Detecting Dynamic Community Structure in Functional Brain Networks Across Individuals: A Multilayer Approach

Objective: We present a unified statistical framework for characterizing community structure of brain functional networks that captures variation across individuals and evolution over time. Existing methods for community detection focus only on single-subject analysis of dynamic networks; while rece...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on medical imaging 2021-02, Vol.40 (2), p.468-480
Hauptverfasser: Ting, Chee-Ming, Samdin, S. Balqis, Tang, Meini, Ombao, Hernando
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 480
container_issue 2
container_start_page 468
container_title IEEE transactions on medical imaging
container_volume 40
creator Ting, Chee-Ming
Samdin, S. Balqis
Tang, Meini
Ombao, Hernando
description Objective: We present a unified statistical framework for characterizing community structure of brain functional networks that captures variation across individuals and evolution over time. Existing methods for community detection focus only on single-subject analysis of dynamic networks; while recent extensions to multiple-subjects analysis are limited to static networks. Method: To overcome these limitations, we propose a multi-subject, Markov-switching stochastic block model (MSS-SBM) to identify state-related changes in brain community organization over a group of individuals. We first formulate a multilayer extension of SBM to describe the time-dependent, multi-subject brain networks. We develop a novel procedure for fitting the multilayer SBM that builds on multislice modularity maximization which can uncover a common community partition of all layers (subjects) simultaneously. By augmenting with a dynamic Markov switching process, our proposed method is able to capture a set of distinct, recurring temporal states with respect to inter-community interactions over subjects and the change points between them. Results: Simulation shows accurate community recovery and tracking of dynamic community regimes over multilayer networks by the MSS-SBM. Application to task fMRI reveals meaningful non-assortative brain community motifs, e.g., core-periphery structure at the group level, that are associated with language comprehension and motor functions suggesting their putative role in complex information integration. Our approach detected dynamic reconfiguration of modular connectivity elicited by varying task demands and identified unique profiles of intra and inter-community connectivity across different task conditions. Conclusion: The proposed multilayer network representation provides a principled way of detecting synchronous, dynamic modularity in brain networks across subjects.
doi_str_mv 10.1109/TMI.2020.3030047
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_2450651021</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9220100</ieee_id><sourcerecordid>2486593265</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-f6bcc64a916bbbcc2a3f3bd7d2d4069bc0defe2c2e759b8a1e1daa556ea7b4ec3</originalsourceid><addsrcrecordid>eNpdkU1vFDEMhiMEokvhjoSEInHhMouTTDITbsuWtiu1cKBI3EaZjAdS5mObD9D-e7LstoeebPl9bMt-CXnNYMkY6A8315slBw5LAQKgrJ6QBZOyLrgsfzwlC-BVXQAofkJehHALwEoJ-jk5EQLKUnO9IMMZRrTRTT_p2W4yo7N0PY9jmlzc0W_RJxuTR-omep6mzM2TGegnb3LhC8a_s_8d6Mr6OQS6mTr3x3XJDOEjXdHrNEQ3mB16utpu_Wzsr5fkWZ9VfHWMp-T7-eeb9WVx9fVis15dFVbUOha9aq1VpdFMtW1OuRG9aLuq410JSrcWOuyRW46V1G1tGLLOGCkVmqot0YpT8v4wN6-9SxhiM7pgcRjMhHMKDc9vUJIBZxl99wi9nZPPR-6pWkktuJKZggP1_1KPfbP1bjR-1zBo9k402Ylm70RzdCK3vD0OTu2I3UPD_esz8OYAOER8kDXnwADEP0jVjqA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2486593265</pqid></control><display><type>article</type><title>Detecting Dynamic Community Structure in Functional Brain Networks Across Individuals: A Multilayer Approach</title><source>IEEE Electronic Library (IEL)</source><creator>Ting, Chee-Ming ; Samdin, S. Balqis ; Tang, Meini ; Ombao, Hernando</creator><creatorcontrib>Ting, Chee-Ming ; Samdin, S. Balqis ; Tang, Meini ; Ombao, Hernando</creatorcontrib><description>Objective: We present a unified statistical framework for characterizing community structure of brain functional networks that captures variation across individuals and evolution over time. Existing methods for community detection focus only on single-subject analysis of dynamic networks; while recent extensions to multiple-subjects analysis are limited to static networks. Method: To overcome these limitations, we propose a multi-subject, Markov-switching stochastic block model (MSS-SBM) to identify state-related changes in brain community organization over a group of individuals. We first formulate a multilayer extension of SBM to describe the time-dependent, multi-subject brain networks. We develop a novel procedure for fitting the multilayer SBM that builds on multislice modularity maximization which can uncover a common community partition of all layers (subjects) simultaneously. By augmenting with a dynamic Markov switching process, our proposed method is able to capture a set of distinct, recurring temporal states with respect to inter-community interactions over subjects and the change points between them. Results: Simulation shows accurate community recovery and tracking of dynamic community regimes over multilayer networks by the MSS-SBM. Application to task fMRI reveals meaningful non-assortative brain community motifs, e.g., core-periphery structure at the group level, that are associated with language comprehension and motor functions suggesting their putative role in complex information integration. Our approach detected dynamic reconfiguration of modular connectivity elicited by varying task demands and identified unique profiles of intra and inter-community connectivity across different task conditions. Conclusion: The proposed multilayer network representation provides a principled way of detecting synchronous, dynamic modularity in brain networks across subjects.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2020.3030047</identifier><identifier>PMID: 33044929</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Brain ; Brain architecture ; Brain mapping ; Brain modeling ; community detection ; Community structure ; Dynamic functional connectivity ; fMRI ; Functional magnetic resonance imaging ; Hidden Markov models ; Markov-switching model ; Modularity ; Multilayers ; Networks ; Neural networks ; Nonhomogeneous media ; Organizations ; Reconfiguration ; stochastic blockmodel ; Stochasticity ; Switches ; Switching ; Task analysis ; Time dependence</subject><ispartof>IEEE transactions on medical imaging, 2021-02, Vol.40 (2), p.468-480</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-f6bcc64a916bbbcc2a3f3bd7d2d4069bc0defe2c2e759b8a1e1daa556ea7b4ec3</citedby><cites>FETCH-LOGICAL-c389t-f6bcc64a916bbbcc2a3f3bd7d2d4069bc0defe2c2e759b8a1e1daa556ea7b4ec3</cites><orcidid>0000-0001-7020-8091 ; 0000-0002-6037-3728 ; 0000-0002-9797-2214 ; 0000-0001-5338-8772</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9220100$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9220100$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33044929$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ting, Chee-Ming</creatorcontrib><creatorcontrib>Samdin, S. Balqis</creatorcontrib><creatorcontrib>Tang, Meini</creatorcontrib><creatorcontrib>Ombao, Hernando</creatorcontrib><title>Detecting Dynamic Community Structure in Functional Brain Networks Across Individuals: A Multilayer Approach</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>Objective: We present a unified statistical framework for characterizing community structure of brain functional networks that captures variation across individuals and evolution over time. Existing methods for community detection focus only on single-subject analysis of dynamic networks; while recent extensions to multiple-subjects analysis are limited to static networks. Method: To overcome these limitations, we propose a multi-subject, Markov-switching stochastic block model (MSS-SBM) to identify state-related changes in brain community organization over a group of individuals. We first formulate a multilayer extension of SBM to describe the time-dependent, multi-subject brain networks. We develop a novel procedure for fitting the multilayer SBM that builds on multislice modularity maximization which can uncover a common community partition of all layers (subjects) simultaneously. By augmenting with a dynamic Markov switching process, our proposed method is able to capture a set of distinct, recurring temporal states with respect to inter-community interactions over subjects and the change points between them. Results: Simulation shows accurate community recovery and tracking of dynamic community regimes over multilayer networks by the MSS-SBM. Application to task fMRI reveals meaningful non-assortative brain community motifs, e.g., core-periphery structure at the group level, that are associated with language comprehension and motor functions suggesting their putative role in complex information integration. Our approach detected dynamic reconfiguration of modular connectivity elicited by varying task demands and identified unique profiles of intra and inter-community connectivity across different task conditions. Conclusion: The proposed multilayer network representation provides a principled way of detecting synchronous, dynamic modularity in brain networks across subjects.</description><subject>Brain</subject><subject>Brain architecture</subject><subject>Brain mapping</subject><subject>Brain modeling</subject><subject>community detection</subject><subject>Community structure</subject><subject>Dynamic functional connectivity</subject><subject>fMRI</subject><subject>Functional magnetic resonance imaging</subject><subject>Hidden Markov models</subject><subject>Markov-switching model</subject><subject>Modularity</subject><subject>Multilayers</subject><subject>Networks</subject><subject>Neural networks</subject><subject>Nonhomogeneous media</subject><subject>Organizations</subject><subject>Reconfiguration</subject><subject>stochastic blockmodel</subject><subject>Stochasticity</subject><subject>Switches</subject><subject>Switching</subject><subject>Task analysis</subject><subject>Time dependence</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkU1vFDEMhiMEokvhjoSEInHhMouTTDITbsuWtiu1cKBI3EaZjAdS5mObD9D-e7LstoeebPl9bMt-CXnNYMkY6A8315slBw5LAQKgrJ6QBZOyLrgsfzwlC-BVXQAofkJehHALwEoJ-jk5EQLKUnO9IMMZRrTRTT_p2W4yo7N0PY9jmlzc0W_RJxuTR-omep6mzM2TGegnb3LhC8a_s_8d6Mr6OQS6mTr3x3XJDOEjXdHrNEQ3mB16utpu_Wzsr5fkWZ9VfHWMp-T7-eeb9WVx9fVis15dFVbUOha9aq1VpdFMtW1OuRG9aLuq410JSrcWOuyRW46V1G1tGLLOGCkVmqot0YpT8v4wN6-9SxhiM7pgcRjMhHMKDc9vUJIBZxl99wi9nZPPR-6pWkktuJKZggP1_1KPfbP1bjR-1zBo9k402Ylm70RzdCK3vD0OTu2I3UPD_esz8OYAOER8kDXnwADEP0jVjqA</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Ting, Chee-Ming</creator><creator>Samdin, S. Balqis</creator><creator>Tang, Meini</creator><creator>Ombao, Hernando</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7020-8091</orcidid><orcidid>https://orcid.org/0000-0002-6037-3728</orcidid><orcidid>https://orcid.org/0000-0002-9797-2214</orcidid><orcidid>https://orcid.org/0000-0001-5338-8772</orcidid></search><sort><creationdate>20210201</creationdate><title>Detecting Dynamic Community Structure in Functional Brain Networks Across Individuals: A Multilayer Approach</title><author>Ting, Chee-Ming ; Samdin, S. Balqis ; Tang, Meini ; Ombao, Hernando</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-f6bcc64a916bbbcc2a3f3bd7d2d4069bc0defe2c2e759b8a1e1daa556ea7b4ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Brain</topic><topic>Brain architecture</topic><topic>Brain mapping</topic><topic>Brain modeling</topic><topic>community detection</topic><topic>Community structure</topic><topic>Dynamic functional connectivity</topic><topic>fMRI</topic><topic>Functional magnetic resonance imaging</topic><topic>Hidden Markov models</topic><topic>Markov-switching model</topic><topic>Modularity</topic><topic>Multilayers</topic><topic>Networks</topic><topic>Neural networks</topic><topic>Nonhomogeneous media</topic><topic>Organizations</topic><topic>Reconfiguration</topic><topic>stochastic blockmodel</topic><topic>Stochasticity</topic><topic>Switches</topic><topic>Switching</topic><topic>Task analysis</topic><topic>Time dependence</topic><toplevel>online_resources</toplevel><creatorcontrib>Ting, Chee-Ming</creatorcontrib><creatorcontrib>Samdin, S. Balqis</creatorcontrib><creatorcontrib>Tang, Meini</creatorcontrib><creatorcontrib>Ombao, Hernando</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ting, Chee-Ming</au><au>Samdin, S. Balqis</au><au>Tang, Meini</au><au>Ombao, Hernando</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detecting Dynamic Community Structure in Functional Brain Networks Across Individuals: A Multilayer Approach</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2021-02-01</date><risdate>2021</risdate><volume>40</volume><issue>2</issue><spage>468</spage><epage>480</epage><pages>468-480</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>Objective: We present a unified statistical framework for characterizing community structure of brain functional networks that captures variation across individuals and evolution over time. Existing methods for community detection focus only on single-subject analysis of dynamic networks; while recent extensions to multiple-subjects analysis are limited to static networks. Method: To overcome these limitations, we propose a multi-subject, Markov-switching stochastic block model (MSS-SBM) to identify state-related changes in brain community organization over a group of individuals. We first formulate a multilayer extension of SBM to describe the time-dependent, multi-subject brain networks. We develop a novel procedure for fitting the multilayer SBM that builds on multislice modularity maximization which can uncover a common community partition of all layers (subjects) simultaneously. By augmenting with a dynamic Markov switching process, our proposed method is able to capture a set of distinct, recurring temporal states with respect to inter-community interactions over subjects and the change points between them. Results: Simulation shows accurate community recovery and tracking of dynamic community regimes over multilayer networks by the MSS-SBM. Application to task fMRI reveals meaningful non-assortative brain community motifs, e.g., core-periphery structure at the group level, that are associated with language comprehension and motor functions suggesting their putative role in complex information integration. Our approach detected dynamic reconfiguration of modular connectivity elicited by varying task demands and identified unique profiles of intra and inter-community connectivity across different task conditions. Conclusion: The proposed multilayer network representation provides a principled way of detecting synchronous, dynamic modularity in brain networks across subjects.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>33044929</pmid><doi>10.1109/TMI.2020.3030047</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-7020-8091</orcidid><orcidid>https://orcid.org/0000-0002-6037-3728</orcidid><orcidid>https://orcid.org/0000-0002-9797-2214</orcidid><orcidid>https://orcid.org/0000-0001-5338-8772</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0062
ispartof IEEE transactions on medical imaging, 2021-02, Vol.40 (2), p.468-480
issn 0278-0062
1558-254X
language eng
recordid cdi_proquest_miscellaneous_2450651021
source IEEE Electronic Library (IEL)
subjects Brain
Brain architecture
Brain mapping
Brain modeling
community detection
Community structure
Dynamic functional connectivity
fMRI
Functional magnetic resonance imaging
Hidden Markov models
Markov-switching model
Modularity
Multilayers
Networks
Neural networks
Nonhomogeneous media
Organizations
Reconfiguration
stochastic blockmodel
Stochasticity
Switches
Switching
Task analysis
Time dependence
title Detecting Dynamic Community Structure in Functional Brain Networks Across Individuals: A Multilayer Approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T13%3A55%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detecting%20Dynamic%20Community%20Structure%20in%20Functional%20Brain%20Networks%20Across%20Individuals:%20A%20Multilayer%20Approach&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Ting,%20Chee-Ming&rft.date=2021-02-01&rft.volume=40&rft.issue=2&rft.spage=468&rft.epage=480&rft.pages=468-480&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2020.3030047&rft_dat=%3Cproquest_RIE%3E2486593265%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2486593265&rft_id=info:pmid/33044929&rft_ieee_id=9220100&rfr_iscdi=true