Detecting Dynamic Community Structure in Functional Brain Networks Across Individuals: A Multilayer Approach
Objective: We present a unified statistical framework for characterizing community structure of brain functional networks that captures variation across individuals and evolution over time. Existing methods for community detection focus only on single-subject analysis of dynamic networks; while rece...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on medical imaging 2021-02, Vol.40 (2), p.468-480 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 480 |
---|---|
container_issue | 2 |
container_start_page | 468 |
container_title | IEEE transactions on medical imaging |
container_volume | 40 |
creator | Ting, Chee-Ming Samdin, S. Balqis Tang, Meini Ombao, Hernando |
description | Objective: We present a unified statistical framework for characterizing community structure of brain functional networks that captures variation across individuals and evolution over time. Existing methods for community detection focus only on single-subject analysis of dynamic networks; while recent extensions to multiple-subjects analysis are limited to static networks. Method: To overcome these limitations, we propose a multi-subject, Markov-switching stochastic block model (MSS-SBM) to identify state-related changes in brain community organization over a group of individuals. We first formulate a multilayer extension of SBM to describe the time-dependent, multi-subject brain networks. We develop a novel procedure for fitting the multilayer SBM that builds on multislice modularity maximization which can uncover a common community partition of all layers (subjects) simultaneously. By augmenting with a dynamic Markov switching process, our proposed method is able to capture a set of distinct, recurring temporal states with respect to inter-community interactions over subjects and the change points between them. Results: Simulation shows accurate community recovery and tracking of dynamic community regimes over multilayer networks by the MSS-SBM. Application to task fMRI reveals meaningful non-assortative brain community motifs, e.g., core-periphery structure at the group level, that are associated with language comprehension and motor functions suggesting their putative role in complex information integration. Our approach detected dynamic reconfiguration of modular connectivity elicited by varying task demands and identified unique profiles of intra and inter-community connectivity across different task conditions. Conclusion: The proposed multilayer network representation provides a principled way of detecting synchronous, dynamic modularity in brain networks across subjects. |
doi_str_mv | 10.1109/TMI.2020.3030047 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_2450651021</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9220100</ieee_id><sourcerecordid>2486593265</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-f6bcc64a916bbbcc2a3f3bd7d2d4069bc0defe2c2e759b8a1e1daa556ea7b4ec3</originalsourceid><addsrcrecordid>eNpdkU1vFDEMhiMEokvhjoSEInHhMouTTDITbsuWtiu1cKBI3EaZjAdS5mObD9D-e7LstoeebPl9bMt-CXnNYMkY6A8315slBw5LAQKgrJ6QBZOyLrgsfzwlC-BVXQAofkJehHALwEoJ-jk5EQLKUnO9IMMZRrTRTT_p2W4yo7N0PY9jmlzc0W_RJxuTR-omep6mzM2TGegnb3LhC8a_s_8d6Mr6OQS6mTr3x3XJDOEjXdHrNEQ3mB16utpu_Wzsr5fkWZ9VfHWMp-T7-eeb9WVx9fVis15dFVbUOha9aq1VpdFMtW1OuRG9aLuq410JSrcWOuyRW46V1G1tGLLOGCkVmqot0YpT8v4wN6-9SxhiM7pgcRjMhHMKDc9vUJIBZxl99wi9nZPPR-6pWkktuJKZggP1_1KPfbP1bjR-1zBo9k402Ylm70RzdCK3vD0OTu2I3UPD_esz8OYAOER8kDXnwADEP0jVjqA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2486593265</pqid></control><display><type>article</type><title>Detecting Dynamic Community Structure in Functional Brain Networks Across Individuals: A Multilayer Approach</title><source>IEEE Electronic Library (IEL)</source><creator>Ting, Chee-Ming ; Samdin, S. Balqis ; Tang, Meini ; Ombao, Hernando</creator><creatorcontrib>Ting, Chee-Ming ; Samdin, S. Balqis ; Tang, Meini ; Ombao, Hernando</creatorcontrib><description>Objective: We present a unified statistical framework for characterizing community structure of brain functional networks that captures variation across individuals and evolution over time. Existing methods for community detection focus only on single-subject analysis of dynamic networks; while recent extensions to multiple-subjects analysis are limited to static networks. Method: To overcome these limitations, we propose a multi-subject, Markov-switching stochastic block model (MSS-SBM) to identify state-related changes in brain community organization over a group of individuals. We first formulate a multilayer extension of SBM to describe the time-dependent, multi-subject brain networks. We develop a novel procedure for fitting the multilayer SBM that builds on multislice modularity maximization which can uncover a common community partition of all layers (subjects) simultaneously. By augmenting with a dynamic Markov switching process, our proposed method is able to capture a set of distinct, recurring temporal states with respect to inter-community interactions over subjects and the change points between them. Results: Simulation shows accurate community recovery and tracking of dynamic community regimes over multilayer networks by the MSS-SBM. Application to task fMRI reveals meaningful non-assortative brain community motifs, e.g., core-periphery structure at the group level, that are associated with language comprehension and motor functions suggesting their putative role in complex information integration. Our approach detected dynamic reconfiguration of modular connectivity elicited by varying task demands and identified unique profiles of intra and inter-community connectivity across different task conditions. Conclusion: The proposed multilayer network representation provides a principled way of detecting synchronous, dynamic modularity in brain networks across subjects.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2020.3030047</identifier><identifier>PMID: 33044929</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Brain ; Brain architecture ; Brain mapping ; Brain modeling ; community detection ; Community structure ; Dynamic functional connectivity ; fMRI ; Functional magnetic resonance imaging ; Hidden Markov models ; Markov-switching model ; Modularity ; Multilayers ; Networks ; Neural networks ; Nonhomogeneous media ; Organizations ; Reconfiguration ; stochastic blockmodel ; Stochasticity ; Switches ; Switching ; Task analysis ; Time dependence</subject><ispartof>IEEE transactions on medical imaging, 2021-02, Vol.40 (2), p.468-480</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-f6bcc64a916bbbcc2a3f3bd7d2d4069bc0defe2c2e759b8a1e1daa556ea7b4ec3</citedby><cites>FETCH-LOGICAL-c389t-f6bcc64a916bbbcc2a3f3bd7d2d4069bc0defe2c2e759b8a1e1daa556ea7b4ec3</cites><orcidid>0000-0001-7020-8091 ; 0000-0002-6037-3728 ; 0000-0002-9797-2214 ; 0000-0001-5338-8772</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9220100$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9220100$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33044929$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ting, Chee-Ming</creatorcontrib><creatorcontrib>Samdin, S. Balqis</creatorcontrib><creatorcontrib>Tang, Meini</creatorcontrib><creatorcontrib>Ombao, Hernando</creatorcontrib><title>Detecting Dynamic Community Structure in Functional Brain Networks Across Individuals: A Multilayer Approach</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>Objective: We present a unified statistical framework for characterizing community structure of brain functional networks that captures variation across individuals and evolution over time. Existing methods for community detection focus only on single-subject analysis of dynamic networks; while recent extensions to multiple-subjects analysis are limited to static networks. Method: To overcome these limitations, we propose a multi-subject, Markov-switching stochastic block model (MSS-SBM) to identify state-related changes in brain community organization over a group of individuals. We first formulate a multilayer extension of SBM to describe the time-dependent, multi-subject brain networks. We develop a novel procedure for fitting the multilayer SBM that builds on multislice modularity maximization which can uncover a common community partition of all layers (subjects) simultaneously. By augmenting with a dynamic Markov switching process, our proposed method is able to capture a set of distinct, recurring temporal states with respect to inter-community interactions over subjects and the change points between them. Results: Simulation shows accurate community recovery and tracking of dynamic community regimes over multilayer networks by the MSS-SBM. Application to task fMRI reveals meaningful non-assortative brain community motifs, e.g., core-periphery structure at the group level, that are associated with language comprehension and motor functions suggesting their putative role in complex information integration. Our approach detected dynamic reconfiguration of modular connectivity elicited by varying task demands and identified unique profiles of intra and inter-community connectivity across different task conditions. Conclusion: The proposed multilayer network representation provides a principled way of detecting synchronous, dynamic modularity in brain networks across subjects.</description><subject>Brain</subject><subject>Brain architecture</subject><subject>Brain mapping</subject><subject>Brain modeling</subject><subject>community detection</subject><subject>Community structure</subject><subject>Dynamic functional connectivity</subject><subject>fMRI</subject><subject>Functional magnetic resonance imaging</subject><subject>Hidden Markov models</subject><subject>Markov-switching model</subject><subject>Modularity</subject><subject>Multilayers</subject><subject>Networks</subject><subject>Neural networks</subject><subject>Nonhomogeneous media</subject><subject>Organizations</subject><subject>Reconfiguration</subject><subject>stochastic blockmodel</subject><subject>Stochasticity</subject><subject>Switches</subject><subject>Switching</subject><subject>Task analysis</subject><subject>Time dependence</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkU1vFDEMhiMEokvhjoSEInHhMouTTDITbsuWtiu1cKBI3EaZjAdS5mObD9D-e7LstoeebPl9bMt-CXnNYMkY6A8315slBw5LAQKgrJ6QBZOyLrgsfzwlC-BVXQAofkJehHALwEoJ-jk5EQLKUnO9IMMZRrTRTT_p2W4yo7N0PY9jmlzc0W_RJxuTR-omep6mzM2TGegnb3LhC8a_s_8d6Mr6OQS6mTr3x3XJDOEjXdHrNEQ3mB16utpu_Wzsr5fkWZ9VfHWMp-T7-eeb9WVx9fVis15dFVbUOha9aq1VpdFMtW1OuRG9aLuq410JSrcWOuyRW46V1G1tGLLOGCkVmqot0YpT8v4wN6-9SxhiM7pgcRjMhHMKDc9vUJIBZxl99wi9nZPPR-6pWkktuJKZggP1_1KPfbP1bjR-1zBo9k402Ylm70RzdCK3vD0OTu2I3UPD_esz8OYAOER8kDXnwADEP0jVjqA</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Ting, Chee-Ming</creator><creator>Samdin, S. Balqis</creator><creator>Tang, Meini</creator><creator>Ombao, Hernando</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7020-8091</orcidid><orcidid>https://orcid.org/0000-0002-6037-3728</orcidid><orcidid>https://orcid.org/0000-0002-9797-2214</orcidid><orcidid>https://orcid.org/0000-0001-5338-8772</orcidid></search><sort><creationdate>20210201</creationdate><title>Detecting Dynamic Community Structure in Functional Brain Networks Across Individuals: A Multilayer Approach</title><author>Ting, Chee-Ming ; Samdin, S. Balqis ; Tang, Meini ; Ombao, Hernando</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-f6bcc64a916bbbcc2a3f3bd7d2d4069bc0defe2c2e759b8a1e1daa556ea7b4ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Brain</topic><topic>Brain architecture</topic><topic>Brain mapping</topic><topic>Brain modeling</topic><topic>community detection</topic><topic>Community structure</topic><topic>Dynamic functional connectivity</topic><topic>fMRI</topic><topic>Functional magnetic resonance imaging</topic><topic>Hidden Markov models</topic><topic>Markov-switching model</topic><topic>Modularity</topic><topic>Multilayers</topic><topic>Networks</topic><topic>Neural networks</topic><topic>Nonhomogeneous media</topic><topic>Organizations</topic><topic>Reconfiguration</topic><topic>stochastic blockmodel</topic><topic>Stochasticity</topic><topic>Switches</topic><topic>Switching</topic><topic>Task analysis</topic><topic>Time dependence</topic><toplevel>online_resources</toplevel><creatorcontrib>Ting, Chee-Ming</creatorcontrib><creatorcontrib>Samdin, S. Balqis</creatorcontrib><creatorcontrib>Tang, Meini</creatorcontrib><creatorcontrib>Ombao, Hernando</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ting, Chee-Ming</au><au>Samdin, S. Balqis</au><au>Tang, Meini</au><au>Ombao, Hernando</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detecting Dynamic Community Structure in Functional Brain Networks Across Individuals: A Multilayer Approach</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2021-02-01</date><risdate>2021</risdate><volume>40</volume><issue>2</issue><spage>468</spage><epage>480</epage><pages>468-480</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>Objective: We present a unified statistical framework for characterizing community structure of brain functional networks that captures variation across individuals and evolution over time. Existing methods for community detection focus only on single-subject analysis of dynamic networks; while recent extensions to multiple-subjects analysis are limited to static networks. Method: To overcome these limitations, we propose a multi-subject, Markov-switching stochastic block model (MSS-SBM) to identify state-related changes in brain community organization over a group of individuals. We first formulate a multilayer extension of SBM to describe the time-dependent, multi-subject brain networks. We develop a novel procedure for fitting the multilayer SBM that builds on multislice modularity maximization which can uncover a common community partition of all layers (subjects) simultaneously. By augmenting with a dynamic Markov switching process, our proposed method is able to capture a set of distinct, recurring temporal states with respect to inter-community interactions over subjects and the change points between them. Results: Simulation shows accurate community recovery and tracking of dynamic community regimes over multilayer networks by the MSS-SBM. Application to task fMRI reveals meaningful non-assortative brain community motifs, e.g., core-periphery structure at the group level, that are associated with language comprehension and motor functions suggesting their putative role in complex information integration. Our approach detected dynamic reconfiguration of modular connectivity elicited by varying task demands and identified unique profiles of intra and inter-community connectivity across different task conditions. Conclusion: The proposed multilayer network representation provides a principled way of detecting synchronous, dynamic modularity in brain networks across subjects.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>33044929</pmid><doi>10.1109/TMI.2020.3030047</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-7020-8091</orcidid><orcidid>https://orcid.org/0000-0002-6037-3728</orcidid><orcidid>https://orcid.org/0000-0002-9797-2214</orcidid><orcidid>https://orcid.org/0000-0001-5338-8772</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0278-0062 |
ispartof | IEEE transactions on medical imaging, 2021-02, Vol.40 (2), p.468-480 |
issn | 0278-0062 1558-254X |
language | eng |
recordid | cdi_proquest_miscellaneous_2450651021 |
source | IEEE Electronic Library (IEL) |
subjects | Brain Brain architecture Brain mapping Brain modeling community detection Community structure Dynamic functional connectivity fMRI Functional magnetic resonance imaging Hidden Markov models Markov-switching model Modularity Multilayers Networks Neural networks Nonhomogeneous media Organizations Reconfiguration stochastic blockmodel Stochasticity Switches Switching Task analysis Time dependence |
title | Detecting Dynamic Community Structure in Functional Brain Networks Across Individuals: A Multilayer Approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T13%3A55%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detecting%20Dynamic%20Community%20Structure%20in%20Functional%20Brain%20Networks%20Across%20Individuals:%20A%20Multilayer%20Approach&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Ting,%20Chee-Ming&rft.date=2021-02-01&rft.volume=40&rft.issue=2&rft.spage=468&rft.epage=480&rft.pages=468-480&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2020.3030047&rft_dat=%3Cproquest_RIE%3E2486593265%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2486593265&rft_id=info:pmid/33044929&rft_ieee_id=9220100&rfr_iscdi=true |