Combinations with Allosteric SHP2 Inhibitor TNO155 to Block Receptor Tyrosine Kinase Signaling

SHP2 inhibitors offer an appealing and novel approach to inhibit receptor tyrosine kinase (RTK) signaling, which is the oncogenic driver in many tumors or is frequently feedback activated in response to targeted therapies including RTK inhibitors and MAPK inhibitors. We seek to evaluate the efficacy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Clinical cancer research 2021-01, Vol.27 (1), p.342-354
Hauptverfasser: Liu, Chen, Lu, Hengyu, Wang, Hongyun, Loo, Alice, Zhang, Xiamei, Yang, Guizhi, Kowal, Colleen, Delach, Scott, Wang, Ye, Goldoni, Silvia, Hastings, William D, Wong, Karrie, Gao, Hui, Meyer, Matthew J, Moody, Susan E, LaMarche, Matthew J, Engelman, Jeffrey A, Williams, Juliet A, Hammerman, Peter S, Abrams, Tinya J, Mohseni, Morvarid, Caponigro, Giordano, Hao, Huai-Xiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 354
container_issue 1
container_start_page 342
container_title Clinical cancer research
container_volume 27
creator Liu, Chen
Lu, Hengyu
Wang, Hongyun
Loo, Alice
Zhang, Xiamei
Yang, Guizhi
Kowal, Colleen
Delach, Scott
Wang, Ye
Goldoni, Silvia
Hastings, William D
Wong, Karrie
Gao, Hui
Meyer, Matthew J
Moody, Susan E
LaMarche, Matthew J
Engelman, Jeffrey A
Williams, Juliet A
Hammerman, Peter S
Abrams, Tinya J
Mohseni, Morvarid
Caponigro, Giordano
Hao, Huai-Xiang
description SHP2 inhibitors offer an appealing and novel approach to inhibit receptor tyrosine kinase (RTK) signaling, which is the oncogenic driver in many tumors or is frequently feedback activated in response to targeted therapies including RTK inhibitors and MAPK inhibitors. We seek to evaluate the efficacy and synergistic mechanisms of combinations with a novel SHP2 inhibitor, TNO155, to inform their clinical development. The combinations of TNO155 with EGFR inhibitors (EGFRi), BRAFi, KRAS i, CDK4/6i, and anti-programmed cell death-1 (PD-1) antibody were tested in appropriate cancer models and , and their effects on downstream signaling were examined. In EGFR-mutant lung cancer models, combination benefit of TNO155 and the EGFRi nazartinib was observed, coincident with sustained ERK inhibition. In BRAF colorectal cancer models, TNO155 synergized with BRAF plus MEK inhibitors by blocking ERK feedback activation by different RTKs. In KRAS cancer cells, TNO155 effectively blocked the feedback activation of wild-type KRAS or other RAS isoforms induced by KRAS i and greatly enhanced efficacy. In addition, TNO155 and the CDK4/6 inhibitor ribociclib showed combination benefit in a large panel of lung and colorectal cancer patient-derived xenografts, including those with KRAS mutations. Finally, TNO155 effectively inhibited RAS activation by colony-stimulating factor 1 receptor, which is critical for the maturation of immunosuppressive tumor-associated macrophages, and showed combination activity with anti-PD-1 antibody. Our findings suggest TNO155 is an effective agent for blocking both tumor-promoting and immune-suppressive RTK signaling in RTK- and MAPK-driven cancers and their tumor microenvironment. Our data provide the rationale for evaluating these combinations clinically.
doi_str_mv 10.1158/1078-0432.CCR-20-2718
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2450668637</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2450668637</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-20a3e45d2b4e84859c06d3c55d2359a72b5ef92ed2d9ebffdba1adaaffdf19fe3</originalsourceid><addsrcrecordid>eNo9kFtPwkAQhTdGI4j-BM0--lLcay-P2KgQiRjAVzfbdgqrpYvdEsO_dyvo05zMnDkz-RC6pmRIqYzvKInigAjOhmk6DxgJWETjE9SnUkYBZ6E89frP00MXzn0QQgUl4hz1OCcilDTpo_fUbjJT69bY2uFv067xqKqsa6ExOV6MXxme1GuTmdY2ePky8_G4tfi-svknnkMO29_BvrHO1ICffZQDvDCrWlemXl2is1JXDq6OdYDeHh-W6TiYzp4m6Wga5ILErX9fcxCyYJmAWMQyyUlY8Fz6DpeJjlgmoUwYFKxIICvLItNUF1p7VdKkBD5At4fcbWO_duBatTEuh6rSNdidU0xIEoZxyCNvlQdr7n92DZRq25iNbvaKEtWhVR021WFTHq1iRHVo_d7N8cQu20Dxv_XHkv8A52d1hA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2450668637</pqid></control><display><type>article</type><title>Combinations with Allosteric SHP2 Inhibitor TNO155 to Block Receptor Tyrosine Kinase Signaling</title><source>MEDLINE</source><source>American Association for Cancer Research</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Liu, Chen ; Lu, Hengyu ; Wang, Hongyun ; Loo, Alice ; Zhang, Xiamei ; Yang, Guizhi ; Kowal, Colleen ; Delach, Scott ; Wang, Ye ; Goldoni, Silvia ; Hastings, William D ; Wong, Karrie ; Gao, Hui ; Meyer, Matthew J ; Moody, Susan E ; LaMarche, Matthew J ; Engelman, Jeffrey A ; Williams, Juliet A ; Hammerman, Peter S ; Abrams, Tinya J ; Mohseni, Morvarid ; Caponigro, Giordano ; Hao, Huai-Xiang</creator><creatorcontrib>Liu, Chen ; Lu, Hengyu ; Wang, Hongyun ; Loo, Alice ; Zhang, Xiamei ; Yang, Guizhi ; Kowal, Colleen ; Delach, Scott ; Wang, Ye ; Goldoni, Silvia ; Hastings, William D ; Wong, Karrie ; Gao, Hui ; Meyer, Matthew J ; Moody, Susan E ; LaMarche, Matthew J ; Engelman, Jeffrey A ; Williams, Juliet A ; Hammerman, Peter S ; Abrams, Tinya J ; Mohseni, Morvarid ; Caponigro, Giordano ; Hao, Huai-Xiang</creatorcontrib><description>SHP2 inhibitors offer an appealing and novel approach to inhibit receptor tyrosine kinase (RTK) signaling, which is the oncogenic driver in many tumors or is frequently feedback activated in response to targeted therapies including RTK inhibitors and MAPK inhibitors. We seek to evaluate the efficacy and synergistic mechanisms of combinations with a novel SHP2 inhibitor, TNO155, to inform their clinical development. The combinations of TNO155 with EGFR inhibitors (EGFRi), BRAFi, KRAS i, CDK4/6i, and anti-programmed cell death-1 (PD-1) antibody were tested in appropriate cancer models and , and their effects on downstream signaling were examined. In EGFR-mutant lung cancer models, combination benefit of TNO155 and the EGFRi nazartinib was observed, coincident with sustained ERK inhibition. In BRAF colorectal cancer models, TNO155 synergized with BRAF plus MEK inhibitors by blocking ERK feedback activation by different RTKs. In KRAS cancer cells, TNO155 effectively blocked the feedback activation of wild-type KRAS or other RAS isoforms induced by KRAS i and greatly enhanced efficacy. In addition, TNO155 and the CDK4/6 inhibitor ribociclib showed combination benefit in a large panel of lung and colorectal cancer patient-derived xenografts, including those with KRAS mutations. Finally, TNO155 effectively inhibited RAS activation by colony-stimulating factor 1 receptor, which is critical for the maturation of immunosuppressive tumor-associated macrophages, and showed combination activity with anti-PD-1 antibody. Our findings suggest TNO155 is an effective agent for blocking both tumor-promoting and immune-suppressive RTK signaling in RTK- and MAPK-driven cancers and their tumor microenvironment. Our data provide the rationale for evaluating these combinations clinically.</description><identifier>ISSN: 1078-0432</identifier><identifier>EISSN: 1557-3265</identifier><identifier>DOI: 10.1158/1078-0432.CCR-20-2718</identifier><identifier>PMID: 33046519</identifier><language>eng</language><publisher>United States</publisher><subject><![CDATA[Allosteric Regulation - drug effects ; Animals ; Antineoplastic Combined Chemotherapy Protocols - pharmacology ; Antineoplastic Combined Chemotherapy Protocols - therapeutic use ; Cell Line, Tumor ; Cyclin-Dependent Kinase 4 - antagonists & inhibitors ; Cyclin-Dependent Kinase 6 - antagonists & inhibitors ; Drug Synergism ; ErbB Receptors - antagonists & inhibitors ; Female ; Humans ; Immune Checkpoint Inhibitors - pharmacology ; Immune Checkpoint Inhibitors - therapeutic use ; Mice ; Mutation ; Neoplasms - drug therapy ; Neoplasms - genetics ; Neoplasms - immunology ; Neoplasms - pathology ; Programmed Cell Death 1 Receptor - antagonists & inhibitors ; Protein Kinase Inhibitors - pharmacology ; Protein Kinase Inhibitors - therapeutic use ; Protein Tyrosine Phosphatase, Non-Receptor Type 11 - antagonists & inhibitors ; Proto-Oncogene Proteins B-raf - antagonists & inhibitors ; Proto-Oncogene Proteins B-raf - genetics ; Proto-Oncogene Proteins p21(ras) - antagonists & inhibitors ; Proto-Oncogene Proteins p21(ras) - genetics ; Tumor-Associated Macrophages - drug effects ; Tumor-Associated Macrophages - immunology ; Xenograft Model Antitumor Assays]]></subject><ispartof>Clinical cancer research, 2021-01, Vol.27 (1), p.342-354</ispartof><rights>2020 American Association for Cancer Research.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-20a3e45d2b4e84859c06d3c55d2359a72b5ef92ed2d9ebffdba1adaaffdf19fe3</citedby><cites>FETCH-LOGICAL-c408t-20a3e45d2b4e84859c06d3c55d2359a72b5ef92ed2d9ebffdba1adaaffdf19fe3</cites><orcidid>0000-0003-1093-9364 ; 0000-0001-8291-6511</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3356,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33046519$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Chen</creatorcontrib><creatorcontrib>Lu, Hengyu</creatorcontrib><creatorcontrib>Wang, Hongyun</creatorcontrib><creatorcontrib>Loo, Alice</creatorcontrib><creatorcontrib>Zhang, Xiamei</creatorcontrib><creatorcontrib>Yang, Guizhi</creatorcontrib><creatorcontrib>Kowal, Colleen</creatorcontrib><creatorcontrib>Delach, Scott</creatorcontrib><creatorcontrib>Wang, Ye</creatorcontrib><creatorcontrib>Goldoni, Silvia</creatorcontrib><creatorcontrib>Hastings, William D</creatorcontrib><creatorcontrib>Wong, Karrie</creatorcontrib><creatorcontrib>Gao, Hui</creatorcontrib><creatorcontrib>Meyer, Matthew J</creatorcontrib><creatorcontrib>Moody, Susan E</creatorcontrib><creatorcontrib>LaMarche, Matthew J</creatorcontrib><creatorcontrib>Engelman, Jeffrey A</creatorcontrib><creatorcontrib>Williams, Juliet A</creatorcontrib><creatorcontrib>Hammerman, Peter S</creatorcontrib><creatorcontrib>Abrams, Tinya J</creatorcontrib><creatorcontrib>Mohseni, Morvarid</creatorcontrib><creatorcontrib>Caponigro, Giordano</creatorcontrib><creatorcontrib>Hao, Huai-Xiang</creatorcontrib><title>Combinations with Allosteric SHP2 Inhibitor TNO155 to Block Receptor Tyrosine Kinase Signaling</title><title>Clinical cancer research</title><addtitle>Clin Cancer Res</addtitle><description>SHP2 inhibitors offer an appealing and novel approach to inhibit receptor tyrosine kinase (RTK) signaling, which is the oncogenic driver in many tumors or is frequently feedback activated in response to targeted therapies including RTK inhibitors and MAPK inhibitors. We seek to evaluate the efficacy and synergistic mechanisms of combinations with a novel SHP2 inhibitor, TNO155, to inform their clinical development. The combinations of TNO155 with EGFR inhibitors (EGFRi), BRAFi, KRAS i, CDK4/6i, and anti-programmed cell death-1 (PD-1) antibody were tested in appropriate cancer models and , and their effects on downstream signaling were examined. In EGFR-mutant lung cancer models, combination benefit of TNO155 and the EGFRi nazartinib was observed, coincident with sustained ERK inhibition. In BRAF colorectal cancer models, TNO155 synergized with BRAF plus MEK inhibitors by blocking ERK feedback activation by different RTKs. In KRAS cancer cells, TNO155 effectively blocked the feedback activation of wild-type KRAS or other RAS isoforms induced by KRAS i and greatly enhanced efficacy. In addition, TNO155 and the CDK4/6 inhibitor ribociclib showed combination benefit in a large panel of lung and colorectal cancer patient-derived xenografts, including those with KRAS mutations. Finally, TNO155 effectively inhibited RAS activation by colony-stimulating factor 1 receptor, which is critical for the maturation of immunosuppressive tumor-associated macrophages, and showed combination activity with anti-PD-1 antibody. Our findings suggest TNO155 is an effective agent for blocking both tumor-promoting and immune-suppressive RTK signaling in RTK- and MAPK-driven cancers and their tumor microenvironment. Our data provide the rationale for evaluating these combinations clinically.</description><subject>Allosteric Regulation - drug effects</subject><subject>Animals</subject><subject>Antineoplastic Combined Chemotherapy Protocols - pharmacology</subject><subject>Antineoplastic Combined Chemotherapy Protocols - therapeutic use</subject><subject>Cell Line, Tumor</subject><subject>Cyclin-Dependent Kinase 4 - antagonists &amp; inhibitors</subject><subject>Cyclin-Dependent Kinase 6 - antagonists &amp; inhibitors</subject><subject>Drug Synergism</subject><subject>ErbB Receptors - antagonists &amp; inhibitors</subject><subject>Female</subject><subject>Humans</subject><subject>Immune Checkpoint Inhibitors - pharmacology</subject><subject>Immune Checkpoint Inhibitors - therapeutic use</subject><subject>Mice</subject><subject>Mutation</subject><subject>Neoplasms - drug therapy</subject><subject>Neoplasms - genetics</subject><subject>Neoplasms - immunology</subject><subject>Neoplasms - pathology</subject><subject>Programmed Cell Death 1 Receptor - antagonists &amp; inhibitors</subject><subject>Protein Kinase Inhibitors - pharmacology</subject><subject>Protein Kinase Inhibitors - therapeutic use</subject><subject>Protein Tyrosine Phosphatase, Non-Receptor Type 11 - antagonists &amp; inhibitors</subject><subject>Proto-Oncogene Proteins B-raf - antagonists &amp; inhibitors</subject><subject>Proto-Oncogene Proteins B-raf - genetics</subject><subject>Proto-Oncogene Proteins p21(ras) - antagonists &amp; inhibitors</subject><subject>Proto-Oncogene Proteins p21(ras) - genetics</subject><subject>Tumor-Associated Macrophages - drug effects</subject><subject>Tumor-Associated Macrophages - immunology</subject><subject>Xenograft Model Antitumor Assays</subject><issn>1078-0432</issn><issn>1557-3265</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kFtPwkAQhTdGI4j-BM0--lLcay-P2KgQiRjAVzfbdgqrpYvdEsO_dyvo05zMnDkz-RC6pmRIqYzvKInigAjOhmk6DxgJWETjE9SnUkYBZ6E89frP00MXzn0QQgUl4hz1OCcilDTpo_fUbjJT69bY2uFv067xqKqsa6ExOV6MXxme1GuTmdY2ePky8_G4tfi-svknnkMO29_BvrHO1ICffZQDvDCrWlemXl2is1JXDq6OdYDeHh-W6TiYzp4m6Wga5ILErX9fcxCyYJmAWMQyyUlY8Fz6DpeJjlgmoUwYFKxIICvLItNUF1p7VdKkBD5At4fcbWO_duBatTEuh6rSNdidU0xIEoZxyCNvlQdr7n92DZRq25iNbvaKEtWhVR021WFTHq1iRHVo_d7N8cQu20Dxv_XHkv8A52d1hA</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Liu, Chen</creator><creator>Lu, Hengyu</creator><creator>Wang, Hongyun</creator><creator>Loo, Alice</creator><creator>Zhang, Xiamei</creator><creator>Yang, Guizhi</creator><creator>Kowal, Colleen</creator><creator>Delach, Scott</creator><creator>Wang, Ye</creator><creator>Goldoni, Silvia</creator><creator>Hastings, William D</creator><creator>Wong, Karrie</creator><creator>Gao, Hui</creator><creator>Meyer, Matthew J</creator><creator>Moody, Susan E</creator><creator>LaMarche, Matthew J</creator><creator>Engelman, Jeffrey A</creator><creator>Williams, Juliet A</creator><creator>Hammerman, Peter S</creator><creator>Abrams, Tinya J</creator><creator>Mohseni, Morvarid</creator><creator>Caponigro, Giordano</creator><creator>Hao, Huai-Xiang</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1093-9364</orcidid><orcidid>https://orcid.org/0000-0001-8291-6511</orcidid></search><sort><creationdate>20210101</creationdate><title>Combinations with Allosteric SHP2 Inhibitor TNO155 to Block Receptor Tyrosine Kinase Signaling</title><author>Liu, Chen ; Lu, Hengyu ; Wang, Hongyun ; Loo, Alice ; Zhang, Xiamei ; Yang, Guizhi ; Kowal, Colleen ; Delach, Scott ; Wang, Ye ; Goldoni, Silvia ; Hastings, William D ; Wong, Karrie ; Gao, Hui ; Meyer, Matthew J ; Moody, Susan E ; LaMarche, Matthew J ; Engelman, Jeffrey A ; Williams, Juliet A ; Hammerman, Peter S ; Abrams, Tinya J ; Mohseni, Morvarid ; Caponigro, Giordano ; Hao, Huai-Xiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-20a3e45d2b4e84859c06d3c55d2359a72b5ef92ed2d9ebffdba1adaaffdf19fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Allosteric Regulation - drug effects</topic><topic>Animals</topic><topic>Antineoplastic Combined Chemotherapy Protocols - pharmacology</topic><topic>Antineoplastic Combined Chemotherapy Protocols - therapeutic use</topic><topic>Cell Line, Tumor</topic><topic>Cyclin-Dependent Kinase 4 - antagonists &amp; inhibitors</topic><topic>Cyclin-Dependent Kinase 6 - antagonists &amp; inhibitors</topic><topic>Drug Synergism</topic><topic>ErbB Receptors - antagonists &amp; inhibitors</topic><topic>Female</topic><topic>Humans</topic><topic>Immune Checkpoint Inhibitors - pharmacology</topic><topic>Immune Checkpoint Inhibitors - therapeutic use</topic><topic>Mice</topic><topic>Mutation</topic><topic>Neoplasms - drug therapy</topic><topic>Neoplasms - genetics</topic><topic>Neoplasms - immunology</topic><topic>Neoplasms - pathology</topic><topic>Programmed Cell Death 1 Receptor - antagonists &amp; inhibitors</topic><topic>Protein Kinase Inhibitors - pharmacology</topic><topic>Protein Kinase Inhibitors - therapeutic use</topic><topic>Protein Tyrosine Phosphatase, Non-Receptor Type 11 - antagonists &amp; inhibitors</topic><topic>Proto-Oncogene Proteins B-raf - antagonists &amp; inhibitors</topic><topic>Proto-Oncogene Proteins B-raf - genetics</topic><topic>Proto-Oncogene Proteins p21(ras) - antagonists &amp; inhibitors</topic><topic>Proto-Oncogene Proteins p21(ras) - genetics</topic><topic>Tumor-Associated Macrophages - drug effects</topic><topic>Tumor-Associated Macrophages - immunology</topic><topic>Xenograft Model Antitumor Assays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Chen</creatorcontrib><creatorcontrib>Lu, Hengyu</creatorcontrib><creatorcontrib>Wang, Hongyun</creatorcontrib><creatorcontrib>Loo, Alice</creatorcontrib><creatorcontrib>Zhang, Xiamei</creatorcontrib><creatorcontrib>Yang, Guizhi</creatorcontrib><creatorcontrib>Kowal, Colleen</creatorcontrib><creatorcontrib>Delach, Scott</creatorcontrib><creatorcontrib>Wang, Ye</creatorcontrib><creatorcontrib>Goldoni, Silvia</creatorcontrib><creatorcontrib>Hastings, William D</creatorcontrib><creatorcontrib>Wong, Karrie</creatorcontrib><creatorcontrib>Gao, Hui</creatorcontrib><creatorcontrib>Meyer, Matthew J</creatorcontrib><creatorcontrib>Moody, Susan E</creatorcontrib><creatorcontrib>LaMarche, Matthew J</creatorcontrib><creatorcontrib>Engelman, Jeffrey A</creatorcontrib><creatorcontrib>Williams, Juliet A</creatorcontrib><creatorcontrib>Hammerman, Peter S</creatorcontrib><creatorcontrib>Abrams, Tinya J</creatorcontrib><creatorcontrib>Mohseni, Morvarid</creatorcontrib><creatorcontrib>Caponigro, Giordano</creatorcontrib><creatorcontrib>Hao, Huai-Xiang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Clinical cancer research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Chen</au><au>Lu, Hengyu</au><au>Wang, Hongyun</au><au>Loo, Alice</au><au>Zhang, Xiamei</au><au>Yang, Guizhi</au><au>Kowal, Colleen</au><au>Delach, Scott</au><au>Wang, Ye</au><au>Goldoni, Silvia</au><au>Hastings, William D</au><au>Wong, Karrie</au><au>Gao, Hui</au><au>Meyer, Matthew J</au><au>Moody, Susan E</au><au>LaMarche, Matthew J</au><au>Engelman, Jeffrey A</au><au>Williams, Juliet A</au><au>Hammerman, Peter S</au><au>Abrams, Tinya J</au><au>Mohseni, Morvarid</au><au>Caponigro, Giordano</au><au>Hao, Huai-Xiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combinations with Allosteric SHP2 Inhibitor TNO155 to Block Receptor Tyrosine Kinase Signaling</atitle><jtitle>Clinical cancer research</jtitle><addtitle>Clin Cancer Res</addtitle><date>2021-01-01</date><risdate>2021</risdate><volume>27</volume><issue>1</issue><spage>342</spage><epage>354</epage><pages>342-354</pages><issn>1078-0432</issn><eissn>1557-3265</eissn><abstract>SHP2 inhibitors offer an appealing and novel approach to inhibit receptor tyrosine kinase (RTK) signaling, which is the oncogenic driver in many tumors or is frequently feedback activated in response to targeted therapies including RTK inhibitors and MAPK inhibitors. We seek to evaluate the efficacy and synergistic mechanisms of combinations with a novel SHP2 inhibitor, TNO155, to inform their clinical development. The combinations of TNO155 with EGFR inhibitors (EGFRi), BRAFi, KRAS i, CDK4/6i, and anti-programmed cell death-1 (PD-1) antibody were tested in appropriate cancer models and , and their effects on downstream signaling were examined. In EGFR-mutant lung cancer models, combination benefit of TNO155 and the EGFRi nazartinib was observed, coincident with sustained ERK inhibition. In BRAF colorectal cancer models, TNO155 synergized with BRAF plus MEK inhibitors by blocking ERK feedback activation by different RTKs. In KRAS cancer cells, TNO155 effectively blocked the feedback activation of wild-type KRAS or other RAS isoforms induced by KRAS i and greatly enhanced efficacy. In addition, TNO155 and the CDK4/6 inhibitor ribociclib showed combination benefit in a large panel of lung and colorectal cancer patient-derived xenografts, including those with KRAS mutations. Finally, TNO155 effectively inhibited RAS activation by colony-stimulating factor 1 receptor, which is critical for the maturation of immunosuppressive tumor-associated macrophages, and showed combination activity with anti-PD-1 antibody. Our findings suggest TNO155 is an effective agent for blocking both tumor-promoting and immune-suppressive RTK signaling in RTK- and MAPK-driven cancers and their tumor microenvironment. Our data provide the rationale for evaluating these combinations clinically.</abstract><cop>United States</cop><pmid>33046519</pmid><doi>10.1158/1078-0432.CCR-20-2718</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-1093-9364</orcidid><orcidid>https://orcid.org/0000-0001-8291-6511</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1078-0432
ispartof Clinical cancer research, 2021-01, Vol.27 (1), p.342-354
issn 1078-0432
1557-3265
language eng
recordid cdi_proquest_miscellaneous_2450668637
source MEDLINE; American Association for Cancer Research; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Allosteric Regulation - drug effects
Animals
Antineoplastic Combined Chemotherapy Protocols - pharmacology
Antineoplastic Combined Chemotherapy Protocols - therapeutic use
Cell Line, Tumor
Cyclin-Dependent Kinase 4 - antagonists & inhibitors
Cyclin-Dependent Kinase 6 - antagonists & inhibitors
Drug Synergism
ErbB Receptors - antagonists & inhibitors
Female
Humans
Immune Checkpoint Inhibitors - pharmacology
Immune Checkpoint Inhibitors - therapeutic use
Mice
Mutation
Neoplasms - drug therapy
Neoplasms - genetics
Neoplasms - immunology
Neoplasms - pathology
Programmed Cell Death 1 Receptor - antagonists & inhibitors
Protein Kinase Inhibitors - pharmacology
Protein Kinase Inhibitors - therapeutic use
Protein Tyrosine Phosphatase, Non-Receptor Type 11 - antagonists & inhibitors
Proto-Oncogene Proteins B-raf - antagonists & inhibitors
Proto-Oncogene Proteins B-raf - genetics
Proto-Oncogene Proteins p21(ras) - antagonists & inhibitors
Proto-Oncogene Proteins p21(ras) - genetics
Tumor-Associated Macrophages - drug effects
Tumor-Associated Macrophages - immunology
Xenograft Model Antitumor Assays
title Combinations with Allosteric SHP2 Inhibitor TNO155 to Block Receptor Tyrosine Kinase Signaling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T16%3A06%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combinations%20with%20Allosteric%20SHP2%20Inhibitor%20TNO155%20to%20Block%20Receptor%20Tyrosine%20Kinase%20Signaling&rft.jtitle=Clinical%20cancer%20research&rft.au=Liu,%20Chen&rft.date=2021-01-01&rft.volume=27&rft.issue=1&rft.spage=342&rft.epage=354&rft.pages=342-354&rft.issn=1078-0432&rft.eissn=1557-3265&rft_id=info:doi/10.1158/1078-0432.CCR-20-2718&rft_dat=%3Cproquest_cross%3E2450668637%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2450668637&rft_id=info:pmid/33046519&rfr_iscdi=true