized with BRAF plus MEK inhibitors by blocking ERK feedback activation by different RTKs. In KRAS
cancer cells, TNO155 effectively blocked the feedback activation of wild-type KRAS or other RAS isoforms induced by KRAS
i and greatly enhanced efficacy. In addition, TNO155 and the CDK4/6 inhibitor ribociclib showed combination benefit in a large panel of lung and colorectal cancer patient-derived xenografts, including those with KRAS mutations. Finally, TNO155 effectively inhibited RAS activation by colony-stimulating factor 1 receptor, which is critical for the maturation of immunosuppressive tumor-associated macrophages, and showed combination activity with anti-PD-1 antibody.
Our findings suggest TNO155 is an effective agent for blocking both tumor-promoting and immune-suppressive RTK signaling in RTK- and MAPK-driven cancers and their tumor microenvironment. Our data provide the rationale for evaluating these combinations clinically. |
doi_str_mv | 10.1158/1078-0432.CCR-20-2718 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2450668637</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2450668637</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-20a3e45d2b4e84859c06d3c55d2359a72b5ef92ed2d9ebffdba1adaaffdf19fe3</originalsourceid><addsrcrecordid>eNo9kFtPwkAQhTdGI4j-BM0--lLcay-P2KgQiRjAVzfbdgqrpYvdEsO_dyvo05zMnDkz-RC6pmRIqYzvKInigAjOhmk6DxgJWETjE9SnUkYBZ6E89frP00MXzn0QQgUl4hz1OCcilDTpo_fUbjJT69bY2uFv067xqKqsa6ExOV6MXxme1GuTmdY2ePky8_G4tfi-svknnkMO29_BvrHO1ICffZQDvDCrWlemXl2is1JXDq6OdYDeHh-W6TiYzp4m6Wga5ILErX9fcxCyYJmAWMQyyUlY8Fz6DpeJjlgmoUwYFKxIICvLItNUF1p7VdKkBD5At4fcbWO_duBatTEuh6rSNdidU0xIEoZxyCNvlQdr7n92DZRq25iNbvaKEtWhVR021WFTHq1iRHVo_d7N8cQu20Dxv_XHkv8A52d1hA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2450668637</pqid></control><display><type>article</type><title>Combinations with Allosteric SHP2 Inhibitor TNO155 to Block Receptor Tyrosine Kinase Signaling</title><source>MEDLINE</source><source>American Association for Cancer Research</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Liu, Chen ; Lu, Hengyu ; Wang, Hongyun ; Loo, Alice ; Zhang, Xiamei ; Yang, Guizhi ; Kowal, Colleen ; Delach, Scott ; Wang, Ye ; Goldoni, Silvia ; Hastings, William D ; Wong, Karrie ; Gao, Hui ; Meyer, Matthew J ; Moody, Susan E ; LaMarche, Matthew J ; Engelman, Jeffrey A ; Williams, Juliet A ; Hammerman, Peter S ; Abrams, Tinya J ; Mohseni, Morvarid ; Caponigro, Giordano ; Hao, Huai-Xiang</creator><creatorcontrib>Liu, Chen ; Lu, Hengyu ; Wang, Hongyun ; Loo, Alice ; Zhang, Xiamei ; Yang, Guizhi ; Kowal, Colleen ; Delach, Scott ; Wang, Ye ; Goldoni, Silvia ; Hastings, William D ; Wong, Karrie ; Gao, Hui ; Meyer, Matthew J ; Moody, Susan E ; LaMarche, Matthew J ; Engelman, Jeffrey A ; Williams, Juliet A ; Hammerman, Peter S ; Abrams, Tinya J ; Mohseni, Morvarid ; Caponigro, Giordano ; Hao, Huai-Xiang</creatorcontrib><description>SHP2 inhibitors offer an appealing and novel approach to inhibit receptor tyrosine kinase (RTK) signaling, which is the oncogenic driver in many tumors or is frequently feedback activated in response to targeted therapies including RTK inhibitors and MAPK inhibitors. We seek to evaluate the efficacy and synergistic mechanisms of combinations with a novel SHP2 inhibitor, TNO155, to inform their clinical development.
The combinations of TNO155 with EGFR inhibitors (EGFRi), BRAFi, KRAS
i, CDK4/6i, and anti-programmed cell death-1 (PD-1) antibody were tested in appropriate cancer models
and
, and their effects on downstream signaling were examined.
In EGFR-mutant lung cancer models, combination benefit of TNO155 and the EGFRi nazartinib was observed, coincident with sustained ERK inhibition. In BRAF
colorectal cancer models, TNO155 synergized with BRAF plus MEK inhibitors by blocking ERK feedback activation by different RTKs. In KRAS
cancer cells, TNO155 effectively blocked the feedback activation of wild-type KRAS or other RAS isoforms induced by KRAS
i and greatly enhanced efficacy. In addition, TNO155 and the CDK4/6 inhibitor ribociclib showed combination benefit in a large panel of lung and colorectal cancer patient-derived xenografts, including those with KRAS mutations. Finally, TNO155 effectively inhibited RAS activation by colony-stimulating factor 1 receptor, which is critical for the maturation of immunosuppressive tumor-associated macrophages, and showed combination activity with anti-PD-1 antibody.
Our findings suggest TNO155 is an effective agent for blocking both tumor-promoting and immune-suppressive RTK signaling in RTK- and MAPK-driven cancers and their tumor microenvironment. Our data provide the rationale for evaluating these combinations clinically.</description><identifier>ISSN: 1078-0432</identifier><identifier>EISSN: 1557-3265</identifier><identifier>DOI: 10.1158/1078-0432.CCR-20-2718</identifier><identifier>PMID: 33046519</identifier><language>eng</language><publisher>United States</publisher><subject><![CDATA[Allosteric Regulation - drug effects ; Animals ; Antineoplastic Combined Chemotherapy Protocols - pharmacology ; Antineoplastic Combined Chemotherapy Protocols - therapeutic use ; Cell Line, Tumor ; Cyclin-Dependent Kinase 4 - antagonists & inhibitors ; Cyclin-Dependent Kinase 6 - antagonists & inhibitors ; Drug Synergism ; ErbB Receptors - antagonists & inhibitors ; Female ; Humans ; Immune Checkpoint Inhibitors - pharmacology ; Immune Checkpoint Inhibitors - therapeutic use ; Mice ; Mutation ; Neoplasms - drug therapy ; Neoplasms - genetics ; Neoplasms - immunology ; Neoplasms - pathology ; Programmed Cell Death 1 Receptor - antagonists & inhibitors ; Protein Kinase Inhibitors - pharmacology ; Protein Kinase Inhibitors - therapeutic use ; Protein Tyrosine Phosphatase, Non-Receptor Type 11 - antagonists & inhibitors ; Proto-Oncogene Proteins B-raf - antagonists & inhibitors ; Proto-Oncogene Proteins B-raf - genetics ; Proto-Oncogene Proteins p21(ras) - antagonists & inhibitors ; Proto-Oncogene Proteins p21(ras) - genetics ; Tumor-Associated Macrophages - drug effects ; Tumor-Associated Macrophages - immunology ; Xenograft Model Antitumor Assays]]></subject><ispartof>Clinical cancer research, 2021-01, Vol.27 (1), p.342-354</ispartof><rights>2020 American Association for Cancer Research.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-20a3e45d2b4e84859c06d3c55d2359a72b5ef92ed2d9ebffdba1adaaffdf19fe3</citedby><cites>FETCH-LOGICAL-c408t-20a3e45d2b4e84859c06d3c55d2359a72b5ef92ed2d9ebffdba1adaaffdf19fe3</cites><orcidid>0000-0003-1093-9364 ; 0000-0001-8291-6511</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3356,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33046519$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Chen</creatorcontrib><creatorcontrib>Lu, Hengyu</creatorcontrib><creatorcontrib>Wang, Hongyun</creatorcontrib><creatorcontrib>Loo, Alice</creatorcontrib><creatorcontrib>Zhang, Xiamei</creatorcontrib><creatorcontrib>Yang, Guizhi</creatorcontrib><creatorcontrib>Kowal, Colleen</creatorcontrib><creatorcontrib>Delach, Scott</creatorcontrib><creatorcontrib>Wang, Ye</creatorcontrib><creatorcontrib>Goldoni, Silvia</creatorcontrib><creatorcontrib>Hastings, William D</creatorcontrib><creatorcontrib>Wong, Karrie</creatorcontrib><creatorcontrib>Gao, Hui</creatorcontrib><creatorcontrib>Meyer, Matthew J</creatorcontrib><creatorcontrib>Moody, Susan E</creatorcontrib><creatorcontrib>LaMarche, Matthew J</creatorcontrib><creatorcontrib>Engelman, Jeffrey A</creatorcontrib><creatorcontrib>Williams, Juliet A</creatorcontrib><creatorcontrib>Hammerman, Peter S</creatorcontrib><creatorcontrib>Abrams, Tinya J</creatorcontrib><creatorcontrib>Mohseni, Morvarid</creatorcontrib><creatorcontrib>Caponigro, Giordano</creatorcontrib><creatorcontrib>Hao, Huai-Xiang</creatorcontrib><title>Combinations with Allosteric SHP2 Inhibitor TNO155 to Block Receptor Tyrosine Kinase Signaling</title><title>Clinical cancer research</title><addtitle>Clin Cancer Res</addtitle><description>SHP2 inhibitors offer an appealing and novel approach to inhibit receptor tyrosine kinase (RTK) signaling, which is the oncogenic driver in many tumors or is frequently feedback activated in response to targeted therapies including RTK inhibitors and MAPK inhibitors. We seek to evaluate the efficacy and synergistic mechanisms of combinations with a novel SHP2 inhibitor, TNO155, to inform their clinical development.
The combinations of TNO155 with EGFR inhibitors (EGFRi), BRAFi, KRAS
i, CDK4/6i, and anti-programmed cell death-1 (PD-1) antibody were tested in appropriate cancer models
and
, and their effects on downstream signaling were examined.
In EGFR-mutant lung cancer models, combination benefit of TNO155 and the EGFRi nazartinib was observed, coincident with sustained ERK inhibition. In BRAF
colorectal cancer models, TNO155 synergized with BRAF plus MEK inhibitors by blocking ERK feedback activation by different RTKs. In KRAS
cancer cells, TNO155 effectively blocked the feedback activation of wild-type KRAS or other RAS isoforms induced by KRAS
i and greatly enhanced efficacy. In addition, TNO155 and the CDK4/6 inhibitor ribociclib showed combination benefit in a large panel of lung and colorectal cancer patient-derived xenografts, including those with KRAS mutations. Finally, TNO155 effectively inhibited RAS activation by colony-stimulating factor 1 receptor, which is critical for the maturation of immunosuppressive tumor-associated macrophages, and showed combination activity with anti-PD-1 antibody.
Our findings suggest TNO155 is an effective agent for blocking both tumor-promoting and immune-suppressive RTK signaling in RTK- and MAPK-driven cancers and their tumor microenvironment. Our data provide the rationale for evaluating these combinations clinically.</description><subject>Allosteric Regulation - drug effects</subject><subject>Animals</subject><subject>Antineoplastic Combined Chemotherapy Protocols - pharmacology</subject><subject>Antineoplastic Combined Chemotherapy Protocols - therapeutic use</subject><subject>Cell Line, Tumor</subject><subject>Cyclin-Dependent Kinase 4 - antagonists & inhibitors</subject><subject>Cyclin-Dependent Kinase 6 - antagonists & inhibitors</subject><subject>Drug Synergism</subject><subject>ErbB Receptors - antagonists & inhibitors</subject><subject>Female</subject><subject>Humans</subject><subject>Immune Checkpoint Inhibitors - pharmacology</subject><subject>Immune Checkpoint Inhibitors - therapeutic use</subject><subject>Mice</subject><subject>Mutation</subject><subject>Neoplasms - drug therapy</subject><subject>Neoplasms - genetics</subject><subject>Neoplasms - immunology</subject><subject>Neoplasms - pathology</subject><subject>Programmed Cell Death 1 Receptor - antagonists & inhibitors</subject><subject>Protein Kinase Inhibitors - pharmacology</subject><subject>Protein Kinase Inhibitors - therapeutic use</subject><subject>Protein Tyrosine Phosphatase, Non-Receptor Type 11 - antagonists & inhibitors</subject><subject>Proto-Oncogene Proteins B-raf - antagonists & inhibitors</subject><subject>Proto-Oncogene Proteins B-raf - genetics</subject><subject>Proto-Oncogene Proteins p21(ras) - antagonists & inhibitors</subject><subject>Proto-Oncogene Proteins p21(ras) - genetics</subject><subject>Tumor-Associated Macrophages - drug effects</subject><subject>Tumor-Associated Macrophages - immunology</subject><subject>Xenograft Model Antitumor Assays</subject><issn>1078-0432</issn><issn>1557-3265</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kFtPwkAQhTdGI4j-BM0--lLcay-P2KgQiRjAVzfbdgqrpYvdEsO_dyvo05zMnDkz-RC6pmRIqYzvKInigAjOhmk6DxgJWETjE9SnUkYBZ6E89frP00MXzn0QQgUl4hz1OCcilDTpo_fUbjJT69bY2uFv067xqKqsa6ExOV6MXxme1GuTmdY2ePky8_G4tfi-svknnkMO29_BvrHO1ICffZQDvDCrWlemXl2is1JXDq6OdYDeHh-W6TiYzp4m6Wga5ILErX9fcxCyYJmAWMQyyUlY8Fz6DpeJjlgmoUwYFKxIICvLItNUF1p7VdKkBD5At4fcbWO_duBatTEuh6rSNdidU0xIEoZxyCNvlQdr7n92DZRq25iNbvaKEtWhVR021WFTHq1iRHVo_d7N8cQu20Dxv_XHkv8A52d1hA</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Liu, Chen</creator><creator>Lu, Hengyu</creator><creator>Wang, Hongyun</creator><creator>Loo, Alice</creator><creator>Zhang, Xiamei</creator><creator>Yang, Guizhi</creator><creator>Kowal, Colleen</creator><creator>Delach, Scott</creator><creator>Wang, Ye</creator><creator>Goldoni, Silvia</creator><creator>Hastings, William D</creator><creator>Wong, Karrie</creator><creator>Gao, Hui</creator><creator>Meyer, Matthew J</creator><creator>Moody, Susan E</creator><creator>LaMarche, Matthew J</creator><creator>Engelman, Jeffrey A</creator><creator>Williams, Juliet A</creator><creator>Hammerman, Peter S</creator><creator>Abrams, Tinya J</creator><creator>Mohseni, Morvarid</creator><creator>Caponigro, Giordano</creator><creator>Hao, Huai-Xiang</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1093-9364</orcidid><orcidid>https://orcid.org/0000-0001-8291-6511</orcidid></search><sort><creationdate>20210101</creationdate><title>Combinations with Allosteric SHP2 Inhibitor TNO155 to Block Receptor Tyrosine Kinase Signaling</title><author>Liu, Chen ; Lu, Hengyu ; Wang, Hongyun ; Loo, Alice ; Zhang, Xiamei ; Yang, Guizhi ; Kowal, Colleen ; Delach, Scott ; Wang, Ye ; Goldoni, Silvia ; Hastings, William D ; Wong, Karrie ; Gao, Hui ; Meyer, Matthew J ; Moody, Susan E ; LaMarche, Matthew J ; Engelman, Jeffrey A ; Williams, Juliet A ; Hammerman, Peter S ; Abrams, Tinya J ; Mohseni, Morvarid ; Caponigro, Giordano ; Hao, Huai-Xiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-20a3e45d2b4e84859c06d3c55d2359a72b5ef92ed2d9ebffdba1adaaffdf19fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Allosteric Regulation - drug effects</topic><topic>Animals</topic><topic>Antineoplastic Combined Chemotherapy Protocols - pharmacology</topic><topic>Antineoplastic Combined Chemotherapy Protocols - therapeutic use</topic><topic>Cell Line, Tumor</topic><topic>Cyclin-Dependent Kinase 4 - antagonists & inhibitors</topic><topic>Cyclin-Dependent Kinase 6 - antagonists & inhibitors</topic><topic>Drug Synergism</topic><topic>ErbB Receptors - antagonists & inhibitors</topic><topic>Female</topic><topic>Humans</topic><topic>Immune Checkpoint Inhibitors - pharmacology</topic><topic>Immune Checkpoint Inhibitors - therapeutic use</topic><topic>Mice</topic><topic>Mutation</topic><topic>Neoplasms - drug therapy</topic><topic>Neoplasms - genetics</topic><topic>Neoplasms - immunology</topic><topic>Neoplasms - pathology</topic><topic>Programmed Cell Death 1 Receptor - antagonists & inhibitors</topic><topic>Protein Kinase Inhibitors - pharmacology</topic><topic>Protein Kinase Inhibitors - therapeutic use</topic><topic>Protein Tyrosine Phosphatase, Non-Receptor Type 11 - antagonists & inhibitors</topic><topic>Proto-Oncogene Proteins B-raf - antagonists & inhibitors</topic><topic>Proto-Oncogene Proteins B-raf - genetics</topic><topic>Proto-Oncogene Proteins p21(ras) - antagonists & inhibitors</topic><topic>Proto-Oncogene Proteins p21(ras) - genetics</topic><topic>Tumor-Associated Macrophages - drug effects</topic><topic>Tumor-Associated Macrophages - immunology</topic><topic>Xenograft Model Antitumor Assays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Chen</creatorcontrib><creatorcontrib>Lu, Hengyu</creatorcontrib><creatorcontrib>Wang, Hongyun</creatorcontrib><creatorcontrib>Loo, Alice</creatorcontrib><creatorcontrib>Zhang, Xiamei</creatorcontrib><creatorcontrib>Yang, Guizhi</creatorcontrib><creatorcontrib>Kowal, Colleen</creatorcontrib><creatorcontrib>Delach, Scott</creatorcontrib><creatorcontrib>Wang, Ye</creatorcontrib><creatorcontrib>Goldoni, Silvia</creatorcontrib><creatorcontrib>Hastings, William D</creatorcontrib><creatorcontrib>Wong, Karrie</creatorcontrib><creatorcontrib>Gao, Hui</creatorcontrib><creatorcontrib>Meyer, Matthew J</creatorcontrib><creatorcontrib>Moody, Susan E</creatorcontrib><creatorcontrib>LaMarche, Matthew J</creatorcontrib><creatorcontrib>Engelman, Jeffrey A</creatorcontrib><creatorcontrib>Williams, Juliet A</creatorcontrib><creatorcontrib>Hammerman, Peter S</creatorcontrib><creatorcontrib>Abrams, Tinya J</creatorcontrib><creatorcontrib>Mohseni, Morvarid</creatorcontrib><creatorcontrib>Caponigro, Giordano</creatorcontrib><creatorcontrib>Hao, Huai-Xiang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Clinical cancer research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Chen</au><au>Lu, Hengyu</au><au>Wang, Hongyun</au><au>Loo, Alice</au><au>Zhang, Xiamei</au><au>Yang, Guizhi</au><au>Kowal, Colleen</au><au>Delach, Scott</au><au>Wang, Ye</au><au>Goldoni, Silvia</au><au>Hastings, William D</au><au>Wong, Karrie</au><au>Gao, Hui</au><au>Meyer, Matthew J</au><au>Moody, Susan E</au><au>LaMarche, Matthew J</au><au>Engelman, Jeffrey A</au><au>Williams, Juliet A</au><au>Hammerman, Peter S</au><au>Abrams, Tinya J</au><au>Mohseni, Morvarid</au><au>Caponigro, Giordano</au><au>Hao, Huai-Xiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combinations with Allosteric SHP2 Inhibitor TNO155 to Block Receptor Tyrosine Kinase Signaling</atitle><jtitle>Clinical cancer research</jtitle><addtitle>Clin Cancer Res</addtitle><date>2021-01-01</date><risdate>2021</risdate><volume>27</volume><issue>1</issue><spage>342</spage><epage>354</epage><pages>342-354</pages><issn>1078-0432</issn><eissn>1557-3265</eissn><abstract>SHP2 inhibitors offer an appealing and novel approach to inhibit receptor tyrosine kinase (RTK) signaling, which is the oncogenic driver in many tumors or is frequently feedback activated in response to targeted therapies including RTK inhibitors and MAPK inhibitors. We seek to evaluate the efficacy and synergistic mechanisms of combinations with a novel SHP2 inhibitor, TNO155, to inform their clinical development.
The combinations of TNO155 with EGFR inhibitors (EGFRi), BRAFi, KRAS
i, CDK4/6i, and anti-programmed cell death-1 (PD-1) antibody were tested in appropriate cancer models
and
, and their effects on downstream signaling were examined.
In EGFR-mutant lung cancer models, combination benefit of TNO155 and the EGFRi nazartinib was observed, coincident with sustained ERK inhibition. In BRAF
colorectal cancer models, TNO155 synergized with BRAF plus MEK inhibitors by blocking ERK feedback activation by different RTKs. In KRAS
cancer cells, TNO155 effectively blocked the feedback activation of wild-type KRAS or other RAS isoforms induced by KRAS
i and greatly enhanced efficacy. In addition, TNO155 and the CDK4/6 inhibitor ribociclib showed combination benefit in a large panel of lung and colorectal cancer patient-derived xenografts, including those with KRAS mutations. Finally, TNO155 effectively inhibited RAS activation by colony-stimulating factor 1 receptor, which is critical for the maturation of immunosuppressive tumor-associated macrophages, and showed combination activity with anti-PD-1 antibody.
Our findings suggest TNO155 is an effective agent for blocking both tumor-promoting and immune-suppressive RTK signaling in RTK- and MAPK-driven cancers and their tumor microenvironment. Our data provide the rationale for evaluating these combinations clinically.</abstract><cop>United States</cop><pmid>33046519</pmid><doi>10.1158/1078-0432.CCR-20-2718</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-1093-9364</orcidid><orcidid>https://orcid.org/0000-0001-8291-6511</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1078-0432 |
ispartof | Clinical cancer research, 2021-01, Vol.27 (1), p.342-354 |
issn | 1078-0432 1557-3265 |
language | eng |
recordid | cdi_proquest_miscellaneous_2450668637 |
source | MEDLINE; American Association for Cancer Research; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Allosteric Regulation - drug effects Animals Antineoplastic Combined Chemotherapy Protocols - pharmacology Antineoplastic Combined Chemotherapy Protocols - therapeutic use Cell Line, Tumor Cyclin-Dependent Kinase 4 - antagonists & inhibitors Cyclin-Dependent Kinase 6 - antagonists & inhibitors Drug Synergism ErbB Receptors - antagonists & inhibitors Female Humans Immune Checkpoint Inhibitors - pharmacology Immune Checkpoint Inhibitors - therapeutic use Mice Mutation Neoplasms - drug therapy Neoplasms - genetics Neoplasms - immunology Neoplasms - pathology Programmed Cell Death 1 Receptor - antagonists & inhibitors Protein Kinase Inhibitors - pharmacology Protein Kinase Inhibitors - therapeutic use Protein Tyrosine Phosphatase, Non-Receptor Type 11 - antagonists & inhibitors Proto-Oncogene Proteins B-raf - antagonists & inhibitors Proto-Oncogene Proteins B-raf - genetics Proto-Oncogene Proteins p21(ras) - antagonists & inhibitors Proto-Oncogene Proteins p21(ras) - genetics Tumor-Associated Macrophages - drug effects Tumor-Associated Macrophages - immunology Xenograft Model Antitumor Assays |
title | Combinations with Allosteric SHP2 Inhibitor TNO155 to Block Receptor Tyrosine Kinase Signaling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T16%3A06%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combinations%20with%20Allosteric%20SHP2%20Inhibitor%20TNO155%20to%20Block%20Receptor%20Tyrosine%20Kinase%20Signaling&rft.jtitle=Clinical%20cancer%20research&rft.au=Liu,%20Chen&rft.date=2021-01-01&rft.volume=27&rft.issue=1&rft.spage=342&rft.epage=354&rft.pages=342-354&rft.issn=1078-0432&rft.eissn=1557-3265&rft_id=info:doi/10.1158/1078-0432.CCR-20-2718&rft_dat=%3Cproquest_cross%3E2450668637%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2450668637&rft_id=info:pmid/33046519&rfr_iscdi=true |